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EMISSION MEASURE DISTRIBUTION IN LOOPS IMPULSIVELY HEATED AT THE FOOTPOINTS
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ABSTRACT

This work is prompted by evidence of sharply peaked emission measure distributions in active stars and by the
claims of isothermal loops in solar coronal observations, at variance with the predictions of hydrostatic loop models
with constant cross section and uniform heating. We address the problem with loops heated at the footpoints. Since
steady heating does not allow static loop model solutions, we explore whether pulse-heated loops can exist and
appear as steady loops on a time average. We simulate pulse-heated loops, using the Palermo-Harvard 1-D hydro-
dynamic code, for different initial conditions corresponding to typical coronal temperatures of stars ranging from
intermediate to active [T ~ (3—10) x 10° K]. We find long-lived quasi-steady solutions even for heating concen-
trated at the footpoints over a spatial region of the order of N% of the loop half-length and broader. These solu-
tions yield an emission measure distribution with a peak at high temperature, and the cool side of the peak is as steep
as ~T, in contrast to the usual ~73/2 of hydrostatic models with constant cross section and uniform heating. Such
peaks are similar to those found in the emission measure distribution of active stars around 107 K.

Subject headings: hydrodynamics — plasmas — stars: coronae — X-rays: stars

Online material: color figures

1. INTRODUCTION

Coronae are important in the study of solar and stellar phys-
ics for several reasons: they are good tracers of stellar activity
and of dynamo phenomena; also, bright coronae identify young
stars and stellar formation regions more easily than many other
characteristics. Nevertheless, fundamental aspects of stellar
coronae—namely, the heating mechanisms that sustain the hot,
confined plasma—are not well understood. Although we are un-
able to observe directly the heating processes at work in stellar
coronae, the characteristics of the observed coronal structures
can provide us with an indirect probe for the properties of the
coronal heating.

The earliest spatially resolved observations of the solar
corona (e.g., Vaiana et al. 1973) have already shown that the
hot plasma is highly structured and confined by the magnetic
field in loop structures, which are considered the basic building
blocks of the coronae. Considerable effort has been devoted in
the last three decades to understanding the physics of these
structures of confined plasma and to develop adequate models
that account for the observed properties of coronal emission.
The first loop models (e.g., Rosner et al. 1978, hereafter RTV;
Vesecky et al. 1979; Serio et al. 1981, hereafter S81) were flux
tubes of constant cross section filled with plasma in hydrostatic
equilibrium, and in energy balance under the effects of steady
heating, heat flux, and radiative losses, with the magnetic field
only confining the plasma. These models demonstrated a wide
range of validity and satisfactorily reproduced a large number
of coronal X-ray and EUV observations, both solar and stellar
(e.g., Rosner & Vaiana 1977; Pallavicini et al. 1981; Giampapa
et al. 1985; Landini et al. 1985; Peres et al. 1987; Reale et al.
1988, 2002; Testa et al. 2002). However, TRACE and SOHO
have observed loops apparently incompatible with hydrostatic
equilibrium (in terms of their spatial distribution of temperature
and density), although appearing as quasi-static (e.g., Brekke
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et al. 1997; Warren et al. 2002; Winebarger et al. 2002; Golub
2002). Some authors claimed that these loops are heated non-
uniformly and, in particular, at their footpoints (Aschwanden
etal. 2000, 2001; Winebarger et al. 2003). On the other hand, if
the heating is too localized at the footpoints, static loops should
be thermally unstable, as widely discussed since the first works
on modeling of loop structures, e.g., RTV, Antiochos (1979),
S81, and Peres et al. (1982). Recently, detailed analyses of solar
observations have brought up again the question of the location
of the heating release (e.g., Priest et al. 2000; Aschwanden
2001; Reale 2002).

In order to attempt to explain structures that apparently per-
sist for timescales longer than the characteristic cooling time
with footpoint heating models, the models must be dynamic,
since static solutions with footpoint heating can be unstable.
Dynamic models of this kind have been used recently in several
works (e.g., Warren et al. 2002, 2003; Spadaro et al. 2003; Miiller
et al. 2004). For instance, Warren et al. (2003) successfully re-
produced several observed characteristics with a multithreaded
model, impulsively heating loops to several million degrees and al-
lowing them to cool to TRACE observable temperatures (~10° K).

The study of the stellar coronae allows us to investigate the
effect of stellar parameters (effective temperature, surface grav-
ity, rotation, chemical composition, etc.) on the coronal models,
developed for the Sun. On one hand, when studying stellar co-
ronae a first approach is based on the hypothesis that the solar
corona is an adequate paradigm to interpret the observations of
stellar coronae. On the other hand, the assumption of the solar
analogy must be validated by comparing the characteristics of
solar and stellar coronae.

Recent high-quality spectral observations have provided us
with detailed information on the properties of stellar coronal
emission. High-resolution spectra obtained with, e.g., EUVE,
in the EUV range, and with the new observatories Chandra
and XMM-Newton in the X-ray band, allow us to diagnose the
plasma conditions in a large sample of stellar coronae at dif-
ferent activity levels. Since stellar coronae cannot be spatially
resolved by present-day telescopes, we must resort to indirect
means in order to compare the properties of coronal structures
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among different stars and with the observed characteristics of
the solar corona. The emission measure distribution versus tem-
perature, EM(T), defined by

EM(T)) = / : n(T)dV, (1)

i

where 7, is the electron density and V'is the volume filled with
plasma at 7€ AT;, contains substantial information about the
coronal emitting plasma, mainly on its thermal structuring, and
proves to be a useful diagnostic tool for comparing the coronal
emission of different stars.

The global EM(T) of the X-ray Sun is typically peaked at
T ~ (2-3) x10° K, and the ascending cool part is characterized
by arise as ~73/2 (Orlando et al. 2000; Peres et al. 2000), even
though its specific properties can vary for different coronal re-
gions and in different phases of activity. Previous studies of the
solar atmosphere, mostly done in the UV band (Jordan 1980;
Brosius et al. 1996; Landi & Landini 1997), led to analogous
results. The observed dependence on temperature is well ex-
plained in terms of hydrostatic loops (Peres et al. 2001): for
a standard RTV uniformly heated loop model, the 7 and n
structuring of the plasma along the loop yields EM(T') increas-
ing approximately as 73/2. Thus, for a corona of optically thin
plasma, mostly confined in hydrostatic loops, this would also
yield EM(T') o T3/? in the ascending part. The descending part
of EM(T') gives us information on the distribution of the hy-
drostatic loops. Therefore, in the stellar case, the analysis of the
global EM(T') can provide us with information on the structuring
of the observed corona and can allow us to test the hypothesis of a
corona formed by static loops at different maximum temperature.

Analyses of EM(T') derived from EUV and X-ray spectra of
several stars have appeared in the recent literature (e.g., Sanz-
Forcada et al. [2002, 2003] present extensive EM(7) recon-
structions from EUVE spectra of active stars), and most of them
show similar features. The EM(T) of active stars is typically
characterized by an ascending part as 7% with « > 3/2 and up
to ~5 in some cases (see e.g., Dupree et al. 1993; Griffiths &
Jordan 1998; Drake et al. 2000; Mewe et al. 2001; Sanz-Forcada
etal. 2002, 2003; Argiroffi et al. 2003; Scelsi et al. 2004). More-
over, the EM(T') of several active coronae shows prominent
“bumps,” i.e., large amounts of almost isothermal material (e.g.,
Drake 1996; Dupree 1996, 2002). For example, Dupree et al. (1993)
used EUVE data for the giant Capella and derived an EM(T')
with a well-defined and narrow peak at log (") ~ 6.8 and a rise
much steeper than 7%/2; the analysis of X-ray Chandra spectra
of Capella (Mewe etal. 2001; Argiroffi et al. 2003) has confirmed
these findings. Although these results are quite controversial and
are based on atomic physics parameters still under refinement,
they point to an almost isothermal hot part of the corona that, if
formed by loops, does not seem to be compatible with the pre-
dictions of simple static loop models with uniform cross section.

Isothermal loops would have fundamental implications for
the thermodynamics and for the heating of the magnetized
plasma. In uniformly heated loops, the energy radiated by the
plasma near to the footpoints (that is, at T’ ~ 10°) is balanced by
the local heat deposition and by the heat flux from the hotter
plasma farther up the loop. However, for footpoint heating, the
local energy deposition can supply most of the energy radiated
by the cooler plasma, so that a lower heat flux (shallower tem-
perature gradient) is needed from the hotter plasma and the T
profile becomes flatter. Since standard hydrostatic loop models
do not allow stable solutions for heating deposition over a spa-
tial region smaller than about L/3 (e.g., S81), we decided to
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explore the possibility of obtaining stable loops with a non-
constant and thus dynamic heating.

The possibility of a corona composed of loops heated epi-
sodically, close to their footpoints, poses two basic questions:

1. Under what conditions can such loops be stable for time-
scales much longer than the characteristic cooling time?

2. Iflong-lived, footpoint-heated loops exist, is their EM(T')
different from that of uniformly heated loops?

In this work we model the properties of footpoint-heated co-
ronal loops using a one-dimensional hydrodynamic model. We
run simulations with pulse heating concentrated at the foot-
points and investigate the existence of long-lived solutions; we
study the EM(T) associated with these solutions. In particular,
we investigate the existence of stable loops characterized by an
EM(T) with a narrow peak and a slope steeper than 7°/2 i.e.,
characteristic of those derived from observations of active stars.
We note that, for the solar case, Cargill & Klimchuk (2004; see
also Cargill & Klimchuk 1997; Klimchuk & Cargill 2001) dem-
onstrated that the EM(T) provides a useful diagnostic for peri-
odically heated plasma by using a zero-dimensional model (i.e.,
each loop is characterized by a single, averaged value of density
and temperature) that considers nanoflare heating (Cargill 1994).

In § 2 we describe the loop modeling and the properties of
the simulations. In § 3 we analyze the results of the simulations.
In § 4 we discuss our results and their implications, and then we
draw conclusions from our work.

2. LOOP MODEL AND SET OF SIMULATIONS

We model the plasma confined in a single magnetic flux tube.
We discuss later how this single-loop model can be useful for
interpreting the overall emission from a corona.

In our model, the magnetic field has only the role of confin-
ing the plasma; thermal conduction is effective only along the
magnetic field lines. The model assumes constant cross section
along the loop. In our study, the loop half-length is assumed to
be L = 10'" cm, as observed for relatively long loops on the
Sun. We discuss below the implications of our assumptions.

We simulate coronal loops heated close to their footpoints by
episodic pulses. In order to investigate the effect of some basic
parameters on the solutions for the loop plasma, we have re-
duced the number of free parameters as much as possible. For
instance, we assume identical conditions in both loop legs, and
therefore the loop model is symmetric about the loop apex. Be-
cause of this symmetry, the equations for the loop plasma are
solved for half of the loop only.

The simulations are long-lasting to search for long-term sta-
bility, i.e., for loops settling in a state steady on average, if such
solutions exist.

We use the Palermo-Harvard code (Peres et al. 1982; Betta
et al. 1997), a one-dimensional hydrodynamic code that con-
sistently solves the time-dependent density, momentum, and
energy equations for the plasma confined by the magnetic field,

dn Ov
dar —n s’ (2)
dv Op 0 Ov
anE —a——i-ang—&-&(u a), (3)
de o 5 N | 0 ( sp 0T
ZH’”E)%_EH " 6P(T)+'u<8s> +8s <I€T ds )’
(4)
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TABLE 1
PARAMETERS OF THE SIMULATIONS
InrriaL CoNDITIONS Heat PuLses®
MopeL* L° Tmaxd pbasec E()F 7—conlg Uh EHi Tj frun
1 3 1 0.45 ~2200 L/3, L/5, L/10 Ey, 4E, Teool /4 Teool /2 10,000
1 10 36 30 ~1200 L/3, L/5, L/10 Ey, 4E, Teool /4 Teool /2 5000

2 C and H indicate the models of cooler (7 = 3 x10° K) and hotter (T = 107 K) loops, respectively.
® The set of simulations considers all possible combinations of the values of the parameters (o, (Ey), T).

¢ Loop semilength in units of 10'° cm.

¢ Maximum temperature (= apex temperature) in units of 10° K.

® Base pressure in units of dyn cm™2.

T Heating per unit time and per unit volume (ergs cm—> s~') from RTV loop scaling laws.

€ Loop cooling time (s) (see eq. [6]).

?‘ Gaussian parameter of the spatial extent of the heating (see eq. [10]).
! Heating intensity averaged in time and along the loop, expressed in terms of the static heating Ej.

J Period of the heat pulses.
X Total simulation time (s).

with p and e defined by

p=(+ OnKsTe =3 pt nfx. (5)

where 7 is the hydrogen number density, s is the spatial coor-
dinate along the loop, v is the plasma velocity, my is the mass of
hydrogen atom, u is the effective plasma viscosity, P(T") repre-
sents the radiative losses function per unit emission measure, 3 is
the fractional ionization, i.e., n./ny, k is the Spitzer conductivity
(Spitzer 1962), K is the Boltzmann constant, and y is the hy-
drogen ionization potential. The quantity Fy is an ad hoc heating
function of both space and time; this is the main parameter
we vary to study the characteristics of the solutions, and it is
described in detail in § 2.2. The numerical code uses an adap-
tive spatial grid to follow adequately the evolving profiles of the
physical quantities, which can vary dramatically in the transition
region.

2.1. Initial Conditions

As initial conditions, we consider hydrostatic loop solutions
of the S81 model with uniform heating. In particular we have
selected two different solutions with maximum temperatures:
Tmax = 3 x10° and Ty = 107 K. The initial model atmosphere
uses the Vernazza et al. (1976) model to extend the S81 static
model to chromospheric temperatures (the minimum tempera-
ture is Tpin = 4.4 x 103 K). Table 1 summarizes the character-
istics of the initial loop conditions: maximum temperature Ty,
base pressure ppase, heating per unit time and per unit volume £,
and the characteristic cooling time 7,1, according to Serio et al.
(1991),

Lo
Teool ~ 120 —. 6
cool \/T7 ( )
This parameter is important in many respects, e.g., for com-
parison with the time interval between heat pulses, and other
parameters of the simulations as discussed below.

Note that the parameters of the loop in Table 1 satisfy the
scaling laws derived from the static RTV loop model,

Toax )1
ase " -, 7
Po (1.4><103) L @

Eg ~10° x pllL™ %, (8)

Our aim is to find solutions corresponding to loops in steady-
state conditions over long timescales, as observed. We find that,
in general, the initial conditions have little influence on the loop
evolution driven by the repeated impulsive heating and that
they can be important only in a region of the parameter space at
the boundary between stability and instability. In particular, the
results can change if the loop is initially already hot and dense.

2.2. The Heating Function

The heating function, Ey(s, f), is assumed to be a separate
function of space and time,

En(s,0) = Hog(s)f (). )

Amount of energy release—One of our main goals is to
model stellar coronae of activity levels from intermediate to
high, showing features not reproduced by standard models. The
characteristic plasma temperatures for such coronae range from
a few million degrees up to 2107 K.

The reference value for the time-averaged intensity of the
heating is the energy required to heat the initial hydrostatic
model (£y of Table 1). We run two sets of simulations choos-
ing Hy such that the heating, averaged in time and along the
loop, (En) [= (1/V)(1/0) [, [, Eu(s, t)dV di], is equal to Eo,
corresponding to Trry = 3 x10° and Tryy = 107 K, respec-
tively.? We also consider higher values of the heating ((Ey) =
4E)) because

1. we want to check whether unstable loops become stable
with stronger heating; and

2. footpoint-heated loops are cooler than uniformly heated
loops with the same total energy input; we include simulations
with stronger heating to compensate for this effect.

Spatial distribution of heating—The spatial distribution of
the heating is described by a Gaussian function,

g(s) = e = /), (10)

centered at the loop footpoints (i.e., so = 0) for all the simulations.

2 The quantity Trry corresponds to Tpax of eq. (7); Trrv and E, are linked
through the scaling laws of eqgs. (7) and (8).
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Fic. 1.—Evolution of the temperature (leff) and the density (right) distributions along (half of ) a loop with semilength Z = 10'° cm, initial maximum temperature
Tmax = 107 K, and constantly heated at its footpoints with ¢ = L/3; T (in K) and # (in 10° cm~3) are plotted vs. time (in seconds) and vs. the coordinate along the
loop (in units of 10° cm). The loop top is on the left, and the three-dimensional plots are oriented with the initial profiles toward the observer.

We assume that the heat deposition is exactly the same in
both legs of the loop; thus, as mentioned above, we have sym-
metry about the loop apex.

The spatial extent of the heating is a fundamental parameter of
our study, given our interest in the effect of the concentration of
the heating on the stability and on other characteristics of the so-
lutions. A preliminary set of runs has indicated that the bound-
ary between stable and unstable solutions is o ~ L/5. Therefore,
we discuss in detail the results for 0 = L/10, L/5, L/3, i.e.,
smaller than, equal to, and larger than the critical value. For
o > L/3 the solutions do not depart significantly from the static
solutions.

Temporal distribution of heating pulses.—Given the tran-
sient nature of the simulated heating, a natural reference point is
represented by the loop models with heating that produces flare
events. In these models the heating typically consists of two
terms: a constant and uniform heating keeping the steady con-
ditions of the initial loop, i.e., the steady coronal heating; and a
transient, much larger heating that triggers the flare. In our anal-
ysis we neglect the constant term and assume no steady coronal
heating.

The heat pulses are periodic, with period 7 and duty cycle
10%; i.e., the heat is active only for a pulse lasting 1/10 of the
period. Each heat pulse is a step function, constant when active
and zero otherwise. We consider values of 7 smaller than the
cooling time of the loop, 7.1, in order to prevent the loop from
collapsing, but long enough to induce significant changes in the
loop.

Our choice of periodic pulses, instead of a random distribu-
tion in time, allows us to limit the free parameters and to focus
on the most critical ones. We have also run test cases with ran-
dom heat pulses in order to check for possible differences ( Testa
& Peres 2003); solutions do not differ significantly for similar
pulse parameter values (i.e., average energy release and average
interval between pulses). Also, Peres et al. (1993) have shown
that the results do not differ substantially from those obtained

with random pulses with equal average repetition time and duty
cycle.

The simulations are run for at least ~10 periods and a total
time #,, much longer than the cooling time, in order to be able
to distinguish between stable and unstable solutions. The total
times are of the order of several hours, comparable with the time
coverage of actual coronal observations.

We summarize the parameters of the simulations in Table 1.

3. RESULTS
3.1. Evolution of Solutions

We know from previous works that loops continuously
heated at the footpoints are not stable, for o < oitical. For
comparison with pulse-heated loops, we first show the results
for a loop with continuous heating.

Figure 1 shows the evolution of temperature and density
for a loop evolving from initial hydrostatic conditions of Tiax
~ 107 K, with a footpoint heating (¢ = L/3) constant in time.
The evolution is shown as a three-dimensional plot, where the
temperature 7 and the density n are plotted versus time and
versus the coordinate s along the loop; s = 0 corresponds to the
loop base, and s = 10'° cm corresponds to the apex. The three-
dimensional plot is oriented with the initial profiles toward
the observer. The figure shows that the plasma progressively
cools down and condensates at the loop apex. As discussed
by, e.g., RTV and S81, a configuration with temperature and
density inversion [$(Tmax), S(fimin) < L] is thermally unstable.
Despite the continuous energy release, the loop collapses on
timescales only slightly longer than the characteristic cooling
time.

Figures 2 and 3 show results for pulsed heating and in par-
ticular for an unstable and a stable loop, respectively, in the
same format as Figure 1.

The solution shown in Figure 2 is for a loop with semilength
L =10'" cm and heating function parameters: 7 = T.o01/2,
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Fic. 2—Evolution of the temperature (/eff) and the density (right) distributions along (half of ) an unstable pulse-heated loop. The heating function parameters are
T = Teool/2, 0 = L/10, and (Ey) = 4E, (see Table 1 for their definition). The three-dimensional plots are in the same format as in Fig. 1.

o =L/10, and (Ey) = 4E, (see § 2 or Table 1 for their defini-
tion). Initially, the solution does not depart markedly from av-
erage conditions, but after # ~ 27, the instability develops at
the loop apex, i.e., the least heated place in the loop. As the apex
plasma cools slightly, the radiative losses increase. Since the
apex plasma is not sustained by significant local heat deposi-
tion, it cools down even more and condenses; the increase in
density and the decrease in temperature further enhances the ra-
diative losses. Once the instability is triggered, the loop quickly
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collapses because the radiative losses increase for decreasing
temperature and increasing density.

All the unstable cases show similar temperature and density
evolution; the more concentrated the heating, the faster the in-
stability occurs. The instability invariably starts at the apex.

Figure 3 shows an example of a long-lived solution; for a more
direct comparison we show the loop with the same characteristics
as those shown in Figure 2, except that the spatial deposition of
the heating is o = L/5 instead of L/10 (Fig. 2). In spite of the
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Fic. 3.—Evolution of the temperature (leff) and the density (right) distributions for a stable pulse-heated loop. The heating function parameters are 7 = Teoo1/2,
o =L/5, and (Ey) = 4Ey; i.e., the parameters are the same as those of the loop of Fig. 2, except for . The three-dimensional plots are in the same format as in

Fig. 1.
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Fic. 4—Evolution of the temperature (leff) and the density (right) at the loop top for different spatial and temporal characteristics of heating: continuous heating
concentrated at the footpoint with spatial scale o = L/3 (dashed lines), periodic heat pulses with o = L/3 (thick light gray lines), o = L/5 (solid black lines), and

o = L/10 (dark gray lines).

fluctuations due to the heat pulses, the loop is stable on long time-
scales and settles to a state of higher density because of the sig-
nificant chromospheric evaporation driven by the heat pulses.

Figure 4 shows the evolution of the plasma temperature and
density at the loop apex for the loop models with pulsed heating
as compared with the solution for constant heating. The evo-
lution of the plasma properties at the loop apex are presented for
the loop constantly heated at the footpoint (¢ = L/3; dashed
lines) and for the loops subject to heat pulses with different
spatial distribution: o = L/3 (thick light gray lines), c = L/5
(solid black lines), and o = L/10 (dark gray lines). The fig-
ure shows the instability of the constantly heated loop and of
the solution with heat too concentrated at the footpoints (o =
L/10). The two solutions with ¢ = L/5 and o = L/3 appear
more stable.

Effect of heating parameters.—The critical parameter for
loop stability is the spatial width of the heating function: we
have stable solutions for ¢ = L/3 and unstable solutions for
0 < L/10; for o ~ L/5 the loops are on the edge of stability, and
other characteristics of the heating (intensity and interval be-
tween pulses) become important. We find consistent results for
both the cooler and the hotter solutions.

The interval between pulses, 7, does not appear to be a crit-
ical parameter for stability as long as it is not too small (7 <
Teool)s 1.€., t00 close to the constant heating case that is unstable
foro = L/3 (see Fig. 1), nor too long with respect to the cooling
time, since the loop would then catastrophically cool.

3.2. Emission Measure Distribution

Besides investigating the stability of the solutions, our mod-
eling effort aims to study the effect of shrinking the heating
region at the loop footpoints on the EM(7"), which is one of the
main derived quantities that allow us to study and compare the
coronal properties of different stars.

As described in § 2, we analyze two different sets of models
with maximum temperatures of about ~3 x10° and ~107 K,
respectively. Since we find results that are qualitatively similar

in both cases, we discuss in detail the model of hotter loop,
because one of the questions we want to address is the possi-
bility of reproducing the EM(T') of active stars (generally char-
acterized by peak temperature of the order of 107 K) with the
proposed model.

From our simulations we can model the global emission of
a stellar corona composed of many loops impulsively heated by
microflares occurring close to their footpoints. Under the assump-
tion that all of the loops have a statistically analogous evolution,
taking a sample of profiles at different times in the evolution of a
single loop, as shown, for example, in Figure 3, is equivalent to
observing all of the loops simultaneously, with each loop at a
different stage in its evolution. We take 200 outputs from each
simulation, uniformly sampled in time, and consider each output
as a snapshot of an independent loop. Thus, the total emission
from the corona, composed of all these loops, is the sum of the
emission of all the snapshots.

From the temperature and density profiles of each output, we
derive EM(T) and then sum them to obtain the global EM(T).
We derive EM(T') in each temperature bin, AT;, as EM(T;) =
Zj n2(j) ds;, where j spans over the spatial bins whose temper-
ature falls within AT}, and the temperature bins are constant in
log T such that A log T = 0.1. Therefore, EM(T") obtained with
this procedure differs from the definition of equation (1) by a
normalization factor that corresponds to the cross-sectional area
of the loop.

Figure 5 shows EM(T') for the loop models with average
coronal temperatures ~107 K and heating functions with dif-
ferent spatial widths. The solutions with o = L/3 (top), o =
L/5 (middle),and o = L/10 (bottom) show the effect on EM(T')
of varying the heating concentration. The lines in the lower part
of the plots of Figure 5 correspond to EM(T') for each output
represented with lines darkening from ¢ = 0 (light gray) to t =
twun (dark gray). The upper thick black line represents the total
EM(T), which is the sum of all the individual distributions.
Therefore, the total EM(T') is the one that would characterize a
corona composed entirely of such loops. In order to allow for an
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Journal for a color version of this figure.]

easier comparison of the static model with the dynamic simu-
lations, EM(T') of the initial static solution (dash-dotted line) is
also shown arbitrarily shifted next to the total EM(T"). In Figure 5
the power laws corresponding to EM(T') o< T%/2 and EM(T')
T> are also plotted as useful points of reference, as discussed
in§ 1.

The EM(T) of the initial hydrostatic solution is quite flat,
close to the 7%/2 power law. Figure 5 shows that EM(T) can
clearly be used to characterize the dynamic simulations, since
we see that the total EM(7") changes consistently as the heating
becomes more concentrated in the footpoint region. The main

difference of the total EM(T') (solid lines) from the standard
hydrostatic distribution is the presence of a well-defined peak at
high temperatures (~107 K). This is also the temperature range
corresponding to the bulk of the emission from active stellar
coronae.

For o = L/3 the EM(T) is close to the initial curve. Narrow-
ing the region of energy release to o = L/5 causes the EM(T') to
steepen and approach the scaling derived from stellar obser-
vations. The more concentrated the heating, the wider the peak.

The EM(T') does not depend on the parameter 7 as it does on
the concentration of the heating.
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Fig. 6.—The EM(T') derived for a loop model with maximum temperature
~107 K and footpoint heating (o = L/5; thick line), as compared to the
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ence, the EM(T') for an RTV hydrostatic model (light gray line) and power
laws with EM(T) ox T (dotted line) and EM(T) ox T>/? (dash-dotted line) are
shown as well. EM(7") from models are arbitrarily scaled.

In Figure 6 we compare the EM(T) derived from our
model, for o = L/5, to an EM(T') derived by Scelsi et al. (2004)
from XMM-Newton spectral observations of the active star
31 Com. The EM(T') derived from an RTV hydrostatic model
is also shown. The EM(T) derived from our model, with im-
pulsive footpoint heating, is qualitatively similar to the EM(T')
of 31 Com.

4. DISCUSSION AND CONCLUSIONS

Coronal loops are known to be unstable if heated continu-
ously in a sufficiently small region at their footpoints. Also, the
EM(T) of stable, uniformly heated loops of constant cross
section is known to obey a power law with index ~3/2. In the
present work, we have investigated the existence of long-lived
coronal loops heated by sequences of pulses located at their
footpoints and studied the changes induced in the EM(T) by
this form of heating. In particular, we examined relatively long
(2 x10' ¢m) and hot (=3 x10° and 107 K) loops appropriate
to investigating both the solar environment, which we can spa-
tially resolve and compare directly with models, and the coro-
nae of active stars, where evidence of different EM(7") has been
found.

We find long-lived, dynamically stable solutions in cases
with heating concentrated close to the footpoints, with values of
o down to ~L/5. Therefore, we find stable solutions for much
more concentrated heating compared with the solutions of the
S81 model; the latter, using a heating spatial distribution of
the form Hye/*", does not yield stable solutions for sy ~ L/3.
The value of o ~ L/5 represents the border zone between rap-
idly unstable and long-lived loops for both sets of simulations
with different maximum temperatures (see Table 1), provided
that the heating is strong enough to sustain the loop. We note,
however, that close to this boundary some unstable cases ap-
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pear quasi-steady when observed over timescales that are long
compared to the cooling time. We find that the timescales of the
loops’ evolution do not critically depend on the intensity of the
heating, or on the period of heat pulses, with the caveats dis-
cussed in the previous section.

Our work has therefore proven that long-lived, footpoint-
heated loops can exist, provided that the heating is intermit-
tent with the appropriate period—a fraction of the loop cooling
time—which should be long enough to depart from continuous
heating, but shorter than the loop plasma cooling time. The in-
termittent heating allows the plasma at the loop apex to drain
downward to the chromospheric region (as confirmed by the
downward velocity of the plasma close to the apex in between
the pulses) and prevents the accumulation of the plasma at the
loop top, and thus the thermal instability. Our results are in
agreement with those of other works modeling footpoint-heated
loops (e.g., Miiller et al. 2004).

In the present work we also showed that the EM(T') of
footpoint-heated loops are significantly different from those of
conventional hydrostatic loops. The EM(T') of footpoint-heated
loops shows a well-defined peak, which becomes wider and
wider as the heating becomes more concentrated toward the foot-
points. This holds true for both sets of simulations at different
temperatures analyzed here (see Table 1). The low-temperature
side of the peaks has a steeper slope than the EM(T') o< T3/2 of
the static case. The slope found for the stable cases with smaller o
approaches the power law of EM(T') o< T3. We note, in passing,
that loops with coronal cross sections larger than in their chro-
mospheres may give similar results (e.g., Schrijver et al. 1989;
Ciaravella et al. 1996; Sim & Jordan 2003). We plan to investi-
gate this possibility in the future.

The EM(T) of the impulsively heated loops modeled here
show a qualitative agreement with those derived from several
X-ray and EUV spectroscopic observations of active stars. Re-
cent analyses outline a scenario in which hotter (7 ~ 107 K)
plasma is characterized by physical conditions that are funda-
mentally different from the cooler (7<3 x10% K) plasma,
which probably belongs to a different class of structures. In par-
ticular, there is increasing observational evidence of hot plasma
with density 2 orders of magnitude higher than the cooler
plasma. These density and filling factor results (e.g., Testa et al.
2004) support a scenario in which, for increasing activity levels,
significant flaring activity may be present, yielding the hotter
plasma structures. In such a scenario, it is likely that hot loops are
sustained by impulsive energy release. Therefore, the theoretical
model discussed here is based on assumptions that are consistent
with the observational evidence, while reproducing the steep and
peaked EM(T') widely found for active stars.

There is room for several improvements to be made to our
model: we plan to model loops with a larger cross section in
the corona; and we will consider the larger set of models for
unstable, footpoint-heated loops, since the superposition of sev-
eral loops of this kind may help to explain unresolved, mono-
lithic loop structures composed of many strands, or even whole
stellar coronae.

We thank an anonymous referee for accurate and extensive
revision of the paper and for many suggestions. The authors ac-
knowledge support for this work from Agenzia Spaziale Ital-
iana and Ministero dell’Istruzione, Universita e Ricerca.
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