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The role of general relativity in the evolution of low-mass X-ray binaries
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ABSTRACT
We study the evolution of low-mass X-ray binaries hosting a neutron star and of millisecond
binary radio pulsars using numerical simulations that take into account the detailed evolution
of the companion star, of the binary system, and of the neutron star. According to general
relativity, when energy is released during accretion or due to magnetodipole radiation during
the pulsar phase, the system loses gravitational mass. Moreover, the neutron star can collapse
to a black hole if its mass exceeds a critical limit, which depends on the equation of state of
ultradense matter and is typically ∼2 M�. These facts have some interesting consequences.
(i) In a millisecond radio pulsar the mass-energy is lost with a specific angular momentum that is
smaller than the specific angular momentum of the system, resulting in a positive contribution
to the orbital period derivative. If this contribution is dominant and can be measured, we
can extract information about the moment of inertia of the neutron star, since the energy
loss rate depends on it. Such a measurement can help to put constraints on the equation
of state of ultradense matter. (ii) In low-mass X-ray binaries below the bifurcation period
(∼18 h), the neutron star survives the ‘period gap’ only if its mass is smaller than the maximum
non-rotating mass when the companion becomes fully convective and accretion pauses. Since
in such evolutions ∼0.8 M� can be accreted on to the neutron star, short-period (P � 2 h)
millisecond X-ray pulsars such as SAX J1808.4 − 3658 can be formed only if either a large part
of the accreting matter has been ejected from the system, or the equation of state of ultradense
matter is very stiff. (iii) In low-mass X-ray binaries above the bifurcation period, the mass-
energy loss lowers the mass transfer rate. As a side effect, the inner core of the companion star
becomes ∼1 per cent bigger than in a system with a non-collapsed primary. As a result of this
difference, the final orbital period of the system is 20 per cent longer than if the mass-energy
loss effect is not taken into account.
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1 I N T RO D U C T I O N

Low-mass X-ray binaries (LMXBs) are systems consisting of a
neutron star (NS) with a relatively weak magnetic field (<1010 G)
accreting from a low-mass (∼1 M�) companion star. When the
companion star fills its Roche lobe, it transfers mass to the NS. The
companion fills its Roche lobe either because it expands due to nu-
clear evolution or because the lobe shrinks owing to orbital angular
momentum losses caused by gravitational radiation and magnetic
braking. The matter flowing from the inner Lagrangian point to-
wards the NS forms a Keplerian accretion disc around it. The NS
is spun up by the accreting matter to an equilibrium period that is
roughly equal to the Keplerian frequency at the inner rim of the

�E-mail: lavaget@fisica.unipa.it

accretion disc (Ghosh & Lamb 1979). Once accretion ends, the NS
can light up as a rapidly rotating magnetodipole (radio pulsar): this
is the so-called recycling scenario for the formation of millisecond
pulsars (Bhattacharya & van den Heuvel 1991).

The secular evolution of LMXBs can follow two very different
paths, according to the evolutionary stage of the companion at the
start of the mass transfer. If the orbital period of the binary at the
beginning of the mass transfer is large, the evolution of the LMXB
begins when the companion evolves off the main sequence, the main
driving mechanism for mass transfer is nuclear evolution, and the
system will evolve towards large orbital periods. Such systems are
said to be above the bifurcation period (Tutukov et al. 1985; Ergma
1996). If the orbital period of the system at the onset of the mass
transfer is small (i.e. if it is below the bifurcation period), the com-
panion is relatively unevolved, and the only important mechanism
driving mass transfer is systemic angular momentum loss (AML)
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due to magnetic braking and gravitational radiation. This type of
evolution is similar to the classical evolution of cataclysmic bina-
ries. The orbital period becomes shorter and shorter, and the system
may experience a period gap when magnetic braking stops being
effective (when the secondary becomes fully convective) and ul-
timately reaches a minimum period just before hydrogen burning
is extinguished (Paczynski & Sienkiewicz 1981; Rappaport, Joss &
Webbink 1982). Beyond the period minimum (which depends on the
evolutionary stage of the initial model), the donor’s radius begins
increasing, following the mass–radius relation for degenerate stars,
and the orbital period will increase again, driven by gravitational ra-
diation alone. In fact, the distribution of orbital periods of LMXBs,
based on relatively few systems (Liu, van Paradijs & van den Heuvel
2001), does not show a period gap as clear as that of CVs, but a more
general limitation in the number of systems below ∼4 h. It may well
be that the distribution of initial periods of LMXBs favours the evo-
lution of more evolved donors (Nelson & Rappaport 2003), and
population synthesis results show that several LMXB systems may
be descendants of intermediate-mass secondaries, after a phase of
thermal time-scale mass transfer (Podsialowski, Rappaport & Pfahl
2002), but the evolutionary path towards shorter periods is mainly
followed by evolutions starting from unevolved secondaries. For
these systems, the donors have the same structure as the donors in
CVs, and in principle there is no reason why they should not pass
through a similar period gap, possibly having a smaller width, as
a result of the fact that the accreting component is more massive
(1.35 M�) than the typical white dwarf in CVs (∼0.6 M�)
(Podsialowski et al. 2002).

Studies of the evolution of LMXBs usually disregard the compact
nature of the primary. This is not legitimate, since once the matter is
transferred from the companion to the NS it releases mass-energy as
a result of the strong gravitational binding of the NS, and therefore
its gravitational mass (i.e. the ‘charge’ of the gravitational force)
decreases once it is accreted on to the NS. Thus, even if the mass
transfer is conservative, the total gravitational mass of a LMXB
decreases when matter is transferred from the companion on to the
NS: it has been suggested that this could have observable effects
(Alécian & Morsink 2004). Moreover, if enough mass is accreted
on to the primary, it can collapse to a black hole (Lavagetto et al.
2004, hereafter Paper I). We should, then, take into account both of
these effects if we want to study the evolution of a LMXB accurately.

In this paper we will first introduce the evolution equations
for the binary system, including the effects of general relativity
(Section 2). Then we will show how the mass-energy loss is po-
tentially measurable in binary millisecond radio pulsars (MSPs),
and how this measurement can put constraints on the equation of
state (EOS) of NSs (Section 3). In Section 4 we will show under
which conditions the NS in systems below the bifurcation period
can survive the ‘period gap’. Finally, in Section 5 we will study the
evolution of a system above the bifurcation period, showing how
mass-energy loss alters the evolution of the system.

2 T H E E VO L U T I O N E QUAT I O N S

We implemented a simulation code that simultaneously includes
the stellar evolution of the companion, the evolution of the binary
system, and the evolution of the NS under the effect of accretion in
order to simulate accurately the evolution of a LMXB. Our evolution
code couples the routines of the ATON code (D’Antona, Mazzitelli &
Ritter 1989), updated with the physical inputs described in Ventura
et al. (1998), which accounts for the stellar evolution and the binary

evolution of the system, and routines accounting for the evolution of
the NS (which is considered to be fully relativistic) under accretion.1

If the primary of the system is a NS, its gravitational mass will be
given by the sum of the baryonic mass (i.e. the number of baryons N
times the average bare mass of the baryons mB) and of the potential
and kinetic energies divided by c2, which are non-negligible since
the gravitational binding energy is large for matter as dense as NS
matter. We know that for any given equilibrium configuration of a
NS we have on a general basis (Bardeen 1970) that

MG = MG(MB, J ), (1)

where we denote the gravitational mass of the star by MG, its bary-
onic mass by MB, and its intrinsic angular momentum by J. The
gravitational mass accreted per unit time then depends both on the
number of baryons accreted and on the accreted angular momentum
(Bardeen 1970):

ṀG =
(

∂ MG

∂ MB

)
J

ṀB +
(

∂ MG

J

)
MB

J̇ , (2)

where(
∂ MG

∂ J

)
MB

= ωNS

c2
,

(
∂ MG

∂ MB

)
J

= �,

(3)

where ωNS is the NS spin frequency, c is the speed of light, and �

is the energy needed to bring a unit mass from infinity to the pole
of the star.

Therefore equation (2) becomes

ṀG = �ṀB + ωNS

c2
J̇ . (4)

When matter is transferred from the companion on to the NS,
and the mass transfer is conservative, we have

ṀB = −Ṁc, (5)

where Mc is the mass of the companion. It is useful to rewrite equa-
tion (4) using equation (5) as (Alécian & Morsink 2004)

ṀG = −(1 − β)Ṁc, (6)

where

0 < β = 1 − � − ωN S

c2

J̇

ṀB
< 1.

According to general relativity, the binding energy of the accreting
matter results in a mass deficit. The gravitational mass lost in accre-
tion is released from the system (mainly as X-rays) and carries away
a specific orbital angular momentum that we assume to be equal to
the specific orbital angular momentum of the NS:(

L̇

L

)
β

= 1

L
β Ṁc

2π

P

(
a

Mc

Mtot

)2

, (7)

where P is the orbital period of the binary system and a is the orbital
separation. Using Kepler’s law,

2π

P
=

(
G Mtot

a3

)1/2

,

1 For a detailed description of the fully relativistic study of the response of
the NS to the accretion of matter, see Paper I.
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where M tot = M c + M G, and the expression for the orbital angular
momentum,

L = Mc MG

(
Ga

Mtot

)1/2

, (8)

we can rewrite equation (7) as(
L̇

L

)
β

= β Ṁc
Mc

MG Mtot
= β

Ṁc

Mc

q2

1 + q
, (9)

where q = M c/M G. The total variation of the orbital angular mo-
mentum L will then be equal to the sum of the systemic orbital an-
gular momentum losses L̇ sys and of the angular momentum losses
due to the relativistic mass deficit L̇β . We can therefore write(

L̇

L

)
sys

+
(

L̇

L

)
β

= 1

2

ȧ

a
+ ṀG

MG
+ Ṁc

Mc
− 1

2

ṀG + Ṁc

MG + Mc

= 1

2

ȧ

a
+ (1 − q)

Ṁc

Mc
+ β

[
q − 1

2

q

1 + q

]
Ṁc

Mc
, (10)

where we have made use of equation (6). If we now substitute equa-
tion (9) into equation (10), we can write the derivative of the orbital
separation as

ȧ

a
= 2

(
L̇

L

)
sys

− 2(1 − q)
Ṁc

Mc
− β

q

1 + q

Ṁc

Mc
. (11)

The last term on the right is due to the relativistic mass deficit: it is
relevant only in compact systems where β is non-negligible. Using
Kepler’s Law, we can write for the evolution of the orbital period

Ṗ

P
= 3

2

ȧ

a
− 1

2

ṀG + Ṁc

MG + Mc

= 3

(
L̇

L

)
sys

− 3(1 − q)
Ṁc

Mc
− 2β

q

1 + q

Ṁc

Mc
, (12)

where the third term appears due to the relativistic mass deficit.
This term is positive since −Ṁc is positive: this means that, as
mass is transferred, an additional positive contribution to the orbital
period derivative is present in relativistic systems. One should keep
in mind that the mass transfer rate Ṁc depends upon the whole
evolution of the binary system: in general it is a function of the
nuclear evolution of the companion and of the orbital separation. In
order to evaluate quantitatively the influence of the evolution of the
NS on the evolution of a system we must carry out detailed numerical
simulations of the binary system, because of the non-linearity of the
equations. It is straightforward to extend these equations to the case
of non-conservative mass transfer.

In the following sections we will show how these effects, together
with the evolution of the compact object, can have observable effects
and alter the secular evolution of LMXBs.

3 O B S E RVA B L E E F F E C T S O F G E N E R A L
R E L AT I V I T Y

We can ask ourselves if the effects of relativity on the orbital pa-
rameters of the binary system are observable. In theory, any binary
system about which we have enough information can reveal the ef-
fects described in the preceding section. However, since we do not
know much about most binary systems, and since various effects
can overlap (see Section 5), we have little chance of observing di-
rectly those effects that play a role only in the secular evolution of
the system. Alécian & Morsink (2004) argued that, if the orbital

period derivative of an accreting LMXB can be measured, it will al-
low information on the structure of the NS, such as its mass and its
gravitational binding energy, to be obtained. This effect is measur-
able only if the mass transfer is driven exclusively by the emission
of gravitational radiation: there are too many uncertainties on the
amount of angular momentum lost due to magnetic braking and
on the nuclear evolution of the companion to allow the relativistic
effects in the orbital evolution to be separated in such cases. This
limits the range of systems that are interesting to close LMXBs (with
P � 2 h) with a main-sequence companion. In this situation, the
mass loss from the system will result in a potentially observable
modification of the orbital period derivative. As Alécian & Morsink
point out, however, uncertainties in the physics of binary evolution
and of mass accretion make it difficult to separate this effect on
the orbital period from others. Moreover, it is impossible to infer
the mass accretion rate in a LMXB from its observed X-ray lumi-
nosity with the accuracy that is needed to extract information in
their model. It is therefore unlikely that this effect can be used to
investigate the EOS of ultradense matter.

When accretion on to the primary ends, however, the NS lights up
as a radio pulsar, and it brakes down due to rotating magnetodipole
emission. The NS loses some of its gravitational mass because it is
radiating away energy. We can then write equation (12) in the form

Ṗ

P
= −2

ṀG

Mc

q

1 + q
+ ṖGW

P
, (13)

where ṖGW/P = 3L̇GW/L is the orbital period derivative due to the
emission of gravitational waves from the binary system, which we
can write as

ṖGW = −192π

5c5

(
2πG

P

)5/3
MG Mc

M1/3
tot

×
(

1 + 73

24
e2 + 37

96
e4

)
(1 − e)−7/2 (14)

(Lorimer 2001), where e is the eccentricity of the system. It is then
evident that, when energy is released from the MSP, the mass deficit
yields a positive contribution to the orbital period derivative, op-
posite to the contribution of gravitational wave emission. Since the
effect of gravitational mass loss is ∝ P , while the effect of gravita-
tional wave emission is ∝ P−5/3, the former effect will be dominant
in systems with large enough orbital periods (say P � 6 h), while
the latter will become more relevant in systems with short periods.

The variation of the gravitational mass is equal to the spin-down
energy of the pulsar, divided by c2. To a good approximation we can
write

ṀG = I

c2
ωNSω̇NS, (15)

where I is the moment of inertia of the NS. Esposito & Harrison
(1975) noticed after the discovery of the first binary pulsar, PSR
1913+16, that the mass deficit can alter the orbit of a binary pulsar.
They found, however, that its effect on the orbital evolution of PSR
1913+16 was negligible. Today we know many MSPs that have
periods below 5 ms and whose spin-down mass loss is large (see
equation 15). In these systems, the effect can be orders of magnitude
stronger that the effect of gravitational waves. When this is the case,
measuring the orbital period derivative of the binary system can
help to put strong constraints on the EOS of NSs. In many cases
it is possible to measure both the spin frequency and its derivative
in a radio pulsar with high precision. Moreover, the absence of
mass transfer cuts down any uncertainty in the binary evolution
model. The orbital period derivative depends then only on measured
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quantities (ωN S, ω̇N S and e), on the masses of the two stars, and on
the moment of inertia of the neutron star (see equations 13, 14 and
15). We can obtain information on the two masses from the mass
function

f (M) = M3
c sin3 i

M2
tot

,

which is measurable in binary radio pulsars with very good preci-
sion. Using it, we can impose constraints on the moment of inertia
of the NS. Since the moment of inertia depends strongly on the EOS
of the NS (Cook et al. 1994), the detection of this effects will allow
us to discriminate between various EOSs on a solid observational
basis.

We demonstrate this method with an example: suppose that we
observe a system with an orbital period P = 8 h, a spin period
Ps = 2 ms, Ṗs = 3 × 10−19, a mass function of 5 × 10−3 M�, and
that we have measured the orbital period derivative to be +2.5 ×
10−14. In Fig. 1 we plot the values of the masses of the two stars
that are compatible with this value of the orbital period derivative,
with the hypothesis that the NS is governed by the pure neutron EOS
defined by Pandharipande, named EOS A in the classic catalogue by
Arnett & Bowers (1977), or by the realistic hadronic EOS defined
by Baldo, Bombaci & Burgio (1997), which we label EOS BBB.
The mass function imposes the condition that the values of the two
masses should be above the dotted line in Fig. 1. The figure tells us
that, given the mass function and the orbital period derivative we
assumed, the pulsar cannot be described by EOS A.

Now that we have shown how promising this effect is in principle,
we can ask which, among the known MSPs, is the best candidate for
detecting such an effect. The most promising object that we have
found is PSR J0218+4232, which comprises a NS spinning at 2.3
ms in orbit with a white dwarf companion, with an orbital period of
2 d. The mass ratio is measured to be q = 0.13 ± 0.04 (Bassa et al.
2003).

Owing to its strong power output, the pulsar loses gravitational
mass at the rate of 4 × 10−12 I 45 M� yr−1, where I45 is the moment
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Figure 1. Allowed values of the mass of the primary versus the mass of the
companion (both in solar masses) for a system orbital period of P = 8 h, a
spin period of Ps = 2ms, Ṗs = 3 × 10−19, and an orbital period derivative
of 2.5 × 10−14. The two lines in the figure are for NSs with EOS A (dashed
line) and NSs with EOS BBB (solid line). The dotted line indicates the lower
limit on the companion mass obtained if the mass function is 5 × 10−3 M�.

of inertia of the NS in units of 1045 g cm2. The corresponding orbital
period derivative, according to equation (13), becomes Ṗorb = 2.5×
10−14 I45. The variation in the orbital period is derived from the
measure of the periastron time delay. The effect of an orbital period
derivative on the periastron arrival time is given by

�Tper � 0.5
Ṗ

P
�T 2

obs. (16)

We find that we will need 117/I 1/2
45 yr of observation to detect a

delay of 1 s, so this effect is impractical to measure for this pulsar,
although period derivatives of the same order of magnitude have
been detected (see e.g. Nice, Splaver & Stairs 2004), but in pulsars
with short orbital periods. Since the relativistic effect becomes dom-
inant in pulsars with a large enough orbital period, we should look
for a pulsar with a higher spin-down energy – and therefore with a
higher orbital period derivative for the same orbital period – in order
to measure this effect in a shorter observation time. Such a measure-
ment is, then, unrealistic for currently known millisecond pulsars.
If, however, we could find a pulsar with sufficiently high spin-down
power it would become observable in a decade, becoming therefore
feasible.

4 H OW A R E S H O RT- P E R I O D
L M X B s F O R M E D ?

Let us consider a binary system that is below the bifurcation period,
and comprises a companion of 1 M� and a primary with an initial
gravitational mass of 1.35 M� – a mass that appears to be typical of
isolated NSs (Thorsett & Chakrabarty 1999). The orbital period of
the binary at the onset of the mass transfer is ∼8 h. In the standard
scenario, the system transfers mass because it loses angular momen-
tum due to the magnetic braking of the companion, at a rate large
enough to push the star well out of thermal equilibrium for periods
shorter than ∼4 h. When the companion becomes fully convective
(typically at an orbital period of ∼3 h), magnetic braking is thought
to stop, the companion recovers thermal equilibrium, and the mass
transfer ceases (Spruit & Ritter 1983). The binary system will con-
tinue to shrink due to gravitational wave emission, until it reaches an
orbital period of ∼2 h, when mass transfer resumes. The evolution
of this system in the period versus accretion-rate plane is shown
in Fig. 2. We used the magnetic braking law of Verbunt & Zwaan
(1981) with a braking index of 0.5. In doing this first simulation, we
neglected any evolution of the NS.

What happens to the system if we take into account the evolution
of the primary? The fate of the NS in the period gap happens to be
very interesting. An average ∼0.8 M� has been accreted, and the
NS is therefore spinning rapidly (see Paper I), and will light up as
a millisecond radio pulsar since accretion has stopped. Two effects
of general relativity are important in this phase.

(i) The loss of gravitational mass from the pulsar yields an addi-
tional positive contribution to the orbital period derivative (see the
preceding section). This additional effect counteracts the shrinking
of the orbit due to the gravitational wave emission, thus increasing
the duration of the detached phase of the system. This increase can
vary strongly, depending on the spin-down energy of the primary
and on q (see equation 13).

(ii) If the pulsar is supramassive (i.e. its mass exceeds the max-
imum non-rotating mass), it will collapse silently to a black hole,
once it loses enough angular momentum.

For the NS to survive the gap, the time-scale of the collapse (T c)
must be larger than the time-scale needed for the system to ‘cross’
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Figure 2. Mass accretion rate as a function of the orbital period for a system
below the bifurcation period. The companion is a Population I star of 1 M�.
We show the evolution of the system not taking into account the evolution
of the NS (dotted line), and the evolution of the system when we include
the evolution of the primary (solid line): the companion transfers most of its
mass as a result of magnetic braking, passing from P ∼ 8 h to P ∼ 3.5 h
when the star becomes fully convective and mass transfer stops. The mass
transfer then resumes once the system is close enough, at P ∼ 2 h in the
system with an unevolved primary. When we take into account the evolution
of the primary, the system evolves similarly to the classical one, but when the
companion becomes fully convective the NS is supramassive and therefore
it collapses to a black hole before accretion can resume. As can be seen from
the figure, no real difference is present in the evolution above the period
gap, even if the relativistic mass deficit is taken into account. For the sake
of clarity, data were smoothed clean from the numerical noise.

the period gap (T g). Otherwise, the NS will collapse to a black hole
before the mass transfer resumes. This happens, for example, in our
simulated system if the primary is a NS governed by EOS BBB, as
can be seen in Fig. 2.

The collapse time T c is defined by the equation

Jin − Jcrit = −
∫ Tc

0

J̇ dt, (17)

where J in is the angular momentum at the beginning of the detached
phase, J crit is the critical angular momentum below which the star
collapses, and J̇ is the angular momentum lost during the pulsar
phase. Combining equation (4) and the formula for the energy re-
leased by a magnetodipole rotator in general relativity (Rezzolla &
Amhedov 2004), J̇ is given by

J̇ = − 2

3c3
µ2ω3

N S

(
f

N 2

)2

, (18)

where

N = (1 − 2χ )1/2 , χ = G MG

c2 RNS
,

f = 3

8
χ−3[log N 2 + 2χ (1 + 2χ )]. (19)

The gap time T g is defined by the equation

�Pgap = −
∫ Tg

0

Ṗ dt, (20)

where �P gap is the amplitude of the period gap and Ṗ is defined
in equation (13). In most situations �P gap ∼ 1 h, and the mass of
the companion is �0.25 M�. Integration of equations (20) and (17)
shows that T g > T c if the NS is supramassive and if the dipole
magnetic field of the neutron star exceeds 1026 G cm3. This result
holds for a vast range of EOSs, from softer ones such as EOS A to
the stiffer ones such as EOS L (Arnett & Bowers 1977), including
recent, realistic EOSs such as EOS FPS (Lorenz et al. 1993), EOS
APR (Akmal et al. 1998) and EOS BBB (Baldo et al. 1997), as long
as we assume that the mass of the NS exceeds by at least 0.02 M� the
maximum non-rotating mass. The result holds independently of the
angular momentum of the NS at the onset of the pulsar phase. This
means that LMXBs that host a NS and have a period �2 h, like all the
millisecond X-ray pulsars known to date, cannot be supramassive
if they have a non-negligible magnetic field. This result obviously
holds only if the system is a NS–MS (main sequence) binary that
has evolved through the period gap.

For instance, the surface magnetic field of the first millisecond X-
ray pulsar discovered, SAX J1808.4 − 3658 (Wijnands & van der
Klis 1998), has been estimated to be in the range (1–5) × 108 G
(Di Salvo & Burderi 2003). If this system has a MS companion, so
that it evolved from longer orbital periods, it cannot be supramassive,
as it survived the period gap. The primary will not be a supramassive
NS only if one of the following conditions holds.

(i) A significant part of the accreting matter has been ejected
from the system, and the mass transfer has therefore been non-
conservative for most of the binary evolution.

(ii) The maximum non-rotating mass of the NS is very high,
� 2 M� (i.e. the EOS of the NS is very stiff).

5 S E C U L A R E VO L U T I O N O F S Y S T E M S
A B OV E T H E B I F U R C AT I O N P E R I O D

In the preceding section, we showed how the evolution of the com-
pact object can alter the evolution of a system below the bifurcation
period. Now we will show how the evolution of the NS can alter the
secular evolution of a system above the bifurcation period. In such
a system, the mass transfer is driven by the nuclear evolution of the
companion.The evolution of such wide systems is well understood
(Webbink et al. 1983), and is thought to explain well the formation
of binary MSPs with large orbital periods.

In order to show how this canonical evolution is altered when
we take into account the evolution of the primary, we simulated a
binary system whose companion is a 1.1 M� Population I star. The
initial mass of the primary is again chosen to be 1.35 M�. When
the mass transfer begins the orbital period of the system is 11 d.

First of all, we carried out a simulation in which we disregarded
the evolution of the primary, for which we assumed M G = M B. This
system is denoted in the following as system A. We also simulated
a system (denoted B in the following) with the same companion
star, but this time taking into account the evolution of the primary.
The NS was assumed to have a low surface magnetic field of 108 G,
and the EOS was fixed to be EOS BBB, introduced in Section 3. In
Paper I we showed that a weakly magnetized NS is easily spun-up
to periods well below one millisecond, uncomfortably lower than
the minimum observed period for a NS of 1.56 ms (Backer et al.
1982). There is mounting evidence that some mechanism, whose
nature is still unclear, prevents NSs from spinning faster than 700 Hz
(Chakrabarty et al. 2003). We therefore simulated a system identical
to system B, but kept the spin frequency artificially below 700 Hz.
We will refer to this as system C.
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As mentioned earlier, the evolution of the mass of a NS differs
from that of a non-collapsed star because of the discrepancy between
the gravitational and the baryonic masses in NSs. According to
equation (4) the gravitational mass of the NS will be smaller if the
spin frequency and the angular momentum of the star are smaller
for a given baryonic mass. Therefore, we expect that the mass of the
NS in system C will be smaller than that of the NS in system B, and
both will be smaller than that of system A. From our simulations
we find, in fact, that the gravitational mass of the NS at the end
of the evolution is 1.96 M� in system A, 1.88 M� (4 per cent
less) in system B, and 1.79 M� (9 per cent less) in system C. The
higher mass deficit in system C is due both to the smaller angular
momentum of the star (this is almost irrelevant, since in a neutron
star the rotational energy is usually ∼0.1 times the binding energy)
and to the fact that when the NS spins more slowly it is more compact
and therefore its binding energy is higher.

It is interesting to note that the evolution of the NS has other effects
on the evolution of the binary system. We know that the final state of
such systems depends heavily only on the mass of the inner core of
the companion star (Webbink et al. 1983). Looking at equation (12)
we see that the relativistic effect is dominant during the first phases
of accretion, when q ∼ 1: when matter is transferred, a relativistic
system enlarges faster than a non-relativistic one. Consequently, the
Roche lobe of the companion is larger, and the mass accretion rate
will become smaller. As a consequence, relativistic systems have
a longer time to evolve, and the mass of the core becomes slightly
bigger: at the end of accretion, the companion in system A has a
core of 0.305 M�. In system B the companion has a core that is
0.003 M� heavier than in system A, while in system C, the core
is 0.006 M� heavier. As a consequence (see again Webbink et al.
1983), the orbital period at the end of the accretion process is 105
d in system A, 114.5 d (∼9 per cent longer) in system B and 124 d
(∼18 per cent longer) in system C (as can be seen in Fig. 3).

This means that the net effect on the orbital period evolution of the
system is stronger than the effect on the mass alone, but this is due to
the small changes in the final core mass and not directly to the third
term on the right-hand side of equation (12). Small changes in the
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Figure 3. Orbital period (in days) of the binary system as a function of the
mass of the companion (in solar masses). Letters indicate the evolutionary
tracks for systems A, B and C. The evolution is followed only until the
companion collapses to a white dwarf. The x-axis is inverted, so that the
evolution of the systems goes from left to right.

mass of the core also account for significant variations in the orbital
period at the end of mass transfer: this means that, although the
effects we describe can change the evolution of a system from given
initial conditions, they do not alter the scenario of the evolution of
such systems.

6 C O N C L U S I O N S

In this paper we have shown that the presence of a NS, which can
be described using general relativity, can have a big impact on the
evolution of the binary system.

First of all we searched for potentially observable effects of the
relativistic nature of the primary. We noticed that when the NS
releases energy without accreting during the pulsar phase, it will
lose gravitational mass. Therefore, a positive contribution to the
orbital period derivative can dominate in certain situations over the
negative contribution due to gravitational wave emission, resulting
in an overall positive orbital period derivative. We have shown that
the measurement of such a period derivative in a binary millisecond
pulsar can allow us to put constraints on the EOS of ultradense
matter on a solid observational basis.

Next we concentrated on the effects that the secular evolution
of the primary can have on the evolution of binary systems, both
below and above the bifurcation period. In systems starting below
the bifurcation period a necessary condition for a NS to survive
the period gap without collapsing to a black hole is for it to be
non-supramassive. This means that the NSs in LMXBs with short
periods, such as the millisecond X-ray pulsar SAX J1808.4 − 3658,
cannot be supramassive if they evolved from longer periods. This
implies either that the mass transfer is highly non-conservative or
that the EOS of ultradense matter is stiff.

In systems starting above the bifurcation period, we have shown
how the relatively small effect of general relativity on the orbital
evolution can alter the evolution of the companion; this means that
the total effect can be non-negligible. However these effects do
not change the standard scenario for the evolution of large-period
systems in any significant way.

In all, the relativistic mass deficit has some effect on the evolution
of binary systems, but it is negligible if compared with the uncer-
tainties that exist on other effects present in the standard theory of
binary evolution. For example, various laws have been proposed
for the magnetic braking mechanism, and the intensity of the effect
has been questioned (see e.g. Ivanova & Taam 2003). However, the
evolution of the primary – and the resulting mass deficit – can be
important in studying the evolution of binary systems, both because
it can give rise to an observable effect in MSPs and because it puts
constraints on the evolution of systems below the bifurcation period,
and therefore cannot be disregarded in evolutionary studies.
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