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Abstract—Replicated tree data structures are extensively used
in collaborative applications and distributed file systems, where
clients often perform move operations. Local move operations
at different replicas may be safe. However, remote move op-
erations may not be safe. We present an efficient algorithm
to perform move operations on the distributed replicated tree
while ensuring eventual consistency. The proposed technique is
primarily concerned with resolving conflicts efficiently, requires
no interaction between replicas, and works well with network
partitions. We use the last write win semantics for conflict
resolution based on globally unique operation timestamps. The
proposed solution requires only one compensation operation to
avoid cycles being formed when move operations are applied. The
proposed approach achieves an effective speedup of 14.6−68.19×
over the state-of-the-art approach in a geo-replicated setting.

Index Terms—Conflict-free Replicated Data Types, Eventual
Consistency, Distributed File Systems, Replicated Tree

I. INTRODUCTION

Collaborative applications and distributed systems like

Google Drive and Dropbox make considerable use of repli-

cated data structures. Data is replicated onto several replicas

closer to the users at different geo-locations to ensure high

uptime and availability. Concurrent updates to various replicas

by users (clients) make it very difficult to converge and

lead to data consistency problems. Various approaches have

been proposed to overcome these problems in several ways.

The most prevalent techniques are operational transformation

(OT) [2], [3], [4] and conflict-free replicated data types

(CRDTs) [5], [6]. OT requires a centralized server and an

active connection to modify the replicated files collaboratively.

In contrast, CRDTs do not require a centralized server and

allow peer-to-peer editing.

CRDTs have become an indispensable component of many

modern distributed systems that guarantee some form of

eventual consistency [7]. Clients update their replicas concur-

rently without coordination to provide high availability even

when the network is partitioned. It allows users to operate

locally with no lag, even if they are not connected to other

replicas. The system eventually becomes consistent when a

user synchronizes with other users and devices.

Popular distributed file systems such as Dropbox and

Google Drive optimistically replicate data using a replicated

Author sequence follows lexical order of last names.
Source code is available on Github at: https://github.com/anonymous1474
Full technical report is available at: https://arxiv.org/abs/2203.10285 [1]

tree data model. Clients interactively operate on the tree

to perform various operations, such as updating, renaming,

moving, deleting, and adding new files or directories. An

interior node in the tree represents a directory, while a leaf

node represents a file. This system runs a daemon on the

client’s machine that keeps track of changes by monitoring the

designated directory [7], [8]. Clients can read and update files

locally on their systems, which can then be synchronized with

other replicas. Collaborative text editing and graphical editors

are examples of such systems that often use the replicated tree

data model.

Moving nodes is a common operation in such tree-based

collaborative systems. In the file system, the move operation

moves files or directories to a new location within the tree.

Other examples are collaborative text editors that stores data

using an XML or JSON data model and collaborative graphical

editors such as Figma [9] where grouping two objects lead to

adding a new node in the tree.

Move operations on the replicated tree are difficult to

implement because concurrent operations by multiple clients

may result in cycles; additionally, the tree structure may be

broken [7], [8], [10]. Due to the concurrent operations, a

concurrency control mechanism is required to ensure data

correctness. Further, ensuring correctness while providing low

latency, high throughput, and availability can be challenging.

Kleppmann et al. [7] proposed an approach that first undoes

all move operations applied with a higher timestamp (ts)

than the ts of a move operation received from other replicas;

applies the received operation, and finally, redoes the undone

operations. They maintain total global order between the

operations and ensure strong eventual consistency. This ap-

proach is computation-intensive, requires many compensation

operations to avoid the cycles, and relies on making a total

global order of operations.

In contrast, the proposed approach avoids re-computation

for non-conflicting changes to the tree by identifying which

changes might cause problems to arise. When a remote move

operation leads to a conflict (a cycle), we undo one operation

and send it as a compensation operation to all other repli-

cas. By doing this, we save the time of re-computation for

non-conflicting operations. Many operations that need to be

undone and redone can be avoided. Essentially, the number

of compensation operations is just 1 per cycle and 0 for safe

operations. We observed that such a straightforward approach
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significantly improves performance. Additionally, there is no

data duplication in the proposed approach. It does not result in

a directed acyclic graph on a concurrent move operation that

may lead to inconsistency or divergence between the replicas

and ensure strong eventual consistency.

Contributions: We propose a novel coordination-free, com-

putationally efficient, and low latency move operation on

the replicated tree. The proposed approach supports opti-

mistic replication, which allows replicas to temporarily diverge

during updates but always converges to a consistent state

in the absence of new updates (§III). The performance of

the proposed approach is compared against the Kleppmann

et al. [7]. The experiment results show that the proposed

approach achieves an effective speedup of 14.6 − 68.19× over

Kleppmann’s approach for the remote move operation (§IV).

II. SYSTEM MODEL

Following system model in [7], there are n replicas

(r1, ..., rn) communicate with each other in a completely asyn-

chronous in a peer-to-peer fashion. We assume that replicas

can go offline, crash, or fail unexpectedly. Each replica is

associated with a client. Each client performs operations on

their local replicas. Each operation is then communicated to all

other replicas asynchronously via messages. A message may

suffer an arbitrary network delay or be delivered out of order.

Clients can read and update data on their local replica even

when the network is partitioned or their replica is offline.

We consider a replicated tree structure t rooted at root to

which clients add new nodes, delete nodes and move the

nodes to the new location within the tree. In a file system,

an internal node of the tree represents directories, while a leaf

node represents files. In collaborative text editing, different

sections, paragraphs, sentences, words, etc., in the document

can be represented as tree nodes.

The proposed algorithm is executed on each replica ri with-

out any distributed shared memory to operate on tree t. Clients

generate the operations, apply them on their local replica, and

communicate them asynchronously via the network to all other

replicas. On receiving an operation, remote replicas apply them

using the same algorithm. The proposed algorithm supports

three operations on the tree: (1) Inserting a new node in the

tree; (2) Deleting a node from the tree; and (3) Moving a node

along with a sub-tree to a child of a new parent in the tree.

All three operations can be implemented as a move opera-

tion. The move operation is a tuple consisting of timestamp ts,

node n, and new parent p, i.e., move〈ts, n, p〉. The timestamp

ts is unique and generated using Lamport timestamps [11],

the node n is the tree node being moved, and the parent p is

the location of the tree node to which it will be moved. We

represent node timestamp as node.ts, and operation timestamp

as o.ts. For example, movex〈tsi, nj , pk〉 means that a node

with id nj is moved as a child of a parent pk in the tree t at

time tsi in replica rx. The additional information about the

old parents of the node being moved is also logged in the

parentLog used to undo the cyclic operations when cycles are

formed due to the move of the nj by the clients at different

replicas. The move operation removes nj from the current

parent and moves it under the new parent pk along with the

sub-tree of nj ; however, if nj does not exist in the tree, a new

node with nj is created as a child of pk.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm to perform

move operations while maintaining the replicated tree structure

and ensuring that replicas are eventually consistent.

The proposed approach does not require cross-replica coor-

dination and hence is highly available even when the network

is partitioned. Each replica is modeled as a state machine

that transitions from one state to the next by performing

an operation. There is no shared memory between replicas;

the algorithm operates autonomously without a central server

or consensus mechanism for replica coordination; requires

minimal metadata; and satisfies strong eventual consistency. In

the case of conflicting operations, it follows the last write win

approach based on timestamps computed using the Lamport

clock [11] and requires one compensation operation to undo

the last moved node that caused the cycle. Essentially, we try

to keep the number of undos and redos to a minimum when

dealing with conflicts in the replicated tree.

The proposed algorithm supports insert, delete and move

operations on a replicated tree. Insert and delete involve

changing various nodes’ parents. An insert can be viewed as

the creation of a new node that is moved to be the child of

a specified parent. For a delete operation, the node is moved

to be a child of a special node designated as the trash. Thus,

the move operation can be used to implement the other two

operations. Hence, in this discussion, we only consider an

efficient way of moving nodes.

A client generates and applies operations locally with Al-

gorithm 1, then sends them asynchronously over the network

to all other replicas.

Each move operation takes as arguments: the node to move

and the new parent. Further, each tree node also maintains the

timestamp (ts) of the last operation applied which is passed

to the move operation. Hence, a move operation is formally

defined as: move〈ts, n, p〉. Here ts is the timestamp of the

move operation, n is the node to be moved and made as a

child of p. An operation (local or remote) is applied using

Algorithm 1 and Algorithm 2. Algorithm 2 first compares the

operation timestamp (o.ts) with the timestamp of the node to

be moved (node.ts). It applies the operation only if the o.ts is

greater than the node.ts. We prove convergence by showing

that all the tree nodes across the replicas will get attached to

the parent with the latest ts. Next, we explain how the cycle

is prevented in the proposed approach.

Preventing Cycles: Recall from §I that a cycle is formed when

an ancestor tree node becomes a child of its descendant tree

node. Preventing cycles is difficult because concurrent move

operations on different replicas may be safe independently.

However, a cycle may be formed when move operations from

different replicas are merged. To avoid cycles, the proposed

algorithm uses timestamps and compensation operations. We
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check for cycles prior to performing any operation by deter-

mining whether the node to be moved is an ancestor of the new

parent. We check for each operation to avoid the formation of a

cycle and maintain the tree structure during concurrent moves.

Another check identifies the node with the latest timestamp

when a cycle is detected. Hence, the node with the most recent

timestamp is returned to its previous parent, which is safe. A

previous parent is said to be safe if it is not in the sub-tree of

the node to be moved in the move operation.

Algorithm 1 and Algorithm 2 apply the local and remote

move operations, respectively, and ensure that all operations

applied will not form a cycle. The procedure followed to

apply a remote move operation by Algorithm 2 is explained

here. Before applying a move operation (i.e., move〈ts, n, p〉)
Algorithm 2 checks if the operation’s timestamp is greater than

the previous move operation’s timestamp applied on noden at

Line 20. If the timestamp of the operation to be applied is

smaller, it ignores the operation at Line 21. The following

steps occur when a cycle is detected. The algorithm finds the

node with the highest timestamp in the cycle and assigns it

to undoNode at Line 25. Then find a safe previous parent

for the undoNode in the while loop from Line 26. If no more

previous parents are left, keep the previous parent as a conflict

node at Line 28. Then move the undoNode to be a child of

safe previous parent undoParent using Algorithm 1 at Line 33.

This internally updates the Lamport timestamp, which will be

used for the undo operation at Line 5. The operation is applied

in the local replica at Line 6 and Line 9. After that, it sends

the compensation operation to other replicas at Line 35. If

undoNode is the same as noden at Line 36 then return at

Line 38. Since it already applied an operation with a higher

timestamp on noden as the undo operation. Otherwise, apply

the operation to change the parent of noden at Line 39 and

Line 40.

Storing fixed m previous parents for each node will be

adequate by considering storage; moreover, increasing the

value of m increases the search time. For current experiments,

m is fixed to 5. Identifying the optimal number of previous

Algorithm 1: applyLocal(n, p): apply local operations and send them to

remote replicas.

1 Procedure applyLocal(n, p):

2 noden ← get node(root, n) // Gets reference of the node

with id n in t.

3 nodep ← get node(root, p) // Gets reference of the node

with id p in t.

4 Lock()// Get lock, so that at a time only one

operation will be applied by threads (local

thread or receiver thread) on the tree t.

5 ts ← ++lc time

// Check for the cycle returns true if found.

6 if ¬checkCycle(noden, nodep) then

7 parentLog[noden.id].add(noden.parent); // Update the

current parent of noden in the parentLog.

8 noden.parent ← nodep.id

9 noden.ts ← ts

10 Unlock();

// Send move operation to other replicas.

11 for j = 0 to numReplicas do

12 ch[j].add(move〈ts, n, p〉)

parents (i.e., m) is left as future work. If previous parents

in parentLog are too small for the node to be moved to

break the cycle, it is moved under a special node known as

the conflict node (a child of the root) to break the cycle.

The conflict node is special node that cannot be moved, it

ensures that it will always be free from cycles. In case if the

number of previous parents (or m) for a node to be moved

is deleted (by moving under trash), we still can move the

node under the previous parent (deleted node in this case).

Next, the clients have the choice to change location. Since the

nodes attached to trash have not been deleted permanently.

Even when all previous parents are permanently deleted or

parentLogx for a node x is empty, we can still move that

Algorithm 2: applyRemote(): receives and applies remote move operations.

13 Procedure applyRemote():

14 while true do

15 move〈ts, n, p〉 ← Stream.Receive()// Receive remote move

operation. If returns End, receiver threads

will join.

16 if End then break

17 noden ← get node(root, n)// Get reference of n.

18 nodep ← get node(root, p)// Get reference of p.

19 Lock()// Lock so that at a time only one

operation will be applied by threads (local

or receiver thread) on the tree t.

// Already applied an operation with higher ts

on node n then ignore received operation

with smaller ts as node ts will be higher.

20 if ts < noden.ts then

21 return

22 lc time ← max(ts, lc time)

23 parentLog[noden.id].add(noden.parent) // Update the

current parent of noden in the parentLog.

// Check for the cycle returns true if found.

24 if checkCycle(noden, nodep) then

// Find the node between noden-nodep with

highest ts.

25 undoNode ← findLast(noden, nodep)

// Undo (move back) to a previous parent,

not in the sub-tree of noden. Keep

searching for a suitable node to undo;

if not found safe previous parent, then

move undoNode under conflict node.

26 while true do

27 if parentLog[undoNode.id] == NULL then

28 undoParent ← conflict node

29 else

// Get and delete previous parent

from parentLog for undoNode.

30 undoParent ←
parentLog[undoNode.id].pop()

// Check if a cycle exists between n

and undoParent; if no cycle, then

found a safe node to move back to

breaks cycle between n & p.

31 if ¬checkCycle(noden, undoParent) then

32 break

33 applyLocal(undoNode, undoParent)

// Send compensation opr to other replicas.

34 for j = 0 to numReplicas do

35 ch[j].add(move〈ts, n, p〉)

// Already applied a higher ts operation.

36 if undoNode == noden then

37 Unlock()

38 return

39 noden.parent ← nodep.id

40 noden.ts ← ts

41 Unlock()
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node under conflict node to break the cycle.

IV. PERFORMANCE EVALUATION

We have implemented our algorithm in Golang [12] and

wrapped it in gRPC [13] network service to deploy at three

different geo-location (Western Europe, Southeast Asia, and

East US) on Microsoft Azure Standard E2s v3 VM instances,

each consisting of 2 vCPU(s), 16 GiB of memory, and 32

GiB of storage running Ubuntu 20.04 and Intel Xeon Platinum

8272CL processor. The proposed approach is compared with

the approach proposed by Kleppmann et al. [7].

Each replica generates and applies local operations, subse-

quently asynchronously propagating and receiving the opera-

tions to/from the other two replicas. By selecting tree nodes

uniformly at random from the tree size, each replica generates

( 1
3
)rd of total operations to apply and send, while receiving

( 2
3
)rd of operations from two other replicas. When a replica

receives a remote operation, it applies. Any undo operation due

to cycle identifies the previous parent. Once the appropriate

parent is identified, the node is moved as a child and the undo

operation is sent to other replicas. Note that our experimental

workload is more conservative and contains more conflict than

the real-time workload. Further, move operations conflict only

with the move or delete operations and not with operations

that update a node value or insert a new subtree.

Fig. 1 depicts the average time to apply a local and remote

move operation. The number of operations/second is varied

from 250 to 5K, while the number of nodes in the tree is

kept constant at 500. Fig. 1(A) shows that the average time to

apply a local move operation at a replica is not significant

between both approaches with increasing operations. The

apply time for a local move operation drops as the number

of operations increases. However, the time to apply a remote

move operation is almost constant in the proposed approach,

while Kleppmann’s approach has the opposite trend; the time

increases with operations per second for remote move opera-

tions as shown in Fig. 1(B). There is a significant performance

gap for the remote operation in both the approaches; this is

because the number of compensation operations (undo/redo)

by Kleppmann’s approach is ≈ 200 undo and redo operations

for every remote operation a replica receives while in our case

it is only 1 that too whenever there is a cycle (conflict).

Fig. 1(B) shows that Kleppmann’s approach attains a max-

imum apply time of 933.53µs over a remote move operation

at 5K operations per second. In comparison, the minimum

is 81.69µs at 250 operations per second; the minimum time

is ≈ 14.63× higher than the maximum time of 5.58µs at

250 operations by the proposed approach. It can be seen that

the proposed approach achieves, on average, a speedup of

1.34× for the local move operation, while 14.6× to 68.19×
speedup for the remote move operation over Kleppmann’s ap-

proach. Hence, the proposed approach is much more efficient

in applying remote operations. The difference in time only

increases with an increase in the rate of operations per second.

It shows the performance benefits of the proposed approach.

In Kleppmann’s approach, as the rate of operation generation
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Fig. 1: Average time to apply a move operation.

increases, the number of operations in flight also increases.

Hence, the compensation cost will be high. In contrast, the

compensation cost remains the same in the proposed approach.

V. CONCLUSION

We proposed a novel algorithm for coordination-free, com-

putationally efficient, and low latency move operation on the

replicated tree. The proposed technique requires a single com-

pensating operation to undo the effect of the cyclic operation.

It achieves a maximum speedup of 68.19× for remote move

operation over Kleppmann’s approach [7]. We have stored

a constant number of the previous parents for every node,

hence, identifying the optimal number of previous parents is

left as future work. Implementing an efficient move operation

on other CRDTs could be an exciting direction to explore.
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