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Abstract—A variety of vision ailments are associated with
the foveal region of the eye. In current clinical practice, the
ophthalmologist manually detects potential presence of such
ailments based on fundus autofluorescence (FAF) images, and
hence diagnoses the disease, when relevant. However, in view
of the general scarcity of ophthalmologists relative to the large
number of subjects seeking eyecare, especially in remote regions,
it becomes imperative to develop methods to direct expert time
and effort to medically significant cases. To serve the interest of
both the ophthalmologist and the potential patient, we plan a
screening step, where healthy and diseased eyes are algorithmi-
cally differentiated with limited input from only optometrists who
are relatively more abundant in number. Specifically, an early
treatment diabetic retinopathy study (ETDRS) grid is placed by
an optometrist on each FAF image, based on which sectoral
statistics are automatically collected. Using such statistics as
features, healthy and diseased eyes are proposed to be classified
by training an algorithm using available medical records. In
this connection, we consider support vector machine (SVM)
with linear as well as radial basis function (RBF) kernel, and
observe satisfactory performance of both variants. Among those,
we recommend the latter in view of its slight superiority in terms
of classification accuracy (90.55% at a standard training-to-test
ratio of 80:20), and practical class-conditional costs.

Index Terms—Fundus autofluorescence (FAF), Early treatment
diabetic retinopathy study (ETDRS) grid, Support vector ma-
chine (SVM), Monte Carlo cross validation (MCCV).

I. INTRODUCTION

Medical imaging plays a crucial role in managing oph-
thalmic diseases. Among current modalities [1], fundus aut-
ofluorescence (FAF) imaging presents a relatively new technol-
ogy that exploits the innate fluorescence of the retinal pigment
epithelium (RPE), and has proven attractive by not requiring
injection of artificial dye [2]. Specifically, the retina is illu-
minated with blue light which causes the naturally occurring
pigment lipofuscin to fluoresce [3]. Consequently, the spatial
distribution of intensity in the captured grey-scale FAF image
(see Figure 1) indicates that of lipofuscin. Inspecting such
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(a) (b)
Fig. 1. FAF images of (a) healthy and (b) diseased eyes.

distribution, the ophthalmologist is able to visualize the status
of the retina (especially, retinal pigment epithelium), and hence
diagnose/monitor various ophthalmic diseases. More precisely,
for disease diagnosis, the physician generally hypothesizes
a disease while inspecting a FAF image, and subsequently
confirms it on the basis of quantitative indicators. For follow-
up subjects, such indicators are used to monitor disease course.
In either scenario, the associated clinical assessment provides
the basis for deciding further treatment, if required.

To facilitate such clinical assessment, significant effort has
been directed at developing analysis tools specific to diseases,
such as age-related macular degeneration (AMD) and Stargardt
disease (STGD), an inherited ailment characterised by macular
degeneration [4]. Such tools are based on disease-specific
quantitative indicators, whose discovery has also remained an
important focus. Indeed, indicators based on sectoral statistics
collected from multi-segment grids centered at the fovea have
been reported for various diseases including STGD [5], AMD
[6] [7], central serous chorioretinopathy (CSCR) [8], and
retinitis pigmentosa (RP) [9]. However, all the aforementioned
sectoral statistics of FAF images, also possesses general infor-
mation about diseased conditions, and hence remain relevant
even for a generic screening. In this connection, we attempt
to explore the usability of said statistics towards building
a generic screening tool. Specifically, given a FAF image,
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Fig. 2. Schematic diagram of proposed screening method.

we propose to use an early treatment of diabetic retinopathy
study (ETDRS) grid [10], a well accepted tool in ophthalmic
studies, centered at the fovea, and compute mean and standard
deviation of pixel intensity within each sector [6]. Collecting
such sectoral statistics in a feature vector, a classifier is then
trained to distinguish FAF images of healthy eyes from the
diseased ones in such feature space.

The rest of the paper is organized as follows. FAF image
acquisition, ETDRS grid placement and the computation of
statistics, SVM classifiers and performance evaluation criteria
are described in Section II. In Section III, experimental re-
sults on screening performance are presented and Section IV
concludes the paper.

II. MATERIALS AND METHODS

The workflow of the proposed methodology is schematically
outlined in Figure 2. First, we begin with the FAF image
acquisition.

A. Fundus autoflourescence image acquisition

This is a retrospective study conducted at tertiary eye centers
of L V Prasad Eye Institute (LVPEI) in South India. A total
of 140 subjects underwent FAF examination where 61 are
healthy and 79 are diagnosed to have ophthalmic diseases.
Specifically, of the 79 subjects, 21 of them are diagnosed with
CSCR, 14 with choroidal neovascular membranes (CNVM),
and 44 with STGD. The Heidelberg Retina Angiograph 2
(HRA2; Heidelberg Engineering, Heidelberg, Germany) was
used to acquire the FAF images. Standard protocol for image
acquisition involved excitation at 488 nm with an optically
pumped solid-state laser and emission detected above 500 nm
with a barrier filter. Written informed consent was obtained
from all the study participants and approval for study protocol
was obtained from respective Institutional Review Boards. The
procedures performed in this study are conformed to the tenets
of Declaration of Helsinki.

B. ETDRS-based statistics as feature set

In the current work, the ETDRS grid was used for comput-
ing features from each FAF image with the goal of classifying
it as either ‘healthy’ or ‘diseased’. The ETDRS grid, posi-
tioned by an optometrist (rather than an ophthalmologist) at the
centre of the fovea as shown in Figure 3, has nine segments.
The inner most ring, known as central subfield (CSF), is
sorrounded by pericentral ring consisting of temporal inner

TOM TIM CSF NIM NOM 

IIM 

IOM 
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Fig. 3. FAF image with ETDRS grid.

macula (TIM), inferior inner macula (IIM), nasal inner macula
(NIM) and superior inner macular (SIM) regions. Further, the
peripheral ring in ETDRS grid consists of temporal outer
macula (TOM), inferior outer macula (IOM), nasal outer
macula (NOM) and superior outer macular (SOM) regions.
In each of the nine segments, the mean pixel intensity and
the corresponding standard deviation were computed. Such
statistics from all nine segments formed a feature vector of
length 18 representing each FAF image. These features were
used to distinguish between diseased and healthy eyes.

C. Support vector machine (SVM) classifier

The support vector machine (SVM) classifier provides a
supervised learning model [11], which upon training, obtains
a hyperplanar decision boundary maximally separating two
classes. More generally, to handle data that are nonlinearly
separable, SVM can incorporate suitable kernel that transforms
the original feature space into a higher-dimensional space,
where the transformed features become linearly separable.
Formally, the decision hyperplane wTφ(x) + b = 0 (where
φ(x) denotes a point vector in the transformed feature space,
φ the kernel function, w the weight vector and b the bias)
is chosen to maximize overall separation. One equivalently
maximizes∑n

i=1 αi - 0.5
∑n
i=1

∑n
j=1 αiαjyiyjK(xi, xj)

over αi ≥ 0, i = 1, 2, ..., n, subject to
∑n
i=1 αiyi = 0. Here,

for each data index i, xi and yi, respectively, indicate the
feature vector and the corresponding class label (+1 for dis-
eased; −1 for healthy), and K denotes the kernel function, n
the size of the dataset, αi the Lagrange multiplier. We compare
classification performance of two variants of SVM, one with
linear kernel (where K(xi, xj) = xTi xj), and the other with
radial basis function (where K(xi, xj) = exp

|xi−xj |2
2σ2 ), an

ubiquitous nonlinear kernel.

D. Performance evaluation

To evaluate classification performance, the SVM parame-
ters, namely, weight vector w and bias b, are optimized on a
subset of data (training subset) and are validated against the
complementary (test) subset. More accurately, the dataset is
partitioned into training and test subsets such that (i) the ratio
of their sizes, called training-to-test (split) ratio, approximately
equals a preassigned fraction, and (ii) the proportion of healthy
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(as well as diseased) images represented in those subsets
also approximately equals the same fraction. In general, the
performance of the classifier depends on the subjective choice
of the partition. To avoid such subjectivity in performance
analysis, one customarily uses Monte Carlo cross validation
(MCCV) [12], where, the dataset is randomly partitioned a
large number (5000) of times (iterations) keeping the split
ratio as well as the aforementioned proportions constant.
For each iteration, the SVM parameters are optimized over
the training subset, and the mean training as well as test
accuracy and corresponding standard deviation are recorded.
Noting that the training accuracy indicates the classification
performance for seen data, while the test accuracy indicates
that for unseen data, classifiers with high average test accuracy
assumes practical significance. Further, low standard deviation,
indicating low performance variability over random partitions
and hence signifying robustness, is desirable. Additionally, we
also compute the average confusion matrix over 5000 itera-
tions, which provides class-conditional detection probability
for each of healthy and diseased classes. Finally, we train and
evaluate classifiers for different split ratios.

III. EXPERIMENTAL RESULTS

As described earlier, placing ETDRS grid on each FAF
image, we computed mean and standard deviation of pixel
values corresponding to each of the nine sectors (Figure 3),
and thus formed a feature vector of length 18. In Figure 4,
such sectoral features are illustrated for example FAF images
of both healthy and diseased eyes. As mentioned earlier, two
variants of SVM classifiers, linear SVM and SVM with RBF
kernel (RBF-SVM), were considered. In each case, training
and test accuracy values were recorded over a large number
(5000) of random partitions for each of the various training-
to-test split ratios chosen between 10:90 and 90:10, and the
average values (with standard deviation values in parenthesis)
are tabulated in Table I.

Clearly, in case of linear SVM, the average training as
well as test accuracy level tends to increase with increasing
training-to-test ratio but for a few exceptions. In other words,
as expected, the said classifier tends to learn better with
increased availability of training data. Turning to the RBF-
SVM classifier, for each split ratio we chose the scale factor
(SF) that maximizes test accuracy. The resulting average
test accuracy, which still largely follows the aforementioned
increasing trend, slightly improves over that obtained using
the linear SVM for each split ratio. This indicates a moderate
degree of nonlinearity inherent in the underlying problem.
Despite only a slight gain in test accuracy, the gain in average
training accuracy is significantly higher, indicating that the
RBF kernel is closely modeling certain nonlinear aspects
of the training data that do not generalize well. In fact, a
similar conclusion can also be drawn by considering standard
deviation values as follows. Notice that the standard deviation
in training accuracy decreases with increasing split ratio in
both cases of linear SVM and RBF-SVM; however, the values
are significantly lower for the latter classifier, indicating better
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Fig. 4. ETDRS grid placement on and corresponding sectorial statistics (mean
with standard deviation in parenthesis) for representative images (a), (b) of
healthy eyes and (c), (d) of diseased eyes respectively.

modeling. Yet, turning to test accuracy, the standard deviation
is lower in case of RBF-SVM for lower values of split ratio
and in case of linear SVM for higher values of split ratio.
This phenomenon does not indicate improved generalization.
Further, the standard deviation in either case first decreases
and then increases with increasing split ratio. Yet a subtle
difference can be discerned. While the test accuracy is most
reliable (i.e., with the lowest standard deviation) for an evenly
split training-to-test ratio in case of linear SVM (also observed
elsewhere [13]), highest reliability is observed at the skewed
split ratio of 40:60 in case of RBF-SVM.

Having reported performance variation over the entire range
of split ratios, we next delve deeper into case of 80:20 split,
a general recommendation for various practical applications
[14]. In particular, we next study class-conditional perfor-
mance of these rival classifiers at hand. Practical significance
of this study arises from the fact that mistakenly classifying
a diseased eye as normal leads to the severe consequence of
denial of treatment to a bona fide patient, whereas declaring
a normal eye as diseased leads to the comparatively less
severe outcome of wasted time and resources. Referring to
Table II, RBF-SVM records an average probability of 91.61%
in correctly detecting the disease class whereas it is only
89.47% using linear SVM, with respective standard deviations
7.09% and 7.33%. In contrast, conditioned on the healthy
class, the healthy class was correctly detected with an average
probability of 92.25% by linear SVM and 88.59% by RBF-
SVM, with respective standard deviations 7.11% and 8.82%.
Thus, given the healthy class, linear SVM slightly outperforms
RBF-SVM in terms of both accuracy and reliability. Notice
that the advantage of RBF-SVM over linear SVM given the
diseased class is comparable to that of linear SVM over
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TABLE I
PERFORMANCE OF RIVAL SVM CLASIFIERS FOR DIFFERENT SPLITS (SUPERIOR VALUE BETWEEN LINEAR SVM AND RBF-SVM BOLDFACED)

Linear SVM RBF-SVM Gain (%)

Split Train. Acc. Test Acc. Train. Acc. Test Acc. Train. Acc. Test Acc.
ratio a (b) c (d) SF e (f ) g (h) e−a

a
( b−f

b
) g−c

c
( d−h

d
)

10:90 91.27 (7.01) 75.03 (7.05) 2.85 99.38 (2.13) 78.97 (5.30) 8.16 (69.61) 4.99 (24.82)
20:80 91.51 (4.82) 82.26 (4.78) 2.80 98.81 (2.09) 84.32 (3.96) 7.39 (56.65) 2.44 (17.15)
30:70 92.04 (3.66) 85.56 (3.81) 3.20 97.88 (2.17) 86.66 (3.48) 5.97 (40.71) 1.27 (8.66)
40:60 92.26 (2.91) 87.31 (3.46) 2.70 98.86 (1.38) 88.11 (3.35) 6.67 (52.27) 0.91 (3.18)
50:50 92.24 (2.44) 88.40 (3.43) 3.00 98.86 (1.38) 88.89 (3.43) 6.69 (43.44) 0.55 (0.00)
60:40 92.27 (2.01) 89.02 (3.68) 2.90 98.46 (1.20) 89.58 (3.47) 6.28 (40.29) 0.62 (5.71)
70:30 92.31 (1.64) 89.53 (4.14) 2.80 98.62 (0.99) 90.10 (4.16) 6.39 (39.63) 0.63 (-0.48)
80:20 92.26 (1.30) 89.88 (5.12) 2.75 98.65 (0.90) 90.55 (5.24) 6.47 (30.77) 0.75 (-2.34)
90:10 92.25 (1.01) 89.60 (7.16) 2.65 98.86 (0.71) 90.83 (7.21) 6.68 (29.70) 1.35 (-0.70)

TABLE II
TEST CONFUSION MATRICES (%) OF LINEAR SVM AND RBF-SVM FOR

SPLIT RATIO 80:20

Predicted
Actual Diseased Healthy

Linear SVM Diseased 89.47 (7.33) 7.75 (7.11)
Healthy 10.53 (7.33) 92.25 (7.11)

RBF-SVM Diseased 91.61 (7.09) 11.41 (8.82)
Healthy 8.39 (7.09) 88.59 (8.82)

RBF-SVM given the healthy class. However, since making
an error incurs higher practical cost given the diseased class
than that given the healthy class, one should prefer RBF-SVM
over linear SVM as a screening tool. In summary, based on
our experiments, we conclude that SVM classifiers of FAF
images, attaining close to 90% accuracy, provide attractive
screening tools for ophthalmic diseases. Among those, RBF-
SVM appears to provide slight advantage over linear SVM
in terms of both overall accuracy levels and practical class-
conditional costs.

IV. CONCLUSION

In this paper, we developed a screening technique that does
not require the participation of ophthalmologists, and semi-
automatically identifies the presence of disease based on FAF
images with minimal assistance from optometrists. Further,
in view of the excellent class separation exhibited by the
proposed classifier, our screening service can potentially be
integrated with post-diagnosis treatment response monitoring.
A detailed discussion on the choice of classifier, possible
progress monitoring and a theoretical connection is available
in the extended version [15].
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