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Abstract

Counterfactual examples for an input—perturbations
that change specific features but not others—have been
shown to be useful for evaluating bias of machine learning
models, e.g., against specific demographic groups. How-
ever, generating counterfactual examples for images is non-
trivial due to the underlying causal structure on the various
features of an image. To be meaningful, generated pertur-
bations need to satisfy constraints implied by the causal
model. We present a method for generating counterfac-
tuals by incorporating a structural causal model (SCM)
in an improved variant of Adversarially Learned Inference
(ALI), that generates counterfactuals in accordance with
the causal relationships between attributes of an image.
Based on the generated counterfactuals, we show how to
explain a pre-trained machine learning classifier, evalu-
ate its bias, and mitigate the bias using a counterfactual
regularizer. On the Morpho-MNIST dataset, our method
generates counterfactuals comparable in quality to prior
work on SCM-based counterfactuals (DeepSCM), while on
the more complex CelebA dataset our method outperforms
DeepSCM in generating high-quality valid counterfactuals.
Moreover, generated counterfactuals are indistinguishable
from reconstructed images in a human evaluation experi-
ment and we subsequently use them to evaluate the fairness
of a standard classifier trained on CelebA data. We show
that the classifier is biased w.r.t. skin and hair color, and
how counterfactual regularization can remove those biases.

1. Introduction

A growing number of studies have uncovered biases in
image classifiers, particularly against marginalized demo-
graphic groups [3, 15, 43, 2]. To avoid such biases, it is
important to explain a classifier’s predictions and evaluate
its fairness. Given any pre-trained machine learning (ML)
classifier, counterfactual reasoning is an important way to
explain the classifier’s decisions and to evaluate its fairness.
Counterfactual reasoning involves simulating an alternative
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input with some specific changes compared to the original
input. For example, to evaluate fairness of a classifier with
respect to a sensitive attribute like skin color, we can ask
how the classifier’s output will change if a face that was
originally dark-skinned is made light-skinned while keep-
ing everything else constant. Since the only change to the
input is the sensitive attribute, counterfactual reasoning is
considered more robust than comparing available faces with
different skin colors (association) or comparing simulated
inputs with light skin or dark skin (intervention) since these
comparisons may include changes in addition to skin color.
However, generating counterfactual (CF) examples for
images is non-trivial. For instance, consider the simple task
of changing a person’s hair color in an image of their face.
While Generative Adversarial Networks (GANs) can gen-
erate new realistic faces with any hair color [23], they are
unable to generate the precise changes needed for a CF, i.e.
changing hair color without changing hair style or other fea-
tures of the face. Other explanation techniques based on
perturbations such as occluding pixels [42] also do not sup-
port counterfactual reasoning based on high-level concepts.
There have been recent efforts on using GANSs to gener-
ate counterfactuals using an added inference step (encoder).
Given a pre-trained GAN model, Denton et al. [7] trained
an encoder to match the input of a generated image. How-
ever, the latents thus encoded do not directly correspond
to the given attributes of an image, and it is difficult to
change a specific known attribute to generate a counter-
factual. To change an attribute, Joo and Kirkkédinen [17]
used the FaderNetwork architecture that inputs attributes
of an image separately to the generator. However, their
method does not account for causal relationships between
attributes. Besides, while both these works use generated
images to evaluate biases in a classifier, they do not pro-
vide any method to mitigate the found biases. We present a
method for generating counterfactuals that is based on their
formal causal definition, and present a novel counterfactual-
based regularizer to mitigate biases in a given classifier.
Formally, a valid counterfactual example for an image is
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defined with respect to a Structural Causal Model (SCM)
over its attributes. An SCM encodes the domain knowledge
about how attributes affect each other in the form of a graph
with attributes as the nodes and accompanying functional
equations connecting the nodes. Generating a counterfac-
tual, therefore, requires modeling both the underlying SCM
for the attributes as well as the generative process that uses
the attributes to model the resulting image.

In this paper, we present ImageCFGen, a method that
combines knowledge from a causal graph and uses an in-
ference mechanism in a GAN-like framework to generate
counterfactual images. We first evaluate ImageCFGen on
the Morpho-MNIST dataset to show that it generates coun-
terfactual images comparable to a prior SCM-based CF
generation method (DeepSCM) [32]. Moreover, we show
that our method is capable of generating high-quality valid
counterfactuals for complex datasets like CelebA in com-
parison to DeepSCM. Specifically, on the CelebA dataset,
ImageCFGen can generate CFs for facial attributes like
Black Hair, Pale Skin etc. Based on these counterfactual
images, we show that an image classifier for predicting at-
tractiveness on the CelebA dataset exhibits bias with respect
to Pale Skin, but not with respect to attributes like Wearing
Necklace. We hence propose and demonstrate a bias miti-
gation algorithm which uses the counterfactuals to remove
the classifier’s bias with respect to sensitive attributes like
Pale Skin. In summary, our contributions include:

» ImageCFGen, a method that uses inference in a GAN-
like framework to generate counterfactuals based on
attributes learned from a known causal graph.

* Theoretical justification that under certain assump-
tions, CFs generated by ImageCFGen satisfy the defi-
nition of a counterfactual as in Pearl [33].

* Detailed experiments on Morpho-MNIST and CelebA
datasets that demonstrate the validity of CFs generated
by ImageCFGen in comparison to DeepSCM [32].

 Evaluating fairness of an image classifier and explain-
ing its decisions using counterfactual reasoning.

* A regularization technique using CFs to mitigate bias
w.r.t. sensitive attributes in any image classifier.

2. Related Work

Our work bridges the gap between generating counter-
factuals and evaluating fairness of image classifiers.
Counterfactual Generation. Given the objective to gen-
erate a data point X (e.g., an image) based on a set of
attributes A, Pearl’s ladder of causation [35] describes
three types of distributions that can be used: association
P(X|A = a), intervention P(X|do(A = a)) and coun-
terfactual P(X s—q|A = o', X = 2’). In the associational
distribution P(X|A = a), X is conditioned on a specific
attribute value « in the observed data. For e.g., conditional
GAN-based methods [31] implement association between
attributes and the image. In the interventional distribution

P(X|do(A = a), A is changed to the value a irrespective
of its observed associations with other attributes. Methods
like CausalGAN [23] learn an interventional distribution of
images after changing specific attributes, and then generate
new images that are outside the observed distribution (e.g.,
women with moustaches on the CelebA faces dataset [23]).

The counterfactual distribution P(X 4|4 = o/, X =
z') denotes the distribution of images related to a specific
image x’ and attribute o/, if the attribute of the same im-
age is changed to a different value a. In general, gener-
ating counterfactuals is a harder problem than generating
interventional data since we need to ensure that everything
except the changed attribute remains the same between an
original image and its counterfactual. Pawlowski et al. [32]
recently proposed a method for generating image counter-
factuals using a conditional Variational Autoencoder (VAE)
architecture. While VAEs allow control over latent vari-
ables, GANs have been more successful over recent years
in generating high-quality images. Thus, we posit that a
GAN-based method is more ideally suited to the task of CF
generation in complex image datasets, especially when the
generated images need to be realistic to be used for down-
stream applications such as fairness evaluation. We test this
hypothesis in Section 5.

Independent of our goal, there is a second interpretation
of a “counterfactual” example w.r.t. a ML classifier [40],
referring to the smallest change in an input that changes the
prediction of the ML classifier. [27] use a standard GAN
with a distance-based loss to generate CF images close to
the original image. However, the generated CFs do not
consider the underlying causal structure — terming such im-
ages as CFs can be arguable from a causal perspective. Be-
sides, these CFs are not perceptually interpretable — ideally,
a counterfactual image should be able to change only the
desired attribute while keeping the other attributes constant,
which we focus on in this work.
Fairness of Image Classifiers. Due to growing concerns
on bias against specific demographics in image classifiers
[3], methods have been proposed to inspect what features
are considered important by a classifier [39], constrain clas-
sifiers to give importance to the correct or unbiased fea-
tures [37], or enhance fairness by generating realistic im-
ages from under-represented groups [30]. Explanations,
to study the fairness of a trained model, can also be con-
structed by perturbing parts of an image that change the
classifier’s output, e.g., by occluding an image region [42]
or by changing the smallest parts of an image that change
the classifier’s output [13, 29, 14]. Such perturbation-based
methods, however, are not designed to capture high-level
concepts and do not enable study of fairness of classifiers
w.r.t. human-understandable concepts (e.g. gender or race).

Existing work closest to our efforts include two
adversarially-trained generative models to generate coun-
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terfactuals for a given image. [7] changed attributes for a
given image by linear interpolations of latent variables us-
ing a standard progressive GAN [19]. Similarly, [17] used a
Fader network architecture [25] to change attributes. How-
ever, both these works ignore the causal structure associated
with attributes of an image. In analyzing bias against an at-
tribute, it is important to model the downstream changes
caused by changing that attribute [24]. For instance, for a
chest MRI classifier, age of a person may affect the relative
size of their organs [32]; it will not be realistic to analyze
the effect of age on the classifier’s prediction without learn-
ing the causal relationship from age to organ size. Hence, in
this work, we present a different architecture that can model
causal relationships between attributes and provide valid
counterfactuals w.r.t. an assumed structural causal model.
In addition, using these counterfactuals, we present a sim-
ple regularization technique that can be used to decrease
bias in any given classifier.

3. SCM-Based Counterfactuals

Let X = x € X denote the image we want to generate
the counterfactual for, and let A = a = {a;}, € Abe
its corresponding attributes. In the case of human faces,
attributes can be binary variables (€ {0, 1}) like Smiling,
Brown Hair; or in the case of MNIST digits, continuous
attributes (€ R) like thickness, intensity, etc. A continuous
attribute is scaled so that it lies in the range of [0,1]. We
have a training set D containing (x, a) (image, attribute)
tuples. Given an image (X, a), the goal is to generate a
counterfactual image with the attributes changed to a..

3.1. SCM over Attributes

We assume an SCM for the true data-generating pro-
cess that defines the relationship among the attributes a,
and from the attribute to the image x. For instance, with
two binary attributes (Young, Gray Hair) for an image x
of a face, the true causal graph can be assumed to be
Young — Gray Hair — x. We separate out the graph into
two parts: relationships amongst the attributes (M,,), and
relationships from the attributes to the image (M, ). We
call M, as the Attribute-SCM and model M, as a genera-
tive model, given the attributes.

The Attribute-SCM (M,,) consists of a causal graph
structure and associated structural assignments. We assume
that the causal graph structure is known. Given the graph
structure, Attribute-SCM learns the structural assignments
between attributes. E.g., given Young — Gray Hair, it
learns the function g such that Gray Hair = g(Young,e),
where € denotes independent random noise. We use the
well-known Maximum Likelihood Estimation procedure in
Bayesian Networks [8] to estimate these functions for the
attributes, but other methods such as Normalizing Flows
[36, 32] can also be used.

Note that counterfactual estimation requires knowledge
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of both the true causal graph and the true structural equa-
tions; two SCMs may entail exactly the same observational
and interventional distributions, but can differ in their coun-
terfactual values [18]. In most applications, however, it is
impractical to know the true structural equations for each
edge of a causal graph. Therefore, here we make a simplify-
ing empirical assumption: while we assume a known causal
graph for attributes, we estimate the structural equations
from observed data. That is, we assume that the data is gen-
erated from a subset of all possible SCMs (e.g., linear SCMs
with Gaussian noise) such that the structural equations can
be uniquely estimated from data. Details on Attribute-SCM
are in Appendix A.

3.2. Image Generation from Attribute-SCM

For modeling the second part of the SCM from attributes
to the image (M), we build a generative model that con-
tains an encoder-generator architecture. Given an Attribute-
SCM (either provided by the user or learned partially, as in
Sec 3.1), the proposed method ImageCFGen has three steps
to generate a counterfactual for an image (x,a) such that
the attributes are changed to a’ (architecture in Figure 1).

* Anencoder E : (X, A) — Z infers the latent vector z
from x and a, i.e. z = E(x,a) where Z =z € R™.
The Attribute-SCM intervenes on the desired subset of
attributes that are changed from a to a’, resulting in
output a.. Specifically, let a; C a be the subset of
attributes that changed between the inputs a and a’.
For every a; € ag, set its value to a}, then change the
value of its descendants in the SCM graph by plugging
in the updated values in the structural equations (see
Lines 5-6 in Algorithm 1, Appendix A).

Generator G : (Z, A) — X takes as input (z,a.) and
generates a counterfactual x., where z € Z C R™.
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Figure 1: Counterfactual Generation using ImageCF-
Gen. The top half of the figure shows the CF generation
procedure, and the bottom half of the figure shows the re-
construction procedure. Finally, the reconstructed image
and the counterfactual image x. are used for a downstream
task like fairness evaluation of a classifier.

The above method for CF generation can be written as:

x. = G(E(x,a),a.), €))
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The complete algorithm is shown in Algorithm 1 in Ap-
pendix A. For our experiments, we use a novel improved
variant of Adversarially Learned Inference [11] to train the
encoder and generator. However, ImageCFGen can be ex-
tended to any encoder-generator (decoder) architecture.

3.3. Correspondence to Counterfactual Theory

The above architecture maps directly to the three steps

for generating a valid counterfactual, for (x, a) as in [33]:

* Abduction: Infer latent z given the input (x, a) using
the encoder.

e Action: Let a;, C a be the set of k attributes that one
wants to intervene on. Set attribute a; — a; Va; € ay,
where a), = {a}}}_,.

* Prediction: Modify all the descendants of a; accord-
ing to the SCM equations learned by Attribute-SCM.
This outputs a., the intervened attributes. Use z from
the encoder and a. from the Attribute-SCM and input
it to the generator to obtain the counterfactual x..

The proof that Equation 1 corresponds to generating a

valid counterfactual is in Appendix B.

3.4. Implementing the Encoder and Generator

Many studies have reported generating high-quality, re-
alistic images using GANs [41, 19, 20]. However, vanilla
GANSs lack an inference mechanism where the input x can
be mapped to its latent space representation z. We hence
use Adversarially Learned Inference (ALI) [11], which in-
tegrates the inference mechanism of variational methods
like VAEs in a GAN-like framework, thereby leveraging
the generative capacity of GANs as well as providing an
inference mechanism. We generate the images using a con-
ditional variant of ALI where the model is conditioned on
the attributes a while generating an image.

An ALI-based method, however, has two limitations: (1)
generation capabilities are limited when compared to state-
of-the-art [20]; and (2) reconstructions are not always faith-
ful reproductions of the original image [11]. Image re-
constructions are important in the counterfactual generation
process because they indicate how good the inferred latent
space variable z is, which is used in the abduction step of
generating counterfactuals. We address both these issues
by using a style-based generator for better generation and
a cyclic cost minimization algorithm for improved recon-
structions. We refer to our ALI model as Cyclic Style ALI
(CSALI). We describe each of these components below.
Adversarially Learned Inference. ALI uses an encoder E
and a generator GG in an adversarial framework, where the
encoder learns to approximate the latent space distribution
from the input x and attributes a, and the generator learns
to generate realistic images from the latent space distribu-
tion and attributes a. The discriminator D is optimized to
differentiate between pairs of tuples containing {the real im-
age, the corresponding approximated latent space variable,

attributes} from joint samples of {the generated image, the
input latent variable, attributes}. The Encoder and Gener-
ator are optimized to fool the discriminator. Unlike [11]
which uses an embedding network, we directly pass the at-
tributes to the Generator, Encoder and Discriminator since
we found that it helped in conditioning the model on the
attributes better. The conditional ALI hence optimizes:

Iél’ig max V(D, G, E) = Eqx)p(a)llog(D(x, E(x,a),a))]
+Ep(z)p(a)[log(1 — D(G(z, a),z,a))]

where G is the generator, F is the encoder and D is the dis-
criminator. ¢(x) is the distribution for the images, p(z) ~
N(0,1) and p(a) is the distribution of the attributes. Image
reconstructions are defined as:

x, = G(E(x,a),a) 3)

Style-Based Generator. Style-based generator architec-
tures (StyleGANSs) implicitly learn separations of high-level
attributes of images like hair color, pose, etc [20, 21], and
generate images that are indistinguishable from real images
[44]. To improve generation, we replace the ALI generator
with the style-based generator architecture in [20]. Details
of the architecture are provided in the Appendix D.

Cyclic Cost Minimization. To improve image reconstruc-
tions (which in turn indicate the goodness of the learned la-
tents z), we employ the cyclic cost minimization algorithm
in [9] after training the style-based ALI model. The gen-
erator is fixed, and the encoder is fine-tuned to minimize
a reconstruction loss computed using: (i) error in the im-
age space Ly = Exq(x) [|x — G(E(x,a))ll,; and (ii) er-
ror in the latent space £, = E, (2 ||z — E(x,a)||, where
G(E(x,a)) is the reconstructed image x, according to Eqn
3 and E(x, a) is the encoder’s output z,., which is expected
to capture the image’s latent space distribution. We fine-
tune the encoder using the above reconstruction loss post-
hoc after obtaining a good generator in order to explicitly
improve image reconstructions.

4. Applications of Generated CFs

We now show how the counterfactuals generated using
ImageCFGencan be used to evaluate fairness of, as well
as explain a given image classifier. We will also present a
method to mitigate any fairness biases in the classifier. Sup-
pose we are given a pre-trained image classifier f : X — ),
such that f(x) = §, where x € X refers to the im-
ages and y € ) refers to the classifier’s discrete outcome.
Let a € A be the corresponding image attributes, and let
ags € As C A be the set of sensitive attributes we want to
evaluate the classifier on.

4.1. Evaluating Fairness of a Classifier

We can use the generated CFs to estimate biases in a
given classifier that predicts some discrete outcome § = y
(like Attractive). In an ideal scenario, the latent variable z

3882

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on July 28,2022 at 13:52:27 UTC from IEEE Xplore. Restrictions apply.



for the real image and its reconstructed image would match
exactly. However, experiments using ALI demonstrate that
the reconstructed images are not perfect reproductions of
the real image [11, 10, 6]. Therefore, for objective com-
parison, we compare classification labels for reconstructed
images (x,. from Eqn 3) and counterfactual images (x. from
Eqn 1), since the reconstructed images share the exact same
latent z as the CF image (and hence the CF will be valid).
We hence refer to the reconstructed images (which share the
latent z with the CF) as base images for the rest of the paper.
We characterize a classifier as biased w.r.t. an attribute

if: (a) it changes its classification label for the CF image
(obtained by changing that attribute); and (b) if it changes
the label to one class from another class more often than
vice versa (for CFs across test images obtained by changing
the considered attribute). (To illustrate the second condi-
tion, if setting hair color as blonde makes test images con-
sistently be classified as attractive more often than other-
wise, this indicates bias.) We capture these intuitions as a
formula for the degree of bias in a binary classifier w.r.t. a
considered attribute:

bias = p(y, # ye) (p(yr = 0,y = 1|y» # yc) @

—p(yr = 1,Yc = Olyr # yc))

where .. is the classification label for the reconstructed im-
age, and y. is the classification label for the CF image. Us-
ing Bayes Theorem, Eqn 4 reduces to:

bias = p(y, = 0,yc =1) = p(yr = 1,yc =0)  (5)
The bias defined above ranges from -1 to 1. It is O in the
ideal scenario when the probability of CF label changing
from O to 1 and vice-versa is the same (=0.5). The bias is 1
in the extreme case when the CF label always changes to 1,
indicating that the classifier is biased towards the counter-
factual change. Similarly if the CF label always changes to
0, the bias will be -1, indicating that the classifier is biased
against the counterfactual change. In Appendix C, we show
that a classifier with zero bias in the above metric is fair
w.r.t. the formal definition of counterfactual fairness [24].

4.2. Explaining a Classifier

We can also use the CFs from ImageCFGen to gener-
ate explanations for a classifier. For any input x, a local
counterfactual importance score for an attribute a; states
how the classifier’s prediction changes upon changing the
value of a;. Assuming a; can take binary values ¢’ = 1 and
a = 0, the local CF importance score of a; is given by:

IE:Y [Yai(fa’ |X7 a] - EY [Yaﬁ—a|xv a] (6)
= Ya;«a’ |X7 a— ya,«—a|x7 a

where Y is the random variable for the classifier’s output, y
is a value for the classifier’s output, and the above equality
is for a deterministic classifier. For a given (x, a), the score
for each attribute (feature) can be ranked to understand the
relative importance of features. To find global feature im-
portance, we average the above score over all inputs.

4.3. Bias Mitigation for a Classifier

Finally, in addition to evaluating a classifier for bias, CFs
generated using ImageCFGencan be used to remove bias
from a classifier w.r.t. a sensitive attribute. Here we propose
a counterfactual regularizer to ensure that an image and its
counterfactual over the sensitive attribute obtain the same
prediction from the image classifier. For an image x, let
logits(x) be the output of the classifier f before the sigmoid
activation layer. To enforce fairness, we can finetune the
classifier by adding a regularizer that the logits of the image
and its counterfactual should be the same, i.e.

BCE(Ytrue, f(x)) + AMSE(logits(x, ), logits(x.))  (7)

where BCE is the binary cross-entropy 10ss, ¥iryue 1S the
ground truth label for the real image x, A is a regularizing
hyperparameter, MSE is the mean-squared error loss, and
x, and x,. are defined in Eqns 3 and 1 respectively.

5. Experiments and Results

Considering the limited availability of datasets with
known causal graphs, we study ImageCFGen on the
Morpho-MNIST dataset (a simple dataset for validating our
approach), and on the CelebA dataset (which provides an
important context for studying bias and fairness in image
classifiers). Specifically, we study the following:

* Validity of ImageCFGen CFs. We use the Morpho-
MNIST dataset which adds causal structure on the
MNIST images, to compare counterfactuals from Im-
ageCFGen to the Deep-SCM method [32]. We show
that CFs from ImageCFGen are comparable to those
from DeepSCM, thus validating our approach.
Quality of ImageCFGen CFs. On the more complex
CelebA dataset, we evaluate the quality of ImageCF-
Gen CFs by quantifying the generation and reconstruc-
tion, using established benchmark metrics. We find
that using the proposed CSALI architecture offers sig-
nificant advantages over the standard ALI model. We
also contrast the quality and validity of the generated
CFs with those of DeepSCM, and find that ImageCF-
Gen outperforms DeepSCM.

Fairness Evalution and Explanation of a ML Clas-
sifier Using ImageCFGen CFs. We show using Im-
ageCFGen that a standard pre-trained classifier on
CelebA that predicts whether a face is attractive or not,
has bias w.r.t. attribute Pale Skin across all three hair
colors (Black Hair, Blond Hair, Brown Hair). We also
explain the classifier’s predictions using CFs.
 Bias Mitigation of a ML Classifier Using ImageCF-
Gen CFs. Finally, we show how our proposed method
can be used to decrease detected bias in the classifier
for the attributes mentioned above.

Baselines and Performance Metrics. We compare to
DeepSCM’s [32] results on Morpho-MNIST and CelebA.
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We present both quantitative and qualitative performance of
our method for these datasets. While we follow the metrics
of [32] for Morpho-MNIST, for CelebA we report quanti-
tative scores like Fréchet Inception Distance [16] (FID) and
Mean Squared Error (MSE) to compare generation and re-
construction quality with the base ALI method. For mea-
suring quality of generated counterfactuals, we report hu-
man evaluation scores, in addition to qualitative results. For
bias evaluation, we compare ImageCFGen to affine image
transformations like horizontal flip and brightness that are
commonly used data augmentation techniques.
Datasets. Morpho-MNIST [4] is a publicly available dataset
based on MNIST [26] with interpretable attributes like
thickness, intensity, etc. It was extended by [32] to intro-
duce morphological transformations with a known causal
graph. The attributes are thickness (t) and intensity (i),
where thickness — intensity (— indicating causal effect).
We extend this dataset by introducing an independent mor-
phological attribute—slant (s) from the original Morpho-
MNIST dataset and digit label (1) as an attribute. The causal
graph for the dataset is given in Fig 2a.

t i s 1

Attractive Pale  Smiling

X X
(a) Morpho-MNIST (b) CelebA.

Figure 2: Causal Graphs for Morpho-MNIST and
CelebA. Attributes for Morpho-MNIST are thickness t, in-
tensity i, slant s and label 1; for CelebA are Pale, Black Hair,
etc. In both graphs, attributes cause the image x.

CelebA [28] is a dataset of 200k celebrity images an-
notated with 40 attributes like Black Hair, Wearing Hat,
Smiling etc. We train an image classifier on the dataset that
predicts the attribute Attractive as done in [38, 12]. While
explaining the classifier’s decisions, we generate CFs for all
attributes excluding Male, Young and Blurry. For fairness
evaluations, we focus on generating CFs for the attributes
Black Hair, Blond Hair, Brown Hair, Pale and Bangs. Sim-
ilar to [7], we do not generate CFs for Male because of in-
consistent social perceptions surrounding gender, thereby
making it difficult to define a causal graph not influenced
by biases. Therefore, all attributes we consider have a clear
causal structure (Fig 2b shows the causal graph). Addition-
ally, our method can also be utilized in the setting where the
attributes are connected in a complex causal graph struc-
ture, unlike [7, 17]. We show this by conducting a similar
fairness and explanation analysis for a Attractive classifier
in Appendix O, where Young affects other visible attributes
like Gray hair.

Details of implementation, architecture (including ALI)
and training are provided in Appendix D.

5.1. Validity of ImageCFGen CFs on Morpho-MNIST

We generate CFs using ImageCFGen on images from
the Morpho-MNIST dataset by intervening on all four at-
tributes - thickness, intensity, slant and label and observe
how the image changes with these attributes. Fig 3 demon-
strates CFs for a single image with label 0. Along the first
column vertically, the label is changed from O to {1, 4,6,9}
while the thickness, intensity and slant are kept constant.
Then, as we proceed to the right in each row, the attributes
of thickness, intensity and slant are changed sequentially
but the label is kept constant. Visually, the generated coun-
terfactuals change appropriately according to the intervened
attributes. For instance, according to the causal graph in
Fig 2a, changing the digit label should not change the digit
thickness intensity and slant. That is precisely observed in
the first column of Fig 3. Whereas, changing the thickness
should also change the intensity of the image which is ob-
served in the third and fourth columns of Fig 3. Results of
latent space interpolations and digit reconstructions are pro-
vided in Appendix E and F. We find that the encoder learns
meaningful latent space representations, and the reconstruc-
tions are faithful reproductions of Morpho-MNIST digits.

original do (t=1) do (i=1) do (s =5)
I I

¢

N

Figure 3: Morpho-MNIST Counterfactuals. Top-left cell
shows a real image sampled from the test set. Vertically,
rows correspond to interventions on the label, do(l=1, 4, 6,
9). Moving horizontally, columns correspond to interven-
tions on thickness: do (t=1, 3, 5), intensity: do (i = 68, 120,
224), and slant: do (s =-0.7, 0, 1) respectively.

To quantify these observations, we randomly sample
hundred values for thickness, intensity and slant attributes
and generate corresponding CFs for each test image. Fig
4 plots the target ground-truth attribute vs the measured at-
tribute in the CF image (measured using a formula from
Morpho-MNIST [32]), and shows that all attributes are on
an average clustered along the reference line of y = x with
some variability. We quantify this variability in Table 1
using median absolute error, by comparing the CFs gen-
erated using ImageCFGen vs those using the DeepSCM
method [32] (we choose Median Absolute Error to avoid
skewed measurements due to outliers). ImageCFGen and
DeepSCM are comparable on attributes of thickness and in-
tensity, showing the validity of our CFs. We could not com-
pare slant since [32] do not use slant in their studies.
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Figure 4: Morpho-MNIST CFs. For each attribute, Tar-
get (x axis) is the desired value for the CF and Measured
(y axis) is the attribute value obtained from the generated
counterfactual using a formula provided in the Morpho-
MNIST dataset [32]. We compare between ground-truth
CFs and CSALI-generated CFs. In an ideal scenario (real
samples), points should lie along the y = « line.
‘ do (thickness) ‘ do (intensity)
ImageCFGen | 0.408 £ 0.004 | 10.740 £ 0.161
DeepSCM 0.253 £+ 0.002 | 12.519 £ 0.105

Table 1: Median Abs. Error: ImageCFGen and Deep-
SCM. Lower is better.

ImageCFGEN
Measured

REAL
Measurgd

5.2. Quality of /mageCFGen CFs on CelebA

We now evaluate ImageCFGen on CelebA by comparing
the quality of the generated CF images against the vanilla
ALI model and the DeepSCM model [32].

Generation Quality. We show real images and their cor-
responding reconstructions using ALI and CSALI in rows
(D), (1) and (IV) of Fig 13 in Appendix K. While the re-
constructions of both ALI and CSALI are not perfect, those
of CSALI are significantly better than ALI. Moreover, they
capture majority of the high-level features of the real im-
ages like Hair Color, Smiling, Pale, etc. We quantify this in
Table 2 using Fréchet Inception Distance [16] (FID) score
for generated images, Mean Squared Error (MSE) between
the real images x and reconstructed images x, and Mean
Absolute Error (MAE) between the real latent variable z
and the encoder’s approximation of the latent variable z,..
We randomly sample 10k generated images to calculate FID
scores, and randomly sample 10k real images for which we
generate reconstructions and report the MSE and MAE met-
rics. We report these metrics on the baseline model of ALI
as well. We observe a significant improvement in genera-
tion quality after using a style-based generator and signif-
icant improvements in reconstruction with the cyclic cost
minimization algorithm (refer to Appendix K for ablation
study). We report MSE on images and MAE on latent space
variables since the cyclic cost minimization algorithm [9]
uses these metrics to improve reconstructions.

Counterfactual Quality. We contrast the quality and valid-
ity of the CFs from ImageCFGen with the CFs from Deep-
SCM [32] (refer to Appendix H for our implementation of

| FID | MSE (z.x,) | MAE (2, 2)
ALI 67.133 | 0.177 1.938
CSALI | 21.269 | 0.103 0.940

Table 2: FID, MSE and MAE scores for ALI and Cyclic
Style ALI (CSALI). Lower is better.

DeepSCM on CelebA). To generate the counterfactual im-
ages, we intervene on the attributes of Black Hair, Blond
Hair, Brown Hair, Pale and Bangs. We observe in Figure
5 that the CFs from ImageCFGen are qualitatively better
than those from DeepSCM. ImageCFGen CFs successfully
change the hair color and skin color, in addition to adding
bangs to the face (refer to Figure 12 in Appendix J for more
ImageCFGen CFs and Appendix I for more comparisons
with DeepSCM). In contrast, the CFs from DeepSCM only
partially change the hair color and the skin color in columns
(a) through (f) and fail to add bangs in column (g).

ORIG\INAL RECOI;ISTRUCTED COUNTEF}FACTUALS

() (b) (c) (d) (e) (f) (8)

wasa N39421

N39401

wWasa

Figure 5: ImageCFGen and DeepSCM Counterfactuals.
(a) denotes do (black hair = 1) and (b) denotes do (black
hair = 1, pale =1). Similarly (c) denotes do (blond hair =
1); (d) denotes do (blond hair = 1, pale = 1); (e) denotes do
(brown hair = 1); (hf denotes do (brown hair = 1, pale = 1);
and (g) denotes do (bangs = 1).

We also perform a human evaluation experiment of the
generated counterfactuals in Appendix K, which showed
that the distribution of counterfactuals is identical to the dis-
tribution of their corresponding base images.

5.3. Bias Evaluation & Explaining a Classifier

We train a classifier on the CelebA dataset to predict
attractiveness of an image w.r.t. an attribute (architecture
and training details in Appendix L). We then use the gen-
erated CFs to identify biases in the classifier. We sample
10k points from the test set and generate seven CFs for each
of them as shown in Fig 5 for different attributes. We only
consider those images for which the corresponding attribute
was absent in order to avoid redundancies. For instance, we
filter out CF (c) of the second sample from Fig 5 since blond
hair was already present in the base image. We then provide
the generated CFs along with the base (reconstructed) im-
age to the attractive classifier and compare their labels. As a
baseline comparison, we also pass images with affine trans-
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formations like horizontal flip and increasing brightness to
the classifier. We treat the classifier’s outputs as the prob-
ability of being labeled as attractive. Fig. 6 shows these
probabilities for the base image, affine transformations, and
the CFs. If the classifier is fair w.r.t. these attributes, all
points should be clustered along the y=x line.

HORIZONTAL FLIP DO (HAIR = 1)

DO (HAIR = 1,PALE = 1) DO (BANGS=1)

f

HAIR = BLACK

HAIR = BLOND

P (attractive | counterfactual image)

HAIR = BROWN

7. 08 e p 081
3 S SR |
e

P (attractiv

Figure 6: Fairness Analysis. Affine transformations (left),
CFs (right). Each point in a scatter plot is a pair of a base
image and its corresponding CF image. In the ideal case, all
points should lie along the y = x line. To analyze the figures,
divide the scatter plot into four quadrants formed by lines x
=0.5and y =0.5. Any point in the top left quadrant signifies
that the attractive label was changed from 0 to 1 and vice-
versa for the bottom right quadrant.

For the CF plots, for do (black hair =1, pale = 1) and
do (brown = 1, pale = 1) almost all points are above the
reference line, suggesting that the probability of being clas-
sified as attractive increases after applying these interven-
tions. Not only does the probability increase, for do (black
hair = 1, pale = 1), 18% of the CF labels are flipped from
the base ones, and 94% of these labels are changed from not
attractive to attractive. In case of do (brown hair = 1, pale =
1), 19% of the CF labels are flipped and 94% of the labels
are flipped from not attractive to attractive. For the CF do
(blond hair = 1, pale = 1), 16% of the labels are flipped and
74% of the labels are flipped from attractive to not attrac-
tive. In comparison, the affine transformations are unable
to provide a clear picture of bias. For horizontal flip, the
points are equally distributed on both sides of the reference
line y = x. In the case of brightness, there is more variation.

In Table 3, we quantify these observations using Eqn 4.
Our metric for bias measurement gives an overall estimate
of the bias in classifier, and provides an interpretable and
uniform scale to compare biases among different classifiers.
The reported bias values reflect the observations from Fig
6. We observe that the CF of do (brown hair = 1, pale =
1) has the highest positive bias amongst all CFs and affine
transformations, i.e. the classifier is biased towards labeling
these CFs as more attractive in contrast to the base image.
Using CFs, we are able to detect other significant biases
towards setting skin color as pale = 1 for all hair colors
(black, blond and brown). In contrast, using the baseline

plar # ac) | p(O— 1) | bias
horizontal flip | 0.073 0.436 -0.009
brightness 0.192 0.498 -0.001
black_h 0.103 0.586 0.018
black_h, pale 0.180 0.937 0.158
blond_h 0.115 0.413 -0.02
blond_h, pale 0.155 0.738 0.073
brown_h 0.099 0.704 0.041
brown_h, pale | 0.186 0.942 0.164
bangs 0.106 0.526 0.005

Table 3: Bias Estimation. Bias values above a threshold of
5% are considered significant.

transformations, we are unable to detect skin color bias in
the classifier since the calculated bias values are negligible.

Pale_Skin

Bushy_Eyebrows
Heauy_Makeup
Rosy_Cheeks
Receding_Hairiine

Wearing Hat ——

Gray_Hair

Bald

015 -010 008 000 008 0lo

Figure 7: Explaining a Classifier. Attribute ranking of top
4 positive and top 4 negative influential attributes.

We also use CFs to explain the classifier’s decisions for
predicting attractiveness of a face. Fig 7 shows the top 4
positive and top 4 negative influences for classifying a face
as attractive. We can see that Pale skin is the top attribute
that contributes to the classifier predicting a face as attrac-
tive, while Bald is the top attribute that contributes to the
classifier prediction of not attractive.

5.4. Bias Mitigation for a Classifier

Finally, using Eqn. 7, we employ the generated CFs to
remove the identified biases in the Attractive classifier on
do (black = 1, pale = 1), do (blond = 1, pale = 1) and do
(brown = 1, pale = 1) . The CF-regularized classifier reports
a bias score of 0.032 for black hair and pale (against 0.159
for the original classifier) and 0.012 for brown hair and pale
(against 0.154 for the original classifier). Also, the reduced
biases are no longer significant, without reducing the accu-
racy (82.3% versus 82.6%). Details are in Appendix M.

6. Conclusion

We propose a framework ImageCFGen for generating
counterfactuals based on an underlying SCM, utilizing the
generative capacity of GANs. We demonstrate how the
counterfactuals can be used to evaluate and mitigate a clas-
sifier’s biases and explain its decisions. That said, we ac-
knowledge two limitations , 1) Our CF generation method
relies on accurate knowledge of the causal graph; 2) It uses a
statistical model that can have have unknown failure modes
in generating meaningful counterfactuals. Therefore, this
work should be considered as a prototype early work in gen-
erating counterfactuals, and is not suitable for deployment.
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