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Abstract: The interaction between fish skin gelatin (FG) and pea protein isolate (PPI) was investigated
at the air-water interface (A-W) before and after a high intensity (275 W, 5 min) ultrasound treatment
(US). We analyzed the properties of the single protein suspensions as well as an equal ratio of
FG:PPI (MIX), in terms of ζ-potential, particle size, molecular weight, bulk viscosity and interfacial
tension. The foaming properties were then evaluated by visual analysis and by Turbiscan Tower.
Confocal laser scanning microscopy (CLSM) was employed to explore the role of the proteins on
the microstructure of foams. The results showed that the ultrasound treatment slightly influenced
physicochemical properties of the proteins, while in general, did not significantly affect their behavior
both in bulk and at the air-water interface. In particular, PPI aggregate size was reduced (−48 nm)
while their negative charges were increased (−1 mV) after the treatment. However, when the proteins
were combined, higher molecular weight of aggregates, higher foam stability values (+14%) and
lower interfacial tension (IFT) values (47.2 ± 0.2 mN/m) were obtained, leading us to assume that a
weak interaction was developed between them.

Keywords: foaming properties; fish skin gelatin; pea protein; interfacial properties; Turbiscan
Tower; CLSM

1. Introduction

Foam can be described as a two-phase system in which gas bubbles are uniformly
dispersed into a continuous liquid phase. Gas bubbles are separated by a thin continuous
layer of liquid called the lamellar phase [1]. In food products, this system could be very
complex, containing different mixtures of gases and liquids, which contribute to the texture
and the palatability of foods. In order to prevent their agglomeration and coalescence that
can cause their collapse, different type of surfactant could be added to ensure foam stability
during the time. Thanks to their hydrophilic and hydrophobic groups, these elements
can stabilize the interface interacting with the liquid and the gas phases simultaneously.
Between food surfactants, proteins are largely employed in food industry. Due to their
ability of being adsorb at the air-water interface, proteins can significantly affect the foaming
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properties and, thanks to their different structures, vary in their behavior: ideal protein
foaming agents should be able to rapidly stabilize the system at low concentrations and
over different pH range. Egg white, dairy, gelatins, gluten and soy proteins are the main
surfactants used in food foams due to their high efficiency [2].

However, more sustainable proteins sources have been investigated [3]. Due to its
special properties, such as gelation, film forming ability and interfacial properties, gelatin
is widely employed in food, pharmaceutical and cosmetic industries to improve stability,
elasticity, and texture of many products [4,5]. Gelatin is a denatured and biodegradable
protein derived from either alkaline or acid partial hydrolyzation of collagen [6]. Recently,
the biochemical and physico-chemical properties of gelatin from saithe fish skin, has been
investigated by Casanova et al. [7] to stabilize foams. The authors investigated the foaming
properties of fish skin gelatin after different combinations of time and high intensity
ultrasound treatment.

In the last years, pea protein isolate extracted from Pisum sativum, which is the Euro-
pean most cultivated protein source, has been employed in the food industry as a functional
ingredient [8,9]. Its interfacial properties are mainly given by vicilin, legumin and con-
vicilin, globular proteins from which it is composed. However, due to their large and
compact structure, their ability to adsorb at the air-water interface can be limited [10].
Different methods to improve PPI functional properties were investigated, such as pH
and/or heat treatment and polysaccharide addition. Xiong et al. [10] tried to improve
their foaming properties by applying a high intensity ultrasound treatment resulting in
an encouraging enhancement in foam stability. Hinderink et al. [11] tried to improve the
interfacial properties of pea protein isolate by blending it with dairy proteins. The authors
concluded that the interfacial properties of individual proteins are not additive, but they
can react giving stronger or more elastic layers, which can affect the product stability at the
interface. The aim of this study is therefore to investigate the behavior of fish skin gelatin
(FG), pea protein isolate (PPI) and their mixture (MIX) in three different ratios (100:0, 50:50
and 0:100) in bulk and at the air-water interface before and after ultrasound treatment.

2. Materials and Methods

Fish skin gelatin (FG) was purchased from Sigma Aldrich (Sigma, St. Louis, MO,
USA) while F85F Pea Protein Isolate (PPI) was kindly donated by Roquette Frères (Lestrem,
France). The composition of FG and PPI powders (i.e., moisture, ash, protein content,
mineral composition) and in solution (i.e., thermal properties and surface hydrophobicity)
were already assessed by a previous study conducted by Vall-llosera et al. [12]. A phosphate-
buffered saline solution (PBS buffer at pH 7.2–7.4) was used for the preparation of the
samples. The solution was prepared in double-distilled water with a concentration of
50 mM Na2HPO4/NaH2PO4 and 150 mM of NaCl.

2.1. Samples Preparation

FG powder was dissolved into 200 mL of PBS buffer at a concentration of 18 g/L
and stirred for 24 h at room temperature (20 ± 1 ◦C) to reach a complete solubilization
of the protein. PPI solution was stirred for at least 48 h at 4 ◦C according to Hinderink
et al. [11]. The 50:50 ratio solution (MIX), was prepared mixing 100 mL of both the protein
solutions maintaining the same concentration. All the solutions were stored in blue caps
glass containers (250 mL volume). Sodium azide (Sigma, St. Louis, MO, USA) at 0.02% was
added to prevent microbial activity.

Standardization of the FG and PPI Solutions

Since PPI powder presents 80% of protein, 5 solutions at different concentrations (100,
110, 120, 150 and 200 g/L) of PPI were prepared in PBS buffer and stored at
4 ◦C under stirring for 48 h. The solution was then centrifuged at 12,298 g for 1 h. The
supernatant was then evaluated in terms of soluble protein content by Dumas method,
using a nitrogen conversion factor of 6.25. A calibration line (Figure S1, Table S1) was
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designed to standardize the supernatant solution at 18 g/L of soluble protein, which was
obtained with a starting concentration of 110 g/L.

2.2. Ultrasound Treatment

An aliquot of 50 mL of FG, PPI and MIX was treated with ultrasounds (Branson,
Danbury, CT, USA) into a 100 mL glass beaker. To prevent the increasing temperature due
to the treatment, the samples were located in an ice bucket for the whole treatment period.
The samples were sonicated in a continuous mode at a 20 kHz frequency, 275 W (50% of
amplitude) for 5 min.

2.3. pH and Temperature Values

The pH of all the samples was measured before and after the treatment at room
temperature (20 ± 1 ◦C), by an automated pH meter (Metrohm 780, Smedeland, Glostrup,
Denmark). The pH values are reported as the average of three repeated measurements and
their standard deviations.

2.4. Hydrodynamic Diameter (Dh)

The particle size of the untreated and sonicated solutions was measured using a
Zetasizer Nano Series (Malvern Instruments, Malvern, UK) instrument. For the DLS
analysis, the solutions were diluted 1:10 with Milli-Q water before the injection in capillary
cells and analyzed with a wavelength of 633 nm and a scattering angle of 173◦. The particle
size values were calculated according to the Stokes-Einstein equation as follows:

Dh =
KBT

3πηDt
(1)

where Dh is the hydrodynamic diameter of the particles, Dt is the diffusion coefficient,
which was extracted from the fit of the correlation curve using the cumulative method,
KB is the Boltzmann’s constant, T the temperature and η the solvent viscosity (Pa s−1).
The Dh is hereby reported as the average of three repeated measurements and their
standard deviations.

2.5. ζ-Potential Measurements

ζ-Potential of the particles was determined by applying a voltage of 50 V. The values
were calculated with the Henry equations as follows:

ζ =
3ηµ

2ε f (κRh)
(2)

where µ is the electrophoretic mobility (V Pa−1 s−1), η the solvent viscosity (Pa s−1), ε is
the medium dielectric constant (dimensionless), κ is the Debye length or the thickness of
the double electric layer around the molecules (nm) and Rh is the hydrodynamic radius
(nm). A value of 1.5 was used for f (κRh), which is the Henry’s constant, according to
the Smoluchowski approximation [13] since the measurements were conducted in an
aqueous medium.

2.6. SEC-MALS

Molecular weight of PP, FG and MIX, before and after ultrasound treatment was de-
termined using size-exclusion chromatography. For that purpose, 9 mg/mL sample were
prepared in phosphate buffer (pH 7.2) and filtered with 0.1 µm pore size filter. The HPLC
(Agilent, Santa Clara, CA, USA) was equipped with WTC-015S5 column (300× 7.8 mm, 150 Å
maximum pore size) Wyatt Technology, Santa Barbara, CA, USA). The elute was monitored
by a UV detector at 280 nm, a DAWN 8 light-scattering detector (Wyatt Technology, Santa
Barbara, CA, USA) and an Optilab differential refractometer (Wyatt Technology). The flow
rate was 0.8 mL/min and the injection volume 50 µL. The mobile phase was phosphate
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buffer, pH 7.2. 200 µL/L proClin (Sigma, St. Louis, MO, USA) was added to prevent the
microbial growth. The buffer was prior filtered with a sterile single use vacuum filter
(Thermo Fisher Scientific, Roskilde, Denmark) with pore size of 0.1 µm. Data analysis and
molecular weight calculations were performed using the ASTRA software (7.3.2 Version,
Wyatt Technology Europe, Dernbach, Germany).

2.7. In Bulk Rheological Analysis

The rheological properties of the solutions were evaluated with a controlled-stress
rheometer (StressTech HR Cannon instruments, State College, PE, USA) equipped with a
double gap geometry. A volume of 15 mL was analyzed 20 ◦C. Oscillatory measurements
were used as a first step to find the linear viscoelastic region (LVR), which indicates a
Newtonian behavior. LVR was found within a shear rate between 1–100 s−1, which was
used for the flow measurements. Flow data were fitted with the Power-law model and the
apparent viscosity of the sample solutions was obtained using the following equations:

τ = m γ n (3)

µa = m γ n−1 (4)

where τ is the shear stress, m the consistency coefficient, γ the shear rate, µa the apparent
viscosity, and n is the flow behavior index. Fluids can be described by three different
behaviors depending on n value: shear thinning (n < 1), shear thickening (n > 1) and
Newtonian fluids (n = 1). Over the shear rate range applied, all of the sample solutions
displayed Newtonian flow behavior. Frequency sweep with a frequency range between
1–10 Hz was implemented to determine viscoelastic behavior of the solutions at a 5% fixed
strain value.

2.8. Foaming Properties

A volume of 50 mL of solution were put into a glass beaker of 100 mL and foams were
produced by Ultraturrax (Colonial Scientific, DI 25 basic yellow line, Richmond, VA, USA)
at 9500 rpm for 1 min. Immediately after the whipping process, the foams were poured
into a 100 mL graduated cylinder and sealed with parafilm. Foam capacity (FC), foam
stability (FS) and liquid fraction (LF), were evaluated by a visual analysis, according to the
following equations:

FC =
Vt−V0

Vt
× 100% (5)

FS =
Vt time

V0
× 100% (6)

LF =
V0 −Vtliquid

V0
× 100% (7)

where Vt represents the volume of the foam after homogenization, V0 is the initial volume
of the protein solution, Vt time and Vt liquid the volume of the foam and the volume of the
drainage liquid, respectively, after 0, 5, 10, 15, 20, 30, 45, 60, 75, and 90 min. All the
experiments were conducted in triplicate and conducted by the same person at room
temperature (20 ◦C ± 1).

2.9. Bubble Size with Turbiscan Tower

Bubble size was evaluated with Turbiscan Tower (Formulaction, Toulouse, France).
The analysis is based on Static Multiple Light Scattering principle. Briefly, a beam of light
at 880 nm is sent on the sample and two different detectors acquired the value of the
Backscattering (BS) and Transmission (T) all over the sample height. These values depend
on the dispersed particle in a sample that are able to scatter the light source. In the case
of foam, the scattering caused by bubbles is evaluated. By monitoring the sample over
time, the instrument gives an evaluation of the evolution of bubbles and therefore on foam
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stability. According to Mie Theory [14], it is possible to calculate the size of the bubbles
as follows:

BS = f
(

ϕ, d, np, n f

)
(8)

where BS is the value of backscattered light, ϕ is the particle concentration (air fraction in
the case of a foam), d is the diameter of the particles, np and nf are the refractive index of
the dispersed and continuous phase, respectively. Immediately after the whipping process,
the foams were transferred into a 55 mm high tube and loaded into the instrument. The
measurements were conducted for 90 min with a scan on the sample every 1.5 min.

2.10. Confocal Laser Scanning Microscopy (CLSM)

Confocal laser scanning microscopy (CLSM) was utilized to confirm the presence of
a protein layer at the air-water (A-W) interface. The solutions were initially diluted to
9 g/L. Rhodamine B (Sigma Aldrich, Gillingham, UK) was used to dye the proteins
before following the same whipping process with Ultraturrax for 1 min at 9500 rpm.
Immediately after the foam’s formation, a volume of 0.5 mL of each sample was loaded
into an 8-chambers microscope slide and covered with a coverslip. The dye was excited at
556 nm and a movie of each sample was taken using a 100× lens (Nikon CFI) on a confocal
microscope spinning disc constituted by an inverted microscope (Nikon Ti2). This was
equipped with a laser source (405/488/561/640 nm), a confocal spinning disc module
(Yokogawa CSU-W1, 50 um pinholes), a quad-band emission filter (440/521/607/700 nm)
and a sCMOS camera (Photometrics Prime95B). However, due to the relative instability of
FG foams, only PPI and MIX samples were analyzed by this technique. Indeed, FG foams
drained too much liquid into the sample well, covering all of the air bubbles and hiding
them from the microscope vision.

2.11. Interfacial Properties

The interfacial tension (IFT) between the liquid phase (pure water and protein solu-
tions) and the gas phase (air) was measured with an optical tensiometer OCA 25 (Data-
Physics Instruments, Filderstadt, Baden-Württemberg, Germany) using a static pendant
drop method. IFT was recorded for 1000 s at room temperature (20± 1 ◦C), using a constant
drop volume of 20 µL. The IFT values of the solutions were calculated based on the Laplace
equation monitoring the shape of the droplet.

2.12. Statistical Analysis

The mean differences with ±standard deviation (SD) were analyzed. Statistical analy-
sis was performed using student’s test t and one-way analysis of variance test (ANOVA),
with a level of significance p < 0.05.

3. Results and Discussion
3.1. pH Values

Table 1 enlists the pH values of all the sample and a comparison between untreated
and sonicated ones. FG did not present any significant changes in pH values after the
US treatment, stabilizing around 7.1, while PPI showed a slight decrease from 7.3 to 7.2.
As expected, MIX sample exhibited a pH value range between FG and PPI values, which
showed a slight decrease after sonication, going from 7.2 to 7.1. These results are in agree-
ment with O’sullivan et al. [9]. The authors described a significant pH decrease of all
the US treated animal and vegetable proteins considered, including bovine gelatin, fish
gelatin, egg white, soy, rice and pea protein isolates. This is mainly due to the deproto-
nation of acidic amino acid residues contained within the agglomerated structure of the
untreated proteins [15].
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Table 1. pH values of the samples (Fish gelatin FG, pea protein isolate PPI, and their mixture MIX) as
the average of three repeated measurements before and after a high intensity ultrasound treatment
(275 W, 5 min).

pH FG PPI MIX

Untreated 7.13 ± 0.1 a 7.34 ± 0.2 b 7.27 ± 0.1 d

Sonicated 7.14 ± 0.1 a 7.24 ± 0.1 c 7.15 ± 0.3 e

Means with different superscripts in each column indicate significant differences (p < 0.05).

3.2. Hydrodynamic Diameter (Dh) and ζ-Potential

Figure 1 shows the mean hydrodynamic diameter of the sample before and after US
treatment. The large standard deviation associated with PPI are in accordance with the results
obtained in previous studies on PPI conducted by O’Sullivan et al., and Xiong et al. [9,10]. The
authors found a bimodal size distribution: one population has a similar size as the untreated
protein (159.07 ± 66.78 nm) while the other one is significantly reduced by the US treatment.
As expected, PPI size was reduced after the treatment (112 ± 47.49 nm). A similar behavior
was observed for the MIX sample, going from 160.23 ± 69.5 to 115.67 ± 47.40 nm. This
trend could be explained by the significant difference in the size between PPI and FG.
The reduction of the size is probably due to the disruption of non-covalent associative
forces, such as hydrogen bonds and hydrophobic interactions due to the cavitation effect
of ultrasound waves [9]. However, FG exhibits a slight increase in the aggregate size after
sonication, going from an average of 16.38 ± 8.64 nm to 23.03 ± 17.41 nm. This increase
in the size could be due to a thermal aggregation correlated to non-covalent associative
forces [9]. ζ-potential measurements present negative values for all of the samples, as
presented in Figure 1. In particular, PPI and MIX have a similar tendency to decrease in value
after the US treatment. Furthermore, they show similar values. ζ-potential of PPI range from
−7.2 ± 0.5 mV to −8.2 ± 0.4 mV, the MIX from −6.4 ± 0.9 mV to −8.0 ± 1.2 mV while FG
does not present a significant change in the values, which are stable between −1.32 ± 0.6 mV
and −1.28 ± 0.5 mV.
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Figure 1. (A) Hydrodynamic diameter (nm) and (B) ζ-potential (mV) of FG (� untreated, � treated),
PPI (� untreated, � treated) and MIX (� untreated, � treated). Values are here reported as the
average of three replicates and their standard deviation is shown in the error bars. a–e, different
letters show significant differences (p < 0.05).

3.3. SEC-MALS

Size exclusion chromatography (SEC-MALS) was employed to determine the molec-
ular weight (Mw) of FG, PPI and MIX prior and after sonication. The obtained results
are shown on Table 2. Untreated FG exhibited fraction with Mw lower than expected, as
the typical α-chain (~120 kDa) and β-chain (~200 kDa) were not observed. This might
be associated to the extensive hydrolysis of collagen throughout the production process
of protein [12]. Untreated PPI showed a high Mw fraction of 820 kDa, which is probably
corresponded to protein aggregates, while fraction of 164.4 kDa is attributed to the trimeric
form of vicilin [16]. Lower Mw fractions (61.2 and 44.1 kDa) are corresponded to vicilin
and legumin subunits [16]. Vicilin monomer with Mw of 50 kDa and legumin monomer of
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60 kDa had been reported in previous studies [16,17]. Untreated MIX demonstrated higher
Mw fractions compared to FG and PPI (Table 2). Ultrasound treatment had no effect on
Mw of FG and on lower Mw fractions of PPI. However, it was observed a decrease on Mw
of high Mw aggregation of PPI. O’Sullivan et al. [9] reported no difference on molecular
structure of FG and PPI after sonication (20 kHz, 95% of amplitude, for 2 min). Sonicated
MIX showed higher Mw fraction compared to untreated MIX. The formation of aggregates
in protein mixture caused by sonication is in accordance with the study reported by Silva
et al. [18], who studied the effect of low-frequency ultrasound (20 Hz, 40% of amplitude,
for 1–10 min) on whey-casein mixture.

Table 2. Molecular weight distribution of FG, PPI and MIX before and after sonication.

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4

Mw (kDa)

FG
Untreated 33.2
Sonicated 29.8

PPI
Untreated 879.4 164.4 61.2 44.1
Sonicated 820.3 167.6 67.1 49.4

MIX
Untreated 1048.1 208.9 102.0 84.9
Sonicated 2269.5 428.4 188.7 136.7

3.4. Rheology

Figure 2 shows the flow behavior of all the samples, untreated and sonicated, at
20 ◦C. The curves are presented as shear stress (τ) versus shear rate (γ). Data were evaluated
with the power-law model and showed a nearly Newtonian flow behavior (n = 1) for all
the samples over the shear rate range applied. Therefore, the consistency coefficient, which
is equal to the apparent viscosity in Newtonian fluids, was compared for all the solutions
and their values can be found in Table 3. Values were similar for all the samples, varying
between 1.0 and 1.5 mPa.s. In particular, sonicated FG and PPI presented a viscosity of
1.0 mPa.s, decreasing compared to their untreated controls which showed the highest
viscous behavior of 1.3 and 1.5 mPa.s, respectively. On the other hand, this decrease of
viscosity with the US treatment did not occur for the MIX samples, which instead slightly
increased from 1.2 to 1.3 mPa.s with the sonication. Therefore, MIX showed a viscosity
between FG and PPI suggesting both protein sources contributed to its flow properties.
Overall, data are in agreement with O’Sullivan et al. [9] who found a significant decrease of
FG (from 1.06 ± 0.07 to 0.76 ± 0.05 dL/g) and PPI (from 0.8 ± 0.005 to 0.76 ± 0.007 dL/g)
viscosity after an US treatment. In addition, MIX behavior could be explained by the
complexity of the solution which is composed of a mixture of protein fractions rather than
single components as FG and PPI [9].
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Figure 2. Shear stress (Pa) versus shear rate (s–1) of FG (� untreated, � treated), PPI (� untreated,
� treated) and MIX (� untreated, � treated) at 20 ◦C.
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Table 3. Power–law model parameters of all the samples at 20 ◦C.

Power Law m (mPa.s) * n ** R2

FG untreated 1.3 1.1 0.99
FG sonicated 1 1.1 0.95
PPI untreated 1.5 1 0.98
PPI sonicated 1 1.1 0.98
MIX untreated 1.2 1.1 0.99
MIX sonicated 1.3 1 0.99

* Consistency coefficient; ** Flow behavior index.

A frequency sweep test was also employed to investigate the viscoelastic properties
of the protein solutions. However, high concentrated protein solution, as the ones used
for this test (18 g/L), protein molecules tend to adsorb at the A-W interface forming a
viscoelastic film. Due to this effect, the measured apparent viscosity is the sum of both bulk
and interfacial signals [19]. The interfacial protein layer contribution is well seen from the
frequency sweep test (Figure S2). The test was conducted into a frequency range between
1–10 Hz and the viscoelastic moduli G′ and G” were evaluated, where G′ represents the
elastic behavior while G” the viscous behavior of the fluid [20]. At low frequencies, viscous
properties are predominant (G” > G′) while at the end of the considered frequency range,
the elastic modulus is definitely higher than the viscous one.

Protein aggregation and adsorption at the A-W interface contribute to the viscoelastic
properties of the fluid giving a gel-like microstructure [21]. Finally, the crossover frequency
of the moduli was analyzed. While both of FG samples exhibit frequencies over 4 Hz, PPI
samples present a difference between the untreated and the sonicated groups. Untreated
PPI shows a crossover around 4 Hz while after the treatment it happens around 1.5 Hz.
This could be due to improved protein-protein interactions with the sonication, resulting in
a previous manifestation of elastic behavior [21]. On the contrary, MIX samples exhibit the
higher frequency value crossover, over 6 Hz for both untreated and sonicated, suggesting a
complexity in the aggregates and interfacial film formation.

3.5. Foaming Properties

Foaming properties of protein solutions are generally based on the influence of many
factors such as the protein nature, their isolation process, temperature, pH, concentrations,
whipping method and time [22].

3.5.1. Foam Capacity (FC)

FC is defined as the percentage fraction of air into the total foam volume [1]. FC of all
the samples was determined immediately after the whipping process and is here presented
as the mean of three replicates. FC values for FG, PPI and MIX are presented in Figure 3. We
can observe that FC improved for sonicated FG in comparison with the untreated sample.
The treatment increased the value from 46.6 ± 1.7% to 52.1 ± 1.4%, allowing FG foam
to incorporate more volume of air. On the other hand, US treatment did not result in a
significant difference for sonicated PPI foams compared to the control, while it slightly
reduced FC values (−0.86%) of MIX samples. These results disagree with the study carried
out by Morales et al. [23]. Indeed, the authors found a significant increase (+62%) of FC
values for soy protein isolate foams after 5 min of a high intensity ultrasound treatment.
However, these results could be explained by the different nature of soy and pea proteins.
Overall, the samples reached FC value around 50% except for untreated FG which occurred
with the lowest value (46.58 ± 1.7%) in all of the three replicates implemented.
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Figure 3. FC (%) of FG (� untreated, � treated), PPI (� untreated, � treated) and MIX (� untreated,
� treated). Values are here reported as the average of three replicates and their standard deviation is
shown in the error bars. Different letters show significant differences (p < 0.05).

3.5.2. Foam Stability (FS)

FS can be described as the period of time in which the foam maintains its original
properties when formed [1]. FS is mainly influenced by temperature and pH, by the
nature of the proteins and their interaction, which should produce a viscous, elastic and
air-impermeable film around each air bubble to stabilize the system [1]. FS values were
visually monitored over a period of time of 90 min. FS values for FG, PPI and MIX are
presented in Figure 4. We can observe that FS did not improve for all the samples after
US treatment. Both FG and PPI sonicated samples showed a slight decrease in FS after
90 min, range from 13.33 to 12.0% and from 106.0 to 100.67%, respectively. MIX reached
the same value around 114% for both untreated and sonicated samples. Furthermore,
MIX foams present higher values, over the whole period considered, compared to FG and
PPI foams. This may suggest a possible protein-protein interaction on the film formation
around the bubbles. Globally, sonicated samples present similar values to the controls,
without any statistical difference. As can be seen from the graphs, the treatment provided
higher FS values during the firsts 25 min, while they dropped below controls values in
the remaining 60 min. In particular, FG curves decreased steadily, approaching FS of 0%
over the considered period, while both PPI and MIX stabilized above 100% during 90 min,
presenting a similar behavior.

Overall, the results are in accordance with the study conducted by Xiong et al. [10].
where foaming properties of PPI were evaluated after different conditions of ultrasound
treatment. In this study, FS values of sonicated PPI were significantly higher than those
of untreated PPI, but only during the first 10 min of evaluation, whereas after 20 min,
the authors found no significant difference between the two samples. This trend can be
attributed to the partial unfolding of proteins induced by US, which allows them to rapidly
adsorb at the A-W interface of the foam, leading to a greater stability within the first
10 min. However, in a larger period of time, protein molecules are desorbed from the
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interface due to the increase of air bubble sizes, a condition that leads them to interact
with other desorbed molecules forming new aggregates. The aggregation phenomenon is
even more pronounced within sonicated proteins because of the higher degree of exposed
hydrophobic groups. This mechanism drastically reduces protein stability effect at the
surface, reducing the overall FS values after a period of 20 min [10,24].

3.5.3. Liquid Fraction (LF)

LF represents the water fraction trapped in the Plateau border between air bubbles [1].
During the time, gravitational forces cause the drainage of water from the borders resulting
in a gradual collapse of the foam. Monitoring LF changes over time therefore can assess
protein capacity of trapping water and an overall evaluation of foam stability. LF values
were visually monitored over a period of time of 90 min for each sample and are hereby
presented as the average of three replicates. LF values for FG, PPI and MIX are presented
in Figure 5. We can observe that US treatment decreased LF percentages of FG and PPI
samples after 90 min, going from 8.0 to 5.33% and from 8.67 to 2.0%, respectively. On the
other hand, sonicated MIX sample showed a value of 9.33%, greater than 2% compared to
the untreated one. Generally, all the samples tent to 0% as expected, decreasing rapidly in
the firsts 20 min and steadily for the rest of the time. The obtained results are in general
accordance with the study conducted by Morales et al. [23] where US were employed on
soy protein isolate in an attempt of modifying their foaming functionalities. Even for soy
proteins, it was not observed a significant change of liquid drainage from a foam after US
treatment. However, sonicated samples showed a slight increase in the drainage velocity,
and thus a faster decrease of LF %, as occurred in FG and PPI samples of this study.
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Figure 4. FS (%) over time (min) for (A) FG (� untreated, � treated), (B) PPI (� untreated, � treated)
and (C) MIX (� untreated, � treated). Values are here reported as the average of three replicates and
their standard deviation is shown in the error bars.
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Figure 5. LF (%) over time (min) for (A) FG (� untreated, � treated), (B) PPI (� untreated, � treated)
and (C) MIX (� untreated, � treated). Values are here reported as the average of three replicates and
their standard deviation is shown in the error bars.

3.5.4. Turbiscan Tower

Immediately after the whipping process, FG, PPI and MIX foams were transferred
into a 55 mm high tube and loaded into the Turbiscan Tower instrument. In particular, the
two-phase separation occurs, where the drained liquid drops to the bottom whereas the
foam stays at the top. Samples were run during 90 min, the same period of time considered
by the visual analysis of their foaming properties. Over the time, 60 scans were performed
(1 every 1.5 min) measuring the backscattering value (BS) all over the height of the tube. BS
values over time, as obtained from the instrument, are presented in Figure S3.

BS% is caused by air bubbles of the foam. BS% value decrease over time due to foam
aging and its gradual collapse. Foam collapse is mainly described by two effects: liquid
drainage and bubbles coalescence. Liquid drainage effect is represented by the continuous
shift of BS peak over the height of the tube sample, while coalescence is described by
the steady decrease of BS% value. Both of these effects are influenced by the size of the
air bubbles. Over time, bubbles tend to coalesce together and their size increase until it
reaches the size limit. Over this limit the bubble bursts and the liquid that was trapped is
now released, generating a drainage phase at the bottom and decreasing BS%. Turbiscan
software, based on the Mie equation, allows the automatic computation of mean diameter
of air bubbles from the BS level on the foam phase. The results are presented in Figure 6.

All of the samples start with a similar mean diameter, generally over 115 µm, and
during the period of time considered they evolve in a different way. In particular, FG
both untreated and sonicated increase rapidly in bubble size until they burst around
30 min with a diameter above 500 µm. On the other hand, PPI and MIX samples present a
similar trend: they steadily increase their mean diameter, overcoming FG limit size and
reaching a size around 600 µm, without bursting over the 90 min considered. Furthermore,
we can observe that the US treatment changed the evolution of the bubbles size of FG
and PPI samples, by increasing their diameter. In particular, it caused the collapse of FG
sonicated sample earlier than the untreated one. Nevertheless, this change did not cause
the earlier burst for sonicated PPI, which maintained a good stability over time. Regarding
MIX samples, the US treatment did not change significantly their behaviour and showed
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the same evolution over time. The results are overall in agreement with the visual analysis
on foaming properties. Especially with FS from which it results that FG samples stability
constantly decreases with foam aging, here shown with the bubbles burst, and the US
treatment even decreased it. While PPI and MIX samples reached a good stability of the
foam and the US treatment did not improve it significantly.
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Figure 6. Bubble mean diameter (µm) evolution over time (min) of FG (� untreated, � treated), PPI
(� untreated, � treated) and MIX (� untreated, � treated).

3.6. Confocal Laser Scanning Microscopy (CLSM)

CLSM was employed to evaluate the distribution and behaviour of proteins at the
A-W interface and to better understand foam microstructure. However, due to the relative
instability of FG foams, only PPI and MIX samples were analyzed by this technique. Indeed,
FG foams drained too much liquid into the sample well, covering all of the air bubbles and
hiding them from the microscope vision.

From the movies recorded by the instrument, frames of the sample bubbles were
collected and Figure 7, was designed. From Figure 7, it can be clearly seen the fluorescent
film layer made from protein aggregates, as suggested by DLS measurements. Ultimately,
the protein layer was confirmed with the image comparison with a bathroom soap foam,
free of proteins in its composition. PPI and MIX foam frames were then compared and
no significant difference was seen between untreated and sonicated proteins. Moreover,
MIX protein layers did not differ from PPI, suggesting that pea proteins only contributed
to the film formation when mixed with fish proteins, giving a similar result to PPI foam.
Therefore, it was not possible to detect an interaction between FG and PPI aggregates at the
A-W interface.
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Figure 7. CLSM images of PPI (A,B) and MIX (C,D) samples. To discriminate the fluorescent protein
layer around each air bubble, a comparison with soap bubbles with no protein content (E) has been
carried out.
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On the contrary, Jarpa-Parra et al. [25] employed CLSM on foams stabilized by legumin-
like protein and polysaccharides and the technique succeed to visualize an interaction
between the two biopolymers due to different fluorescent excitation wavelengths. The
authors concluded that the interaction was allowed by the opposite charges of the polymers
and the formation of weak electrostatic attractions between them.

3.7. Interfacial Tension (IFT)

IFT at the A-W interface was measured with the pendant drop method. The instrument
was calibrated monitoring the IFT of water before measure. IFT values as a function of
time of FG, PPI and MIX solutions is presented in Figure 8. After 1000 s we can observe
a decrease only for FG samples after US treatment. Probably this could be caused by the
different protein size of FG and PPI. In addition, FG stabilized at 52.2 ± 0.3 mN/m whereas
PPI and MIX present stable values at 48.9 ± 0.1 mN/m and 47.2 ± 0.2 mN/m. Therefore,
combining the two proteins allowed to reach the lowest IFT values. A similar study was
realized by Xiong et al. [10]. The authors applied 30 min of US treatment at different
amplitudes (30, 60, 90%) and observed a general decrease of IFT values for sonicated PPI
when compared to control. These results could be explained by the improved affinity of
PPI to the dispersed phase, as more hydrophobic regions were exposed after the sonication.
Indeed, an increase in hydrophobicity can result in a reduction of the energy barrier at
the A-W interface, allowing a facilitated adsorption [26]. In our study, after 5 min of
treatment, no significant differences were observed for both PPI and MIX samples when
compared to their controls. Perhaps the treatment did not last enough to increase the
exposed hydrophobic regions of PPI aggregates and thus to change the rate adsorption
at the interface. Moreover, as explained by ζ-potential values, the US treatment increased
surface charges of both PPI and MIX samples resulting in higher electrostatic barriers at the
A-W interface and thus causing the decrease of their adsorption rate [27].
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4. Conclusions and Perspectives

The interaction between FG and PPI in solution and at A-W interface, before and
after US treatment was investigated. We focused on bulk rheology and the interfacial
tension contribution of the protein solutions and then we evaluated the respective foaming
properties. The treatment was responsible for a viscosity decrease of both FG and PPI
samples, whereas MIX showed the same flow properties, in between FG and PPI. IFT



Foods 2022, 11, 659 14 of 15

value at the A-W interface of the solutions revealed that US treatment only affected FG
proteins while PPI and MIX did not show a significant change. However, lower IFT values
were obtained when the proteins were combined. Regarding the foaming properties, four
main parameters were evaluated: foam capacity (FC), foam stability (FS), liquid fraction
(LF) and bubble size evolution over time. Results showed that this specific ultrasound
treatment (275 W, 5 min) only improved FC of FG while PPI and MIX were not significantly
affected. FS was not improved by the sonication for FG and PPI, while MIX samples had
the highest FS values during all the tests conducted, suggesting a possible interaction and
improvement in stabilizing the foam system compared to the single protein foams. In
addition, US allowed MIX sample to have higher LF values than its control meaning it
could slow the liquid drainage and the foam to dry over the time, while FG and PPI on
the other hand slightly decreased in value with the treatment. In the end, bubble size
evolution over time confirmed the better stability achieved by both PPI and MIX while FG
bubbles rapidly grew in size until they busted, causing the foams to collapse. Moreover, US
treatment not only did not improve stability of FG samples but caused an earlier collapse of
their foams. Based on these considerations we can conclude that the specific US treatment
employed cannot significantly improve these protein sources foaming properties. Overall,
MIX samples presented the most encouraging interfacial properties, improving slightly the
characteristics of PPI only, as if PPI and FG had developed a weak interaction between them.
To better inspect a possible interaction, a visual analysis of the protein layer around each air
bubble in foam was employed using CLSM, but unfortunately, no differences were noticed
between PPI and MIX layers. Further investigations are therefore needed to demonstrate
this possible interaction between FG and PPI. In addition, different US treatments could be
applied to the samples as presented by Xiong et al., 2018 [10], changing the combination of
power and time. In fact, the treatment submitted in this study seemed to be too weak to
significantly affect PPI and MIX behavior at the A-W interface. Finally, CLSM could also
be employed to calculate the thickness of the protein layer and the aggregates adsorption
ratio at the A-W interface.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11050659/s1, Figure S1: Calibration line of PPI supernatant soluble protein content
(%). 5 different starting concentrations were analysed by Dumas method after the removal of the
insoluble part, Figure S2: Viscoelastic properties for all the protein solutions at a frequency range
between 1–10 Hz. For all the graphs, elastic modulus (G′) is represented in orange squares while
viscous modulus (G”) is represented in blue dots, Figure S3: BS values (%) of sonicated PPI over the
height of the tube and over time as reported by the instrument Turbiscan Tower. On the right side,
scan time is reported with a gradient of colors, Table S1: Soluble protein content of different starting
solution concentrations.
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