
Review of Derivatives Research (2022) 25:23–46
https://doi.org/10.1007/s11147-021-09180-w

Optimal exercise of American put options near maturity: A
new economic perspective

Anna Battauz1 ·Marzia De Donno2,3 · Janusz Gajda4 ·
Alessandro Sbuelz3

Accepted: 10 June 2021 / Published online: 28 June 2021
© The Author(s) 2021

Abstract
The critical price S∗ (t) of an American put option is the underlying stock price level
that triggers its immediate optimal exercise. We provide a new perspective on the
determination of the critical price near the option maturity T when the jump-adjusted
dividend yield of the underlying stock is either greater than or weakly smaller than
the riskfree rate. Firstly, we prove that S∗ (t) coincides with the critical price of the
covered American put (a portfolio that is long in the put as well as in the stock).
Secondly, we show that the stock price that represents the indifference point between
exercising the covered put and waiting until T is the European-put critical price,
at which the European put is worth its intrinsic value. Finally, we prove that the
indifference point’s behavior at T equals S∗ (t)’s behavior at T when the stock price
is either a geometric Brownian motion or a jump-diffusion. Our results provide a
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thorough economic analysis of S∗ (t) and rigorously show the correspondence of an
American option problem to an easier European option problem at maturity .

Keywords American options · Valuation · Optimal exercise · Critical price ·
European options

JEL Classification C02 · G12

1 Introduction

American options are important derivatives with a variety of applications in financial
economics including perpetual rights (e.g. Henderson and Hobson (2008)), portfolios
of rights (e.g.Henderson et al. (2014)), corporate security valuation (e.g.Black andCox
(1976);Geske (1977), andVidalNunes (2011)), and contractswith complex embedded
decisions (e.g. Gerer and Dorfleitner (2018), and Battauz et al. (2020)). There is a
vast literature on the close-to-maturity valuation of finite-maturity American options
(e.g. Barles et al. 1995; Pham 1997; Evans et al. 2002; Lamberton and Villeneuve
2003; Detemple 2005; Lamberton and Mikou 2008; Bouselmi and Lamberton 2016;
Li 2010a, b and Cheng and Zhang 2012). A finite-maturity American put option on
a stock requires optimal early exercise as soon as the current underlying stock price
S (t) is not above an endogeneous time-varying barrier called the critical price S∗ (t).
If the riskfree rate dominates the jump-adjusted dividend yield of the underlying stock,
S∗ (t) converges to the strike price K as t approaches thematurity date T . Remarkably,
if the jump-adjusted dividend yield is greater than the riskfree rate, the American-put
critical price at maturity displays a discontinuity as S∗ (t) converges to a limit strictly
smaller than K = S∗(T ). Given a geometric Brownianmotion for the underlying stock
price, Ingersoll (1998) offers an intuitive indifference-point argument to economically
assess such a discontinuity. Similar arguments can be found in Kim and Yu (1996)
and Huang et al. (1996).

We contribute by providing a new perspective on the determination of the critical
price atmaturitywhen the jump-adjusted dividend yield is either greater than orweakly
smaller than the riskfree rate r . The jump-adjusted dividend yield is the sum of the
stock’s payout rate q, i.e. the classical dividend yield, and of the stock’s expected
return due to upward jumps (see Theorem 4.2). In the absence of jumps, the jump-
adjusted dividend yield equals q. Our method brings in exactness and validity across
two relevant stock price models without giving away financial intuition. We follow
Ingersoll (1998) in employing an indifference-point analysis on the optimal exercise
of a covered American put, which here is taken to be a portfolio that is long in the
put option as well as in one underlying share. However, our novel approach is more
rigorous, as it performs a careful study of the early exercise premium, and it applies to
a jump-diffusion setting. Additionally, our approach can justify the Ingersoll (1998)
argument as one of its implications.

In a Black and Scholes (1973) setting, Ingersoll (1998) claims that S∗ (t) near
maturity (at t = T − dt) coincides with the indifference point where the payoff from
the covered put immediate exercise and the present value of the covered put terminal
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Optimal exercise of American put options... 25

cashflow coincide. In particular, if you exercise the coveredAmerican put at t = T−dt
when S (t) = x to sell the stock, you get

(K − x)+ + x =
⎧
⎨

⎩

K if K > x

x if K ≤ x

On the contrary if you continue until T = t + dt , the value in t of the cashflow you
will get in T is approximately

Ke−r dt
︸ ︷︷ ︸

value at t of K
obtained at T = t + dt
from the exercise of the

covered put

+ xqdt
︸ ︷︷ ︸

dividends earned at t
for holding the stock from t to T = t + dt

when x is smaller than K . According to Ingersoll, given x < K , the critical price
S∗ (t) = x∗ is the indifference point x = x∗ such that the two cashflows coincide
(please note that x∗ is a function of dt), namely x∗ is the solution of

K = Ke−r dt + x∗qdt (1.1)

Equation (1.1) compares K , the immediate payoff from the exercise of the in the
money covered put at t = T − dt, to the value in t of the cashflow you will get in T
provided that the option closes at maturity in the money, Ke−r dt + xqdt . The right
hand side term in equation (1.1) is the present value at t = T − dt of the continuation
value of the covered put option, without risk-adjustment.

This equation is financially intuitive but inaccurate: it cannot be related to the
standard definition of the value of an American option and of the critical price. The
argument suggested by Ingersoll requires that the optimal policies (namely, optimal
exercise date and critical price S∗ (t)) for the American covered and uncovered put
options coincide at maturity. Such identification is not trivial, because the American
put option and the covered American put option have different payouts, since the latter
includes a long position in the underlying stock as well as the implied dividend stream.

Firstly,we prove that S∗ (t) coincideswith the critical price of the coveredAmerican
put during the whole life of the options under the mere assumption of Markovian
dynamics for the underlying stock price. Secondly, we show that the underlying price
that represents the indifference point between exercising the covered put and waiting
until maturity is the European-put critical price, at which the European put is worth
its intrinsic value. Finally, we prove that its behavior at maturity is the same as the
American-put critical price when the underlying stock price follows either a lognormal
diffusive dynamics or a jump-diffusive dynamics.

Our findings economically and technically add to the rich literature on the close-
to-maturity patterns of the critical price. We are the first to validate the computational
equivalence of an American option problem to an easier European one at maturity
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26 A. Battauz et al.

under the geometric Brownian motion and jump-diffusion models. Since the non-
inclusion of the early exercise premium makes calculations much easier, our results
are auspicious for the investigation of the possibly discontinuousAmerican-put critical
price at maturity under more complicated models.

The paper is organized as follows. In Section 2, we prove that the optimal exercise
policies of the covered and uncovered puts are identical. In Section 3, we show that
indifference-point argument characterizes the critical price of the European put, whose
existence and uniqueness are also proved. In Section 4, we analyze the behavior of
the European-put critical price both in a geometric Brownian motion model and in a
jump-diffusion model, showing that it mimics at maturity the behavior of the critical
price of an American put option. Section 5 concludes.

2 The critical price of the covered put

Let (S (t))0≤t≤T be the price of a financial asset in an arbitrage-free market modeled
as a a filtered probability space

(
�, (Ft )0≤t≤T ,F ,P

)
, where we assume that P is

the risk-neutral probability and (Ft )0≤t≤T is the filtration generated by (S (t))0≤t≤T ,
properly completed as to satisfy the usual assumptions. The risk-neutral dynamics of
S (t) is given by

S (t) = S0e
(r−q)t+Lt

where r is the riskless interest rate, q the dividend yield and Lt a real Lévy process,
such that the process e−(r−q)t S (t) is a martingale. For sake of simplicity, we denote
by Et the conditional expectation with respect to Ft .

The value of an American put option written on the asset S, with strike price K and
maturity T is

V (t) = ess sup
t≤τ≤T

Et

[
e−r(τ−t) (K − S(τ ))+

]

= Et

[
e−r(τ∗−t)

(
K − S(τ ∗)

)+]
= v(t, S(t)) (2.1)

where τ ∗ is the optimal exercise policy,

v(t, x) = sup
0≤�≤T−t

E

[

e−r�
(
K − x · e(r−q)�+L(�)

)+]

and the last equality in (2.1) is due to the Markov property of Lévy processes. When1

r ≥ 0, it is well known that the free boundary consists of the graph of the critical
price

S∗(t) = sup {x ≥ 0 : v(t, x) = K − x} ≤ K , (2.2)

1 When interest rates are negative a double free boundary may appear. Battauz et al 2012; 2015; 2020 show
that in this case, under a diffusive dynamics, the upper free boundary is increasing, continuous and tends
to the strike price at maturity, whereas the lower free boundary is decreasing, continuous everywhere but
at maturity, where it exhibits a discontinuity. The double continuation region in the Lévy model has been
investigated for the perpetual case by De Donno et al. (2020).
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Optimal exercise of American put options... 27

and the option is optimally exercised at t if S(t) ≤ S∗(t).
A covered put option is the strategy of holding the underlying stock S and the

American put on S. Thus the optimal exercise policy τ ∗
c is the one the maximizes the

expected gain due to the immediate payoff gained at τ ∗
c , namely

(
K − S(τ ∗

c )
)++S(τ ∗

c )

and to the dividend stream gained until τ ∗
c . The dividends payed between s and s+ds

are S(s)qds. Investing the dividends instantaneosly at the risk free rate r we get at τ ∗
c

the (capitalized) dividend stream

τ∗
c∫

0

S(s)er(τ
∗
c −s)qds.

Thus the value of the covered option V c is given by

V c (t) = ess sup
t≤τ≤T

Et

⎡

⎣e−r(τ−t)

⎛

⎝(K − S(τ ))+ + S(τ ) +
τ∫

0

S(s)er(τ−s)qds

⎞

⎠

⎤

⎦

(2.3)
and τ ∗

c is the stopping time that reaches the sup in (2.3). It is not obvious that τ ∗
c

coincides with the optimal stopping time for the American option τ ∗ in (2.1): our next
aim is to prove that indeed the two optimal exercise policies coincide. Let G be the
gain process from holding 1 unit of S. In discounted terms G̃ is

G̃ (t) = S̃(t) +
t∫

0

S̃(s)qds

Note that G̃ is a martingale, since

G̃ (t) = G̃ (0) +
∫ t

0
e−qsd

(
eqs S̃(s)

) = G̃ (0) +
∫ t

0
e−qsd

(
e−(r−q)s S(s)

)
.

In the next proposition, we prove that the value of the American covered put is given
by the sum of the value of the American put and the gain of holding the underlying
asset and, as a consequence, the optimal exercise policies of the American covered
and uncovered put options coincide.

Proposition 2.1 When q ≥ 0, we have that V + G = V c and τ ∗
c = τ ∗.

Proof Denote with (̃·) the discounted values, e.g. Ṽ (t) = V (t) e−r t . It is well known
that Ṽ as in (2.1) is the smallest supermartingale dominating the immediate discounted
put payoff X̃ (t) = (K − S (t))+ e−r t ≥ 0 (Theorem 2.15 in El Karoui 1981). When
q ≥ 0, the discounted payoff of the covered put is always non negative

X̃ c (t) = X̃(t) + S̃(t) +
t∫

0

S̃(s)qds ≥ 0.

123



28 A. Battauz et al.

Therefore Theorem 2.15 in El Karoui (1981) also ensures that Ṽ c in (2.3) is the
smallest supermartingale dominating X̃ c. We use these two properties to prove our
theorem. The process Ṽ c − G̃ is a supermartingale as well, since G̃ is a martingale.
Moreover Ṽ c − G̃ dominates X̃ , because

Ṽ c (t) − G̃ (t) ≥ X̃ c (t) − G̃ (t) =
⎛

⎝X̃ (t) + S̃ (t) +
t∫

0

S̃(s)qds

⎞

⎠ − G̃ (t) = X̃ (t) .

Since Ṽ is the smallest supermartingale dominating X̃ , we have Ṽ (t) ≤ Ṽ c (t)−G̃ (t)
for all t , hence

Ṽ (t) + G̃(t) ≤ Ṽ c(t) for all t .

We have now to prove the opposite inequality. To this aim, note that the process
Ṽ + G̃ is the sum of the supermartingale Ṽ and the martingale G̃ and therefore a
supermartingale as well. Moreover

Ṽ (t) + G̃ (t) ≥ X̃ (t) + S̃(t) +
t∫

0

S̃(s)qds = X̃ c (t) .

Therefore
Ṽ (t) + G̃ (t) ≥ Ṽ c (t) for all t

because Ṽ c is the smallest supermartingale dominating X̃ c. This proves that Ṽ (t) +
G̃ (t) = Ṽ c (t) . This equality implies that

τ ∗
c = inf

{
t : V c (t) = Xc (t)

}

= inf
{
t : V (t) + G (t) = Xc (t)

}

= inf {t : V (t) + G (t) = X(t) + G (t)}
= inf {t : V (t) = X(t)} = τ ∗.

��

Remark 2.1 The previous proposition holds under no-arbitrage independently on the
dynamics of the underlying S.

In the next proposition we exploit the Markov property of the Lévy process to show
that the value of the American covered put is a deterministic function of t , and current
levels of G and S. We also prove that it is additive with respect to the current dividend
stream, property which turns out fundamental in proving that the critical prices of the
covered and uncovered put coincide.
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Proposition 2.2 The discounted value of the covered put is

Ṽ c (t) = ess sup
t≤τ≤T

Et
[
e−rτ (K − S(τ ))+ + G̃(τ )

]

= Et

[
e−rτ∗

c
(
K − S(τ ∗

c )
)+ + G̃(τ ∗

c )
]

= ṽc(t, S(t),G (t))

where

ṽc(t, x, g) = e−r t sup
0≤�≤T−t

E

[

e−r�
(
K − x · e(r−q)�+L(�)

)+ + g + x f (�)

]

(2.4)
with

f (�) = e−q�+L(�) − 1 +
�∫

0

e−qs+L(s)qds.

In addition, for all t ∈ (0, T ) , g̃ = ge−r t and x̃ = xe−r t , we have that

ṽc(t, x, g) = ṽc(t, x, 0) + g̃, (2.5)

Proof We can write

G̃ (τ ) = G̃ (t) + S̃(τ ) − S̃(t) +
τ∫

t

S̃(s)qds

Letting � = τ − t, G̃ (t) = g̃ = ge−r t and S̃(t) = x̃ = xe−r t , we have

G̃ (τ ) = g̃ + x̃
(
e−q(τ−t)+L(τ )−L(t) − 1

)
+ x̃

τ∫

t

e−q(s−t)+L(s)−L(t)qds,

and thanks to the independence and stationarity properties of the increments of a Lévy
process, we can write

G̃(τ )
∣
∣Ft

∼ g̃ + x̃
(
e−q(τ−t)+L(τ−t) − 1

)
+ x̃

τ∫

t

e−q(s−t)+L(s−t)qds

= g̃ + x̃
(
e−q�+L(�) − 1

)
+ x̃

�∫

0

e−qθ+L(θ)qdθ

= g̃ + x̃ f (�) = e−r t (g + x f (�))

by changing the variable of integration θ = s − t . Additivity follows immediately
from (2.4). ��
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The critical price at t of the covered put option is

S∗
c (t, g) = sup

{
x ≥ 0 : ṽc(t, x, g) = (

e−r t K − x̃
)+ + g̃

}

From the abovedefinition,which is the analogous of definition (2.2) for the (uncovered)
put option, we see that S∗

c depends on both t and g. On the other hand, the additivity
of the discounted value of the American put option with respect to g, implies that S∗

c
is independent of g, because

S∗
c (t, g) = sup

{
x ≥ 0 : ṽc(t, x, g) = (

e−r t K − x̃
)+ + g̃

}

= sup
{
x ≥ 0 : ṽc(t, x, 0) + g̃ = (

e−r t K − x̃
)+ + g̃

}

= sup
{
x ≥ 0 : ṽc(t, x, 0) = (

e−r t K − x̃
)+}

= S∗
c (t, 0) = S∗

c (t).

Thiswill allows us to identify the critical prices of the covered anduncoveredAmerican
put options.

Theorem 2.3 (Critical prices of covered and uncovered put coincide). For all t ∈
(0, T ) we have that S∗

c (t) = S∗(t).

Proof From Proposition 2.1 we have that V + G = V c, which implies

ṽ(t, S(t)) + G̃ (t) = ṽc(t, S(t),G (t)) for all t, S(t),G(t)

namely ṽ(t, x) + g̃ = ṽc(t, x, g) for all t, x, g. Equation (2.5) implies

ṽ(t, x) + g̃ = ṽc(t, x, 0) + g̃ for all t, x, g

leading to
ṽ(t, x) = ṽc(t, x, 0) for all t, x

And therefore

S∗
c (t) = S∗

c (t, 0) = sup
{
x ≥ 0 : ṽc(t, x, 0) = (

e−r t K − x̃
)+}

= sup
{
x ≥ 0 : ṽ(t, x) = (

e−r t K − x̃
)+}

= sup
{
x ≥ 0 : v(t, x) = (K − x)+

} = S∗(t).

��
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3 The critical price of the European put option

In this section, we try to apply rigorously Ingersoll’s argument in order to find the
critical price of the covered put option. The idea is to compare K , the immediate
payoff from the exercise of the in/at the money covered put at t = T −dt, to the value
in t of the cashflow you will get in T provided that the option closes at maturity in the
money, Ke−r dt + xqdt (see Eq. (1.1)). Formally, if one waits till maturity to exercise
the option, the present value at time T − dt is the value of the corresponding covered
European put option plus the present value of the gain from dividends, that is

e−rdt
ET−dt

[

(K − S (T ))+ + S (T ) +
∫ T

T−dt
er(T−s)S (s) qds

]

. (3.1)

We consider the indifference point S(T − dt) = x that renders expression (3.1) equal
to K . The following proposition shows that such an indifference point is also the
critical price of the European put option, defined as the underlying stock price level
x∗ such that the European put value coincides with the intrinsic value.

Proposition 3.1 Let ε > 0 be the time to maturity. The indifference point x(ε) =
S(T − ε) which solves equation

K = e−rε
ET−ε

[

(K − S (T ))+ + S (T ) +
∫ T

T−ε

er(T−s)S (s) qds

]

(3.2)

is the solution of
K − x = p (x, ε) (3.3)

where p(x, ε) denotes the price at T −ε of an European put option on S with maturity
T and strike price K , when S(T − ε) = x.

Proof Equation (3.2) can be written as

K = p (x, ε) + e−rε
ET−ε

[

S (T ) +
∫ T

T−ε

er(T−s)S (s) qds

]

.

Since

e−rε
ET−ε

[

S(T ) +
∫ T

T−ε

er(T−s)S(s)qds

]

= ET−ε

[
e−rεS(T )

]

+
∫ T

T−ε

ET−ε

[
e−r(s−(T−ε))S(s)

]
qds

= e−qεS(T − ε)

+S(T − ε)

∫ T

T−ε

e−q(s−(T−ε))qds

= e−qεx + x
(
1 − e−qε

) = x

the claim follows. ��
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At a first glance, Eq. (3.3) seems different from Ingersoll’s Eq. (1.1). However,
exploiting the put-call parity, we have that p (x, ε) = c (x, ε) − xe−qε + Ke−rε

where c(x, ε) denotes the price at T −ε of an European call option on S with maturity
T and strike price K , when S(T − ε) = x . Simple algebra shows then that Equation
(3.3) is equivalent to

K = Ke−rε + xqε + c(x, ε) + xR(ε) (3.4)

with R(ε) = 1 − e−qε − qε. This equation resembles Ingersoll’s equation: it differs
from it only for the last two terms in the right-hand side which both go to 0 as maturiy
approaches, if the put option is in the money (hence the call option is out of the
money). More precisely, the term R(ε) goes to 0 faster than ε. In the next section
we will analyze the behavior of the term c(x, ε) close to maturity in two cases where
the price of the call option is given in closed form: when the price of the asset has a
lognormal dynamics and when it evolves according to a jump-diffusion process.

The following lemma shows that Eq. (3.3), or equivalently (3.4) admits a unique
solution2 for every ε > 0.

Lemma 3.1 For every ε > 0, Eq. (3.3) admits a unique solution x = x(ε) ∈ (0, K ].

Proof Define ϕ(x) = p(x, ε) + x . The function ϕ is continuous, differentiable and
strictly increasing on (0, K ], since ϕ′(x) = 1 + px (x, ε) > 0 where px = ∂ p

∂x is the
delta of the put option, which is always greater than -1. Moreover limx→0+ ϕ(x) <

K ≤ ϕ(K ). Indeed limx→0+ ϕ(x) = limx→0+ p(x, ε) = Ke−rε < K . On the other
handϕ(K ) = p(K , ε)+K ≥ K . Hence necessarily Eq. (3.3) admits a unique solution.

��

We have just shown that the indifference price identified by Ingersoll is essentially
the critical price of theEuropean option,whose existence is proved in the above lemma.
We want now to show that close to maturity this point is a good approximation for
the critical price of the American option. It is well known that the last is the highest
value for which the continuation value of the option is equal to the immediate payoff.
In fact equation

K − y = v(T − ε, y) (3.5)

admits an interval of solutions (0, y(ε)] ∈ (0, K ], where y(ε) is the critical price.
The right hand side of Eq. (3.5) can be written as p(y, ε) + 	(y, ε) where 	(y, ε) =
v(T − ε, y) − p(y, ε) is the early exercise premium. Since 	(y, ε) ≥ 0, we see that
y(ε) ≤ x(ε) ≤ K for all ε. Moreover, Lamberton and Mikou (2008) proved that
that y(ε) admits a limit y∗ ∈ (0, K ] when ε goes to 0, since it is an nondecreasing
function of current time. Assuming that x(ε) admits a limit as ε → 0, we can see that
it converges to the same limit as y(ε).

2 Lamberton (1995) shows a similar result for the diffusive case and no dividends.
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Optimal exercise of American put options... 33

Indeed, equations K − x(ε) = p(x(ε), ε) and K − y(ε) = p(y(ε), ε)+	(y(ε), ε)
imply that

x(ε) − y(ε) = p(y(ε), ε) − p(x(ε), ε) + 	(y(ε), ε)

= −px (x(ε), ε) [x(ε) − y(ε)] − pxx (z(ε), ε)
(x(ε) − y(ε))2

2
+ 	(y(ε), ε)

where y(ε) ≤ z(ε) ≤ x(ε). Hence

[

1 + px (x(ε), ε) + pxx (z(ε), ε)
(x(ε) − y(ε))

2

]

[x(ε) − y(ε)] = 	(y(ε), ε)

Since the early exercise premium 	(y(ε), ε) tends to 0 as ε → 0, and, in addition,
1 + px (x(ε), ε) ≥ 0 and pxx (z(ε), ε) > 0 then [x(ε) − y(ε)] must tend to 0 as well.

Figure 1 shows the behavior of the American (black dots) and European (grey
circles) critical prices when the underlying follows a geometrical Brownian motion,
for both cases r ≥ q and r < q. The American critical price has been computed via
binomial approximation with 125 time steps. The grey diamonds represent the upper
and the lower branches of the binomial tree starting at t = 0 at S(0) = K = 1. The
European critical price has been obtained numerically solving Eq. (3.3). Near maturity
T the American and European critical prices are indistinguishable in both cases r ≥ q
and r < q. In the latter case, the European and the American critical prices notably
converge at maturity to K r

q < K .
In the next section we provide a simple derivation of limε→0 x(ε), which allows

us to retrieve the well-known results for the limit of the critical price of the American
option in the Black-Scholes and the jump-diffusion models. Our considerations may
lead to use this approach in more general models.

Fig. 1 American (black) vs European (grey) critical price (the stock price is a geometric Brownian motion)
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4 Critical price at maturity

In this section, we analyze the indifference point of Ingersoll’s equation, x(ε) close
to maturity, both in the Black-Scholes model and in the more general jump-diffusion
model.

In what follows, we assume3 that limε→0+ x(ε) exists. Being x(ε) ∈ (0, K ] this
limit will be either K or x∗ < K . Theorems 4.1 and 4.2 will show that the limit
coincide with the critical price at maturity of the corresponding American option.

4.1 The diffusive case

Assume that Lt = σWt − σ 2

2 t , where (Wt )0≤t≤T is a standard brownian motion.
In other words, we consider the Black-Scholes model with continuous-dividend pay-
ments. The next lemma shows the different behavior of the European call option
depending on whether the option at maturity remains out of the money or reaches the
at the money-level. The proof is rather technical and can be found in the appendix.

Lemma 4.1 Let x(ε) be the solution of Equation (3.3), or equivalently, (3.4). The
function x(ε) is continuous and differentiable on (0, T ). Moreover:

(i) If limε→0+ x(ε) = K, then limε→0+ c(x(ε),ε)
ε

= K (r − q) .

(ii) If limε→0+ x(ε) = x∗ < K , then limε→0+ c(x(ε),ε)
ε

= 0.

We are now ready to characterize the behavior at maturity of x(ε), when r ≥ q and
when r < q. Note in particular, that in the last case, since limε→0

c(x(ε),ε)
ε

= 0, we
recover Ingersoll’s equation.

Theorem 4.1 1. If 0 ≤ q ≤ r then limε→0+ x(ε) = K.
2. If q > r then then limε→0+ x(ε) = x∗ = K r

q < K

Proof 1. From Equation (3.4), we obtain

x(ε)

(

q + R(ε)

ε

)

= K − Ke−rε

ε
− c(x(ε), ε)

ε
(4.1)

Passing to the limit ε → 0, and denoting x∗ = limε→0+ x(ε), we have

x∗q = r K − lim
ε→0

c(x(ε), ε)

ε

We know that x∗ ≤ K . Assume by contradiction that x∗ < K . Then the previous
lemma implies that limε→0

c(x(ε),ε)
ε

= 0, and therefore x∗q = r K , leading to

x∗ = K
r

q
≥ K ,

3 In Appendix B we show numerically that x(ε) is monotone in a neighborhood of 0, and thus x(ε)
converges as ε → 0.
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which is a contradiction. Hence x∗ = K .

2. Suppose by contradiction that limε→0 x(ε) = x∗ = K . Our previous lemma yields
limε→0

c(x(ε),ε)
ε

= K (r − q) < 0, which is an absurd (because the limit of the

positive function c(x(ε),ε)
ε

≥ 0 cannot be negative).
��

4.2 The jump diffusion case

Assume now that

L(t) =
(

−σ 2

2
− mλ

)

t + σW (t) +
N (t)∑

j=1

Uj

where (W (t))0≤t≤T is a standard brownian motion, N is a Poisson process with inten-
sity λ and Uj are i.i.d random variables with distribution μ such that E

[
eU j

] =∫
euμ(du) = 1 + m. Equation (3.4) is still valid but in this case, the price of the call

options is given by

c(x, ε) =
+∞∑

n=0

e−λε (λε)n

n! cn(x, ε)

where cn(x, ε) = ET−ε

[
e−rε(S(T ) − K )+|S(T − ε) = x, N (T ) − N (T − ε) = n

]

denote the price at time T − ε of a European call option on S with maturity T , strike
price K , when there are exactly n jumps in the time interval [T − ε, T ]. In analogy
with the diffusive case, we analyze the behavior of the price of the call option when
maturity approaches. The proof of the lemma can be found in the Appendix.

Lemma 4.2 Let x(ε) be the solution of Equation (3.3), or equivalently, (3.4). The
function x(ε) is continuous and differentiable on (0, T ). Moreover:

(i) lim
ε→0

1

ε

∑

n≥2

e−λε (λε)n

n! cn(x(ε), ε) = 0.

(ii) If limε→0+ x(ε) = x∗ ≤ K, then lim
ε→0

λc1(x(ε), ε) =
∫

(x∗ey − K )+ν(dy)

where ν(dy) = λ μ(dy).

(iii) If limε→0+ x(ε) = x∗ < K , then lim
ε→0

c0(x(ε), ε)

ε
= 0.

Otherwise, if limε→0+ x(ε) = K, then lim
ε→0

c0(x(ε), ε)

ε
= K

(
r − q − ∫

(ey − K )+ν(dy)
)

In this case the price of the out of the money call is not negligible because jumps
may cause the call to be in the money at some time between T −ε and T . In particular,
being the time interval very short, the probability of having more than one jump is
really small, but one can have a jump exactly at maturity so that intituively we have
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S (T−) = x and S (T ) ∼ xeU1 . Hence

λe−λεc1(x(ε), ε) ∼ λE
[
(x∗eU1 − K )+

]
= λ

∫

(x∗ey − K )+μ(dy)

=
∫

(x∗ey − K )+ν(dy) as ε → 0.

Given these considerations, we can show that also in the jump-diffusion case, the
behavior at maturity of the critical price of the European put option mimics the behav-
ior of the critical price of the corresponding American put option.4 Importantly, the
limiting behavior of x(ε) depends on the sign of the constant d, defined below as
the difference between the riskfree rate and the jump-adjusted dividend yield, that is
the classical dividend yield q augmented with

∫
(ey − 1)+ν(dy), namely the stock’s

expected return due to upward jumps.

Theorem 4.2 Let r ≥ 0 and d = r − q − ∫
(ey − 1)+ν(dy). Then

1. if d ≥ 0 then limε→0 x(ε) = K.
2. if d < 0 then limε→0 x(ε) = x∗ < K, where x∗ is the unique solution of the

equation

Kr = x∗q +
∫

(x∗ey − K )+ν(dy).

Proof 1. As in the proof of Theorem 4.1 we take the limit as ε → 0 in Eq. (4.1) and
denoting x∗ = limε→0 x(ε) we have

x∗q = r K − lim
ε→0

c(x(ε), ε)

ε

where, by Lemma 4.2 (i) and (ii),

lim
ε→0

c(x(ε), ε)

ε
= lim

ε→0

c0(x(ε), ε)

ε
+

∫

(x∗ey − K )+ν(dy).

Let d ≥ 0 and assume by contradiction that x∗ < K . Then limε→0
c0(xε,ε)

ε
= 0

and Kr = x∗q + ∫
(x∗ey − K )+ν(dy). So, we have

0 ≤ Kd = Kr − Kq − K
∫

(ey − 1)+ν(dy)

= −(K − x∗)q − K

[∫

(ey − 1)+ν(dy) −
∫ (

x∗

K
ey − 1

)+
ν(dy)

]

< 0

which yields a contradiction.

4 In fact, Theorem 4.1 can be seen as a special case of Theorem 4.2.
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2. Given d < 0 , suppose by contradiction that x∗ = K . Then

0 ≤ lim
ε→0

c0(xε, ε)

ε
= Kr − Kq −

∫

(Key − K )+ν(dy) = Kd < 0

which is a contradiction. Hence x∗ < K and limε→0
c0(xε,ε)

ε
= 0. In particular, x∗

solves

Kr = x∗q +
∫

(x∗ey − K )+ν(dy).

��

5 Conclusions

We offer a new perspective on the determination of the critical price of the American
put option at maturity when the jump-adjusted dividend yield of the underlying stock
is either greater than or weakly smaller than the riskfree rate. Our approach is rigorous
without sacrificing financial intuition.

We carefully review the analysis proposed by Ingersoll (1998), who uses an
indifference-point argument to intuitively assess why, under the Black and Scholes
(1973) model, the critical price displays a discontinuity at maturity if the dividend
yield (jumps are absent) is greater than the riskfree rate. His indifference-point argu-
ment is plagued by the exclusion of the early exercise premium.

By showing that the exclusion is acceptable and that the indifference-point argument
can be extended to a jump-diffusive setting, we bring a fresh economical and technical
contribution to the rich literature on the close-to-maturity behavior of the critical prices
related to finite-maturity American options. While there have been several technical
studies of such a behavior in the presence of the early exercise premium under various
settings, we are the first to rigorously corroborate of the economic argument proposed
by Ingersoll (1998), to extend it to a jump-diffusive setting, and to emphasize the
computational equivalence at maturity of an American option problem to a simpler
European option problem under the models we use.

Our findings are propitious for the analysis of the critical price of the American put
option at maturity under richer models, as the possible exclusion of the early exercise
premium greatly simplifies calculations.
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A Proofs

Proof of Lemma 4.1 From Lemma 3.1, we know that x(ε) is the solution to the equa-
tion5 F(x(ε), ε) = 0 where

F (x, ε) = p(x, ε) − (K − x) (A.1)

The implicit function theorem implies that x(ε) is differentiable on (0, T ) and

x ′(ε) = − Fε

Fx
= − pε(x(ε), ε)

1 + px (x(ε), ε)
(A.2)

We first show that, independently by the value of the limit of x(ε),

lim
ε→0

c(x(ε), ε) = 0. (A.3)

To this aim, we recall that the call option price is given by the Black-Scholes formula

c(x, ε) = xe−qεN (d1) − Ke−rεN (d2) (A.4)

where N (z) denotes in this Proof the distribution function of a standard normal random
variable, while

d1 = 1

σ
√

ε

(

ln
( x

K

)
+

(

r − q + 1

2
σ 2

)

ε

)

and d2 = d1 − σ
√

ε. (A.5)

Now, if limε→0 x(ε) = K then d1, d2 → 0, hence N (d1) , N (d2) → 1
2 , and

c(x(ε), ε) = x(ε)e−qεN (d1) − Ke−rεN (d2) → 0 yielding (A.3). On the other
hand, if limε→0 x(ε) = x∗ < K then d1, d2 → −∞, hence N (d1) , N (d2) → 0. and
as a consequence we still have (A.3). This implies that we can apply L’Hopital’s rule
to find

lim
ε→0

c(x(ε), ε)

ε
= lim

ε→0

d
dε
c(x(ε), ε)

1

By the chain rule, we have that d
dε
c(x(ε), ε) = cx x ′(ε) + cε. The derivatives of the

call option price are (from Equation (A.4) )

cx = e−qεN (d1)

since

xe−qεN ′ (d1) = Ke−rεN ′ (d2)
∂d1
∂x

= ∂d2
∂x

, (A.6)

5 For the case r = q, a similar remark can be find in Lamberton and Villeneuve (2003)
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and

cε = −qxe−qεN (d1) + r Ke−rεN (d2) + xe−qεN ′ (d1)
∂d1
∂ε

− Ke−rεN ′ (d2)
∂d2
∂ε

.

Since ∂d1
∂ε

= ∂d2
∂ε

+ σ 1
2
√

ε
, we obtain

cε = −qxe−qεN (d1) + r Ke−rεN (d2) + Ke−rεN ′ (d2) σ
1

2
√

ε
.

Exploiting the put-call parity in the computations of pε and px , we can rewrite x ′(ε)
as

x ′(ε) = r Ke−r ε − x(ε)qe−qε − cε(x(ε), ε)

1 − e−qε + cx (x(ε), ε)
(A.7)

So, we have that (for sake of simplicity, we omit the dependence of x on ε and of cx
and cε on x and ε)

d

dε
c(x(ε), ε) = cx

r Ke−r ε − xqe−qε − cε

1 − e−qε + cx
︸ ︷︷ ︸

x ′(ε)

+ cε

= cxr Ke−r ε − cx xqe−qε + cε(1 − e−qε)

(1 − e−qε) + cx

=
(
r Ke−r ε − xqe−qε

) (
1 − e−qε + cx

) − (1 − e−qε)
(
r Ke−r ε − xqe−qε

) + cε(1 − e−qε)

1 − e−qε + cx

= r Ke−r ε − xqe−qε − (1 − e−qε)
(
r Ke−r ε − xqe−qε + cε

)

1 − e−qε + cx
.

If limε→0 x(ε) = x∗ = K , then cx = e−qεN (d1) → 1
2 , and

εcε = ε

(

−qxe−qεN (d1) + r Ke−rεN (d2) + Ke−rεN ′ (d2) σ
1

2
√

ε

)

∼ K N ′ (d2) σ

√
ε

2

leading to
(1−e−qε)(r Ke−r ε−x(ε)qe−qε+cε)

1−e−qε+cx
∼ K N ′(d2)σ

√
ε
2

0.5 and therefore

lim
ε→0

c(x(ε), ε)

ε

= lim
ε→0

(

r Ke−r ε − x(ε)qe−qε − (1 − e−qε)
(
r Ke−r ε − x(ε)qe−qε + cε

)

1 − e−qε + cx

)

= r K − Kq

so case (i) is proved.
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Assume now that limε→0 x(ε) = x∗ < K . In this case cx = e−qεN (d1) → 0,
and

lim
ε→0

cx
ε

= lim
ε→0

e−qεN (d1)

ε
= lim

ε→0

N (d1)

ε

= lim
ε→0

d
dε
N (d1)

1
= lim

ε→0
N ′ (d1)

(
∂d1
∂x

x ′(ε) + ∂d1
∂ε

)

Now

N ′ (d1)
∂d1
∂ε

= N ′ (d1)
∂

(
1

σ
√

ε
ln

( x

K

)
+

(

r − q + 1

2
σ 2

) √
ε

σ

)

∂ε
∼

1
2
√

π
e− d21

2

√
ε3

→ 0.

To evaluate limε→0 N ′(d1) ∂d1
∂x x

′(ε) we observe that

∂d1
∂x

= 1

xσ
√

ε
.

Moreover, since d2 ∼ 1
σ
√

ε

(

ln

(
x∗

K

))

, we have that

N ′ (d2)√
ε

= 1

2
√

π
e− d22

2
1√
ε

→ 0

which implies

cε = −qxe−qεN (d1)+r Ke−rεN (d2)+Ke−rεN ′ (d2) σ
1

2
√

ε
∼ Ke−rεN ′ (d2) σ

1

2
√

ε
→ 0,

hence

x ′(ε) = r Ke−r ε − xqe−qε − cε

1 − e−qε + cx
∼ r K − xq

qε + cx
.

So

N ′ (d1)
∂d1
∂x

x ′(ε) ∼ 1

2
√

π
e− d21

2
1

xσ
√

ε

r K − xq

qε + cx
∼ e− d21

2
1

xσ
√

ε

r K − xq

qε + cx

Lastly, d1 → −∞ yields

cxe
d21
2 = cx

e− d21
2

∼ N (d1)

e− d21
2

∼ N ′ (d1)

−d1e− d21
2

∼ e− d21
2

−d1e− d21
2

→ 0

123



Optimal exercise of American put options... 41

and ε
√

εe
d21
2 → +∞. Therefore, we can conclude that

lim
ε→0

N ′(d1)
∂d1
∂x

x ′(ε) = lim
ε→0

1

2
√

πxσ

r K − xq

qε
√

εe
d21
2 + √

εcxe
d21
2

= 0

and limε→0
cx
ε

= 0. As a consequence, limε→0
c(x(ε),ε)

ε
= limε→0 cx x ′(ε) + cε = 0.

��

Proof of Lemma 4.2 We can proceed as in the diffusive case and exploit the implicit
function theorem to obtain the regularity properties of x(ε) and to compute its deriva-
tive. To prove (i), we observe that:

cn(x(ε), ε) = ET−ε

[
e−rε(ST − K )+|ST−ε = x(ε), NT − NT−ε = n

]

≤ ET−ε

[
e−rεST |ST−ε = x(ε), NT − NT−ε = n

]

= x(ε) E

[

e

(
−q−mλ− σ2

2

)
ε+σ(WT −WT−ε)+∑n

j=1 Uj

]

= x(ε)e(−q−mλ)ε(1 + m)n ≤ K (1 + m)n

Hence

0 ≤ 1

ε

∑

n≥2

e−λε (λε)n

n! cn(x(ε), ε)

≤
+∞∑

n=2

e−λε λn(ε)n−1

n! cn(x(ε), ε)

≤ K
+∞∑

n=2

e−λε λn(ε)n−1

n! (1 + m)n

= K εe−λελ2(1 + m)2
+∞∑

n=2

(λ(1 + m)(ε))n−2

n(n − 1)(n − 2)!

= K εe−λελ2(1 + m)2
+∞∑

k=0

(λ(1 + m)(ε))k

(k + 2)(k + 1)k!

≤ K εe−λελ2(1 + m)2
+∞∑

k=0

(λ(1 + m)(ε))k

k!
= K εe−λελ2(1 + m)2eλ(1+m)ε → 0 as ε → 0.
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We now prove (ii), namely that limε→0 c1(x(ε), ε) = E
(
(x∗eU1 − K )+

]
. Denote

Yε = (r − q − σ 2

2 − mλ)ε + σW (ε). Then

c1(x(ε), ε) = e−rεE
[
(x(ε)eYε+U1 − K )+

]

= e−rε
(
E

[
(K − x(ε)eYε+U1)+

]
+ E

[
x(ε)Yε+U1

]
− K

)

The family Yε is distributed as N
(
(r − q − σ 2

2 − mλ)ε, σ 2ε
)
hence it converges

in distribution to the constant 0 as ε → 0. Being U1 independent of Yε, the sum
(Yε +U1) converges in distribution to U1 and the sum (ln x(ε) + Yε +U1) converges
in distribution to ln x∗ +U1. Since f (z) = (K − ez)+ is continuous and bounded, we
have (Theorem 18.1 in Jacod-Protter) that

lim
ε→0

E
[
(K − eln x(ε)+Yε+U1)+

]
= E

[
(K − eln x

∗+U1)+
]

= E
[
(K − x∗eU1)+

]
.

We exploit again the independence between Yε and U1 to show that

E
[
x(ε)eYε+U1

]
= x(ε)E

[
eU1

]
E

[
eYε

]

= x(ε)E
[
eU1

]
e(r−q−mλ)ε → x∗E

[
eU1

]
as ε → 0.

Therefore

lim
ε→0

c1(x(ε), ε) = E
[
(K − x∗eU1)+

]
+ E

[
x∗eU1

]
− K

= E
[
(x∗eU1 − K )+

]
=

∫

(x∗ey − K )+μ(dy).

Finally, we have to prove (iii). The function c0 denotes the price of an out of the
money call option when no jumps occur till maturity, namely in the diffusive case. We
can then show, as in Lemma 4.1, that limε→0 c0(x(ε), ε) = 0 and employ L’Hospital’s
rule to compute

lim
ε→0

c0(x(ε), ε)

ε
= lim

ε→0

d
dε
c(x(ε), ε)

1
= lim

ε→0

∂c0(x(ε), ε)

∂x
· x ′(ε) + ∂c0(x(ε), ε)

∂ε

where, as in the previous case, Dini’s theorem yields

x ′(ε) = r Ke−r ε − x(ε)qe−qε − cε(x(ε), ε)

1 − e−qε + cx (x(ε), ε)

For sake of simplicity, let cn,x = ∂cn
∂x and cn,ε = ∂cn

∂ε
Then

cx = e−λεc0,x +
∑

n≥1

e−λε (λε)n

n! cn,x .
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Note that, since the delta of a call option is always positive and smaller than 1, we
have

0 ≤
∑

n≥1

e−λε (λε)n

n! cn,x ≤
∑

n≥1

e−λε (λε)n

n! = 1 − e−λε

hence it goes to 0 as ε tends to 0. As a consequence, cx ∼ c0,x as ε → 0. Similarly

cε = −λe−λεc0+e−λεc0,ε−λ2εe−λεc1+λe−λεc1+λεe−λεc1,ε+ ∂

∂ε

⎛

⎝
∑

n≥2

e−λε (λε)n

n! cn

⎞

⎠ .

The last term in the above equality goes to 0, since we can show, as in (i), that

lim
ε→0

∂

∂ε

⎛

⎝
∑

n≥2

e−λε (λε)n

n! cn

⎞

⎠ = lim
ε→0

1

ε

⎛

⎝
∑

n≥2

e−λε (λε)n

n! cn

⎞

⎠ = 0.

Hence cε ∼ c0,ε + λc1 as ε → 0 (recall that c0 is the price of a European call option
when no jumps occur, that is in the standard Black and Scholes market, so it behaves
like c in Lemma 4.1. So we have

x ′(ε) ∼ r K − x(ε)q − c0,ε − λc1
1 − e−qε + c0,x

and rearranging the terms,

c0,x x
′(ε) + c0,ε ∼ r K − x(ε)q − λc1 − (r K − x(ε)q − λc1 − c0,ε)(1 − e−qε)

1 − e−qε + c0,x

Exploiting the same arguments as in the proof of Lemma 4.1 and recalling (ii), we
prove the claim. ��

B Numerical convergence of the European critical price

The aim of this section is to show numerically that x(ε) converges to some x∗ ∈ (0, K ]
when ε tends to 0.
To find x(ε), we solve numerically Eq. (3.3) for small values of ε, approaching 0. For
the jump-diffusion model, we consider the case of either constant or gaussian (either
positive ore negative) jumps.6

When jumps are assumed to be constant, Uj = ln(1 + m), with m ∈ R: in this
case, d = r − q when jumps are negative (m < 0) and d = r − q − mλ when
jumps are positive (m > 0). In the case of Gaussian jumps, we assume Uj to have

6 To solve Eq. (3.3), we neglect the terms with more than 3 jumps in the infinite sum which defines the
price of the European put option. These terms are o(ε3) so their contribution is negligible when ε is close
to 0.
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Fig. 2 Geometric brownian
motion (r ≥ q) r = 0.03,
q = 0.01
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Fig. 3 Jump diffusion, constant
jumps (d ≥ 0) r = 0.04,
q = 0.01, λ = 1,m = 0.02
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Fig. 4 Jump diffusion, gaussian
jumps (d ≥ 0) r = 0.03,
q = 0.01, λ = 1, a = −0.1,
b = 0.1
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a normal distribution with expectation a and variance b2 (a ∈ R, b > 0), hence

d = r − q − λea+b2/2N
(
a+b2
b

)
+ λN

( a
b

)
, where N denotes here the distribution

function of a standard normal random variable.
We fix K = 100, σ = 0.2 for the diffusive model and σ = 0.15 for the jump-

diffusion model. We then let the other parameters vary in order to analyze the two
cases, d ≥ 0 and d < 0. The results in the various models are very similar and are
depicted in the figures below.

We observe that x(ε) is always monotone in a neighborhood of 0, thus validating
our claim. When d ≥ 0 (r ≥ q in the diffusive model) x(ε) approaches the critical
price, which coincides with the strike price, from below, namely x(ε) is decreasing
with respect to time to maturity (see Figures 2, 3 and 4 ).
When d < 0, x(ε) approaches monotonically a finite value, which is strictly smaller
than the strike price (see Figures 5, 6 and 7).

Such limits have been analytically computed in Theorems 4.1 and 4.2.

123



Optimal exercise of American put options... 45

Fig. 5 Geometric brownian
motion (r < q)
r = 0.01, q = 0.02
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Fig. 6 Jump diffusion, constant
jumps (d < 0) r = 0.01,
q = 0.02, λ = 2,m = 0.1
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Fig. 7 Jump diffusion, normal
jumps (d < 0) r = 0.01,
q = 0.03, λ = 1, a = 0.05,
b = 0.1
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