
Experimental Gerontology 153 (2021) 111508

Available online 3 August 2021
0531-5565/© 2021 Elsevier Inc. All rights reserved.

Mitophagy: At the heart of mitochondrial quality control in cardiac aging 
and frailty 

Anna Picca a,b, Riccardo Calvani a,b,*, Hélio José Coelho-Júnior c, Emanuele Marzetti a,c 
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A B S T R A C T   

Cardiovascular disease is highly prevalent among older adults and poses a huge burden on morbidity, disability, 
and mortality. The age-related increased vulnerability of the cardiovascular system towards stressors is a 
pathophysiological trait of cardiovascular disease. This has been associated with a progressive deterioration of 
blood vessels and decline in heart function during aging. Cardiomyocytes rely mostly on oxidative metabolism 
for deploying their activities and mitochondrial metabolism is crucial to this purpose. Dysmorphic, inefficient, 
and oxidant-producing mitochondria have been identified in aged cardiomyocytes in association with cardiac 
structural and functional alterations. These aberrant organelles are thought to arise from inefficient mitochon
drial quality control, which has therefore been place in the spotlight as a relevant mechanism of cardiac aging. As 
a result of alterations in mitochondrial quality control and redox dyshomeostasis, mitochondrial damage accu
mulates and contributes to cardiac frailty. Herein, we discuss the contribution of defective mitochondrial quality 
control pathways to cardiac frailty. Emerging findings pointing towards the exploitation of these pathways as 
therapeutic targets against cardiac aging and cardiovascular disease will also be illustrated.   

1. Introduction 

Cardiovascular disease (CVD) poses a huge morbidity, disability and 
mortality burden on the general population and is highly prevalent 
among older adults (Virani et al., 2020). People aged 80 years and older 
are at higher risk of heart failure, atrial fibrillation, and related stroke 
(Virani et al., 2020). Age-related increased vulnerability of the cardio
vascular system towards stressors has been associated with progressive 
deterioration of blood vessels and decline in heart function (Chiao and 
Rabinovitch, 2015). In particular, an increase in heart mass, ventricular 
wall thickness, and cardiomyocyte cross-sectional area have been 

indicated as phenotypical manifestations of cardiac aging (Tracy et al., 
2020). 

Cardiomyocytes rely mostly on oxidative metabolism for deploying 
their activities and mitochondria are crucial organelles for cardiac 
functioning by supplying energy for myocardial contraction (Bertero 
and Maack, 2018; Murphy et al., 2016). Cardiac tissue is enriched in 
mitochondria that account for about 30% of myocellular volume with 
the ability of using several metabolic substrates to generate ATP under a 
wide range of physiological and pathological conditions (Bertero and 
Maack, 2018; Murphy et al., 2016). Along with their role of the cell's 
powerhouse, mitochondria are also a hub of several other activities 
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including the regulation of metabolic reactions, cell death, calcium 
storage, and reactive oxygen species (ROS) production (Picca et al., 
2021). 

Dysmorphic and inefficient, high ROS-producing mitochondria have 
been described in aged cardiomyocytes (Dutta et al., 2012) together 
with cardiac structural and functional alterations (Marzetti et al., 2009). 
Therefore, mitochondrial dysfunction and inefficient mitochondrial 
quality control (MQC) processes have been placed in the spotlight as 
factors in cardiac aging (Picca et al., 2018a). Defective MQC and the 
installment of oxidative stress in the heart may be envisioned as an 
outcome of unsuccessful aging rather than a phenotypic expression of 
aging itself (Inglés et al., 2014). Indeed, altered quality control signaling 
and imbalanced oxidant defense may contribute to cardiac frailty as a 
result of damage accumulation not fully compensated by resilience 
mechanisms. When approaching the late stages of life, resiliency may 
become overwhelmed and stressors may cause rapid and unopposed 
damage accumulation that leads to frailty and eventually death. Accel
erated aging may ensue because of either faster rates of damage accu
mulation or rapid shrinking and eventual collapse of resilience (Ferrucci 
et al., 2020). In this setting, peculiar cardiac ultrastructural changes 
have also been observed and associated with physical frailty (Pelà et al., 
2021b, 2021a). 

Physical activity and exercise are recognized strategies and highly 
recommended interventions to prevent and manage CVD (Arnett et al., 
2019; Haskell et al., 2007). Several observational studies have shown 
that the lack of compliance with physical activity recommendations is 
associated with an increased risk of myocardial infarction, coronary 
heart disease, stroke, and death (Blair et al., 1995; Chomistek et al., 
2013; Held et al., 2012; Talbot et al., 2007). The effects of physical 
exercise on cardiovascular health go beyond prevention and also include 
significant changes in cardiac structure and function in the presence of 
CVD (Abad et al., 2017; C. Moraes-Silva et al., 2017; Feriani et al., 
2018). Although many potential mechanisms have been suggested to 
explain such beneficial effects, improvements in mitochondrial function 
following physical exercise have received special attention (Guan et al., 
2019). 

Here, we discuss mitophagy and the generation of mitochondrial 
derived vesicles (MDVs) as relevant pathways in MQC and their 
involvement in cardiac frailty. The possibility of targeting MQC path
ways to obtain therapeutic gain against cardiac aging is also discussed. 

2. Autophagy and mitophagy in cardiomyocytes 

As an organ virtually postmitotic, the heart is among the most robust 
autophagy recipients of the body and relies on this degradative route for 
maintaining homeostasis (Sun et al., 2015). In keeping with this is the 
observation that upregulation of autophagy and mitophagy occurs 
following ischemia-reperfusion (I-R) and sepsis (Hoshino et al., 2012). 
Furthermore, an attenuation of stress-induced mitochondrial auto
phagy, accompanied by altered mitochondrial function and impaired 
cardiac function, has been observed in mouse models lacking the 
mitophagic regulator Parkin (Hoshino et al., 2012; Kanamori et al., 
2011a, 2011b; Piquereau et al., 2013). 

The cardiomyocyte energy balance modulates cardiac autophagy via 
metabolic signaling. A drop in cardiomyocyte ATP in case of substrate 
deficiency or oxidative stress triggers the activation of a pro-autophagy 
pathway involving 5′-AMP-activated protein kinase (AMPK), unc-51- 
like kinase 1 (ULK1), B-cell lymphoma 2 (BCL2), and Beclin-1 
signaling (Egan et al., 2011; Maejima et al., 2016). A concomitant 
downregulation of the autophagy suppressor mechanistic target of 
rapamycin complex 1 (mTORC1) further supports autophagy-mediated 
degradation (Tan and Miyamoto, 2016). Anti-autophagic stimuli may 
be conveyed via insulin/insulin-like growth factor 1 (IGF1)/protein ki
nase B signaling to circumvent the possibility of excessive autophagy 
and, thus, hyper-degradation (Ock et al., 2016). As a reinforcing anti- 
autophagic action, the GTP-binding protein Ras homolog enriched in 

brain (RHEB) quenches autophagy via mTORC1 signaling and tran
scription factors related to lysosomal biogenesis (Sciarretta et al., 2012). 

A selective form of autophagy, referred to as mitophagy, is in charge 
of degrading dysfunctional and depolarized mitochondria in order to 
preserve mitochondrial efficiency in cardiomyocytes. This process oc
curs in coordination with a set of other quality control mechanisms, 
including mitochondrial biogenesis, dynamics, and proteostasis (Picca 
et al., 2018a). Mitophagy operates via phosphatase and tensin homolog- 
induced kinase 1 (PINK1)-Parkin-dependent and independent pathways 
(Fan et al., 2020) (Fig. 1). 

PINK1-Parkin-dependent degradation has been involved in preser
ving mitochondrial and cardiac function in diabetic mice with cardio
myopathy induced by a high-fat diet regimen (Tong et al., 2019). 
Conversely, defective PINK1-Parkin-dependent mitophagy has been 
implicated in the severe cardiac complications observed in animal 
models of Duchenne muscular dystrophy (Fan et al., 2020). The pres
ervation of cardiac function via the promotion of Parkin-dependent 
mitophagy has also been reported in a model of septic cardiomyopa
thy (Shang et al., 2020). In this context, the benefit conveyed by the 
activation of the mitophagy route seems to be achieved via the down
regulation of the expression of the negative regulator of cardiomyocyte 
mitophagy, mammalian Ste20-like kinase 1 (Mst1), which is able to 
attenuate lipopolysaccharide-induced cardiomyocyte death (Shang 
et al., 2020). Finally, a role for PINK1-driven mitophagy has also been 
reported via the interaction of the adenine nucleotide translocator 
(ANT) complex with the translocase of inner mitochondrial membrane 
23 (TIM23) (Hoshino et al., 2019). Dysmorphic mitochondria associated 
with cardiomyocyte hypertrophy and contractile dysfunction have been 
identified in the murine heart depleted of ANT (Hoshino et al., 2019). Of 
note, homozygous mutations of ANT1 in humans have been associated 
with severe heart failure and cardiac mitochondrial dyshomeostasis 
(Hoshino et al., 2019). 

The PINK1-Parkin-independent mitophagy pathway operates via 
inter-organelle contact sites with the endoplasmic reticulum (ER). These 
mitochondrial− ER contacts mediate the release of Ca2+ from the ER into 
mitochondria and cytosol (Wu et al., 2017). As a second messenger, 
Ca2+ unloading promotes mitochondrial homeostasis by regulating 
organelle dynamics and function (Wu et al., 2017). Mitophagy in car
diomyocytes can also be triggered independent of cytosolic Ca2+ levels, 
oxidative stress, and apoptosis signaling (Quinsay et al., 2010). This 
action is mediated by the phosphorylation of the BCL-2 interacting 
protein 3 (BNIP3), which favors its interaction with microtubule- 
associated proteins 1A/1B light chain 3B (LC3), thereby fueling the 
mitophagy flux (Liu et al., 2014). Abrogation of c-Jun N-terminal kinase 
(JNK) signaling and the associated downregulation of BNIP3 have been 
shown to reverse cardiac remodeling in heart failure (Chaanine et al., 
2012). 

3. Mitochondrial-derived vesicles: mitophagy add-ins 

An ever-growing amount of evidence indicates that, along with 
mitophagy, an additional process operating via endo-lysosomal traf
ficking contributes to MQC and mitochondrial homeostasis. This route, 
conserved from bacteria to eukaryotes, signals via vesicles budding. A 
large set of membranous shuttles is produced and vesicles of mito
chondrial origin, named mitochondrial-derived vesicles (MDVs), deliver 
specific organellar components to late endosome/multivesicular bodies 
for recycling purposes (Soubannier et al., 2012a). Herein, MDVs are 
processed, probably according to the nature of their cargo, and released 
into the extracellular compartment to join the vast array of extracellular 
vesicles (EVs). 

Being a preferential route for the removal of harmful cellular waste, 
the interest towards the role of EVs and, more specifically, about MDVs 
in conditions characterized by a decline of cell quality and accrual of 
intracellular debris has sharply increased (D’Acunzo et al., 2021; Todkar 
et al., 2021). EVs, beside mediating communication via exchange of 
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large sets of molecular cargoes (i.e., nucleic acids, proteins, and me
tabolites) between neighbor cells, are now recognized as transfer sys
tems over a long distance (Edgar, 2016; Shah et al., 2018; Valadi et al., 
2007). The ability of EVs to carry organelle components (i.e., MDVs) or 
even whole mitochondria holding metabolic properties is among the 
latest extraordinary roles conferred to EVs (D’Acunzo et al., 2021; 
Todkar et al., 2021). 

EVs have been identified in almost all biofluids. The highly hetero
geneous set of membranous objects composing the EV population 
include vesicles that differ in size, function, and biogenesis (Willms 
et al., 2016). This heterogeneity is reflected by the variety of nomen
clature used to refer to EV subtypes. Under the names of shedding 

vesicles, microvesicles, exosome-like vesicles, nanoparticles, micropar
ticles, and oncosomes is identified the large set of EVs with a diameter of 
100-500 nm that are generated by outward budding of the plasma 
membrane. Exosomes, instead, refer to EVs of endosomal origin with a 
diameter of 50-150 nm that were initially identified as vesicles released 
from the plasma membrane during the maturation of reticulocytes 
(Johnstone et al., 1987). It is now clear that an inward budding of 
discrete domains of early endosomal membranes generates intraluminal 
vesicles (ILVs) that evolve into multivesicular bodies (MVBs) (Cocucci 
and Meldolesi, 2015; Raposo and Stoorvogel, 2013). MVBs are generally 
degraded into lysosomes for recycling purposes. However, likely 
depending on cargo information, MVBs can also be re-directed towards 

Fig. 1. Schematic representation of quality control mechanisms through mitophagy. A) PINK1/Parkin-dependent mitophagy. The phosphatase and tensin homolog- 
induced kinase 1 (PINK1) is imported into mitochondria and degraded by presenilin-associated rhomboid-like (PARL) protein through the mediation of the trans
locase of the outer mitochondrial membrane (TOM) and the translocase of inner mitochondrial membrane 23 (TIM23). In the setting of mitochondrial depolarization, 
PINK1 is stabilized at the outer mitochondrial membrane (OMM) to trigger the activation of Parkin for the subsequent ubiquitination of mitochondrial components. 
Finally, the recruitment of a set of autophagy adaptors [i.e., nuclear domain 10 protein 52 (NDP52), optineurin (OPTN), and the sequestosome 1/p62] mediates the 
engulfment of mitochondria within an autophagosome via the interaction with microtubule-associated protein 1A/1B-light chain 3 (LC3). The endoplasmic reticulum 
is a source of autophagosome membrane formation via the autophagy core complexes vacuolar protein sorting 34 (VPS34) and unc-51-like kinase 1 (ULK1) that 
organize autophagosome membrane initiation. Upon completion, autophagosomes fuse with lysosomes to finalize autophagosome's cargo degradation. B) PINK1/ 
Parkin-independent mitophagy. Dysfunctional organelles are coated by the OMM proteins FUN14 domain containing 1 (FUNDC1), autophagy and Beclin-1 regu
lator 1 (AMBRA1), BCL2-interacting protein 3 like (BNIP3L), BNIP3, and disrupted-in-schizophrenia-1 (DISC1) that help assisting organelles selection and interaction 
with LC3. 
Abbreviations: AMPK, 5’ AMP-activated protein kinase; ATG13, Autophagy-related protein 13; ATG14, Autophagy-related protein 14; FIP200, focal adhesion kinase 
family interacting protein of 200 kDa; VPS15, vacuolar protein sorting 15. 
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the plasma membrane. Here, MVBs can undergo exocytic fusion and 
deliver their ILV content (i.e., exosomes) into the extracellular space 
(Cocucci and Meldolesi, 2015; Raposo and Stoorvogel, 2013) (Fig. 2). 

The identification of nucleic acids (mostly RNA) among EV cargo 
molecules (Valadi et al., 2007) has laid the groundwork for the inves
tigation of EV-associated RNA/DNA as disease markers especially 
because these molecules may hold potential of tracking down the 
identity of the originating cell. A role for EV cargoes as biomarkers of 
defective cellular and MQC systems (Picca et al., 2019a, 2019b, 2020a, 
2020b) in conditions characterized by dysfunctional autophagy and 
accrual of intracellular misfolded proteins is also emerging (Picca et al., 
2020e, 2020c). While having a diameter similar to other small EVs (i.e., 
70-150 nm), these vesicles are univocally identified by their indepen
dence from the core fission GTPase dynamin-related protein 1 and the 
incorporation of mitochondrial components. MDVs enriched with 
oxidized cargo have been identified in in-vitro budding assays using 
bovine heart mitochondria. Although the exact mechanisms of cargo 
selection and EV incorporation are still unclear, evidence indicates that 
these vesicles are generated mainly from the outer mitochondrial 
membrane and, in some cases, may bud out from both outer and inner 
membranes, thereby incorporating also portions of mitochondrial ma
trix (McLelland et al., 2014; Neuspiel et al., 2008; Soubannier et al., 
2012a, 2012b; Sugiura et al., 2014). 

The generation of MDVs occurs under basal physiological conditions 
and prior to mitochondrial depolarization; a steep increase in their 
release has been reported in response to mild mitochondrial stressors 
(Soubannier et al., 2012a, 2012b). To this outcome contributes the co
ordinated activity of the mitophagy proteins PINK1 and Parkin and 
mediators of the endocytic pathway (McLelland et al., 2014). Therefore, 
cells may enact a housekeeping mechanism that complements mitoph
agy and recycles damaged, but not yet depolarized mitochondria via the 
release of MDVs (McLelland et al., 2014). A combination of in vitro 
experiments in cardiac cells and quantitative morphological electron 
microscopy in vivo has been applied to test the hypothesis that MDV 
production may be a physiological mechanism for achieving car
diomyocyte homeostasis (Cadete et al., 2016). Results from this inves
tigation indicate that MDV generation disposes mildly oxidized 
mitochondria independent of mitochondrial depolarization, autophagy 
signaling, and mitochondrial fission in cardiac cells (Cadete et al., 
2016). Indeed, cultured H9c2 myoblasts show constitutive MDV pro
duction that acts as a basal housekeeping pathway and occurs even more 
frequently than mitophagy events (Cadete et al., 2016). The generation 
of MDVs increases substantially following exposure to mitochondrial 
stressors (i.e., antimycin-A and xanthine/xanthine oxidase), while both 
MDV production and mitophagy are enhanced in response to extensive 

mitochondrial damage (Cadete et al., 2016). Albeit preliminary, these 
findings indicate that constitutive MDV generation may be crucial for 
preserving cardiomyocyte homeostasis under physiological conditions 
and may also serve as a first-line defense against mild stressors. Addi
tional studies clarifying the generalizability of MDV production in 
various cell types and, most importantly, in vivo are highly sought after. 
This piece of information is particularly relevant considering the po
tential of exploiting EVs as tools for the delivery of specific molecules to 
diseased tissues, thus making these circulating cellular boxes potential 
targets for therapeutic development (Picca et al., 2020d). 

4. Cell-free mtDNA: mitochondrial signaling beyond organelle's 
boundaries 

Nucleic acids, including genomic DNA, mitochondrial DNA 
(mtDNA), viral DNA, and RNA (e.g., mRNA and microRNAs) may be 
retrieved in the circulation as cell-free molecules (Helmig et al., 2015). 
High circulating levels of nucleic acids have been identified in several 
conditions, including CVD (González-Masiá et al., 2013; Suzuki et al., 
2008). The molecular mechanisms mediating their cellular release are 
unclear (Muotri et al., 2007). However, their unloading mostly occurs 
from injured tissues/cells or apoptotic and immune activated cells (Jahr 
et al., 2001), while a smaller portion of derives from neutrophil extra
cellular trap release, phagocytosis, and oncosis (Thierry et al., 2016). Of 
all cell-free DNA subpopulations, mtDNA molecules are those mostly 
represented and have been indicated as prognostic biomarkers in a vast 
array of conditions, including CVD (Helmig et al., 2015; Liu et al., 2015). 
The evaluation of circulating levels of mtDNA has theoretical advan
tages in the setting of CVD over other cell-free DNA species that are 
likely involved in different pathological processes (e.g., tumor 
biomarker). 

MtDNA is packaged within the mitochondrial matrix and encodes for 
components of electron transport chain (ETC) complexes that are in 
charge of regulating cellular bioenergetics via oxidative phosphoryla
tion (OXPHOS) (Reinecke et al., 2009). The mitochondrial genome is 
highly polymorphic in humans and mitochondrial haplogroups are 
geographically-specific mitochondrial genetic variants harboring spe
cific polymorphisms (Torroni et al., 1992). These polymorphisms 
generate small amino acid changes into ETC complexes that translate in 
varying OXPHOS efficiency. In some cases, these differences lead to 
mitochondrial dysfunction and impaired ATP production that, together 
with low membrane potential and ROS accrual, result in oxidative 
damage (Judge and Leeuwenburgh, 2007). 

Similar to matrix mitochondrial enzyme activities (e.g., citrate syn
thase), mtDNA levels are proxy for the bioenergetic potential and the 

Fig. 2. Mitochondria quality control through the 
generation and release of mitochondrial-derived ves
icles. The generation of mitochondrial-derived vesi
cles (MDVs) has been described as a form of piecemeal 
mitophagy that operates as an alternative to the ca
nonical degradative pathway to dispose mildly 
oxidized mitochondria. These organelles are targeted 
by the canonical phosphatase and tensin homolog- 
induced kinase 1/Parkin degradative pathway 
which, in conjunction with the formation of localized 
membrane curvatures driven by oxidized cardiolipin 
and other unknown proteins, generates MDVs. These 
vesicles reach out and are processed along the endo
lysosomal system whereby they form multivesicular 
bodies and are subsequently extruded as exosomes. 
Abbreviation: ILVs, intraluminal vesicles.   
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mitochondrial mass of a cell/tissue (Lightowlers et al., 1997; Malik and 
Czajka, 2013). Under physiological conditions, mtDNA replicates within 
the organelle and its integrity is ensured via MQC. However, in the 
setting of defective mitophagy, mtDNA degradation and recycling of 
damaged molecules become inefficient and mtDNA follows unconven
tional routes to be disposed (Picca et al., 2021). Emerging evidence in
dicates that cell-free mtDNA may not only trigger inflammation, 
coagulation and immunity, but also induce cell death and tissue damage. 
In particular, cell-free mtDNA has been directly involved in early 
endothelial dysfunction and vasculopathies, both relevant to the 
development of CVD (Bhagirath et al., 2015). On the other hand, cell- 
free mtDNA may contribute to endogenous repair systems via regula
tion of stem cell activation, fate decisions, and defense against cellular 
senescence (Zhang et al., 2018). 

Cardiac metabolism is almost entirely aerobic and mtDNA variants 
may affect heart function and predispose cardiomyocytes to mitochon
drial dysfunction (Judge and Leeuwenburgh, 2007). Specific mito
chondrial haplogroups have been associated with aging (Domínguez- 
Garrido et al., 2009), VO2 max (Martínez-Redondo et al., 2010), and the 
development of diseases including cardiomyopathies (Fernández-Cag
giano et al., 2013, 2012; Govindaraj et al., 2014; Hagen et al., 2013). 
The link between mtDNA alterations and CVD may reside in the pro
portion of ROS being produced. Indeed, oxidative damage to mtDNA 
along with oxidation of proteins involved in intracellular Ca2+ homeo
stasis have been indicated as major triggers of atrial fibrillation (Ai et al., 
2005; Lin et al., 2003). As a consequence of protein oxidation, the 
release of higher levels of Ca2+ from the ER (Ca2+ sparks) into the 
cytoplasm or from mitochondria has been identified in cardiac myo
cytes. Under these circumstances, abnormal electrophysiological 
changes, including altered cardiac excitation-contraction coupling, 
arrhythmogenesis, and automatism occur (Bers, 2005; Hove-Madsen 
et al., 2004). High levels of oxidized mtDNA have been found in atrial 
myocardium of patients with atrial fibrillation with concomitant in
crease of mtDNA content (Lin et al., 2003). Moreover, a number of 
mtDNA mutations have been identified in patients with atrial fibrilla
tion, such as the large 4977-bp and short 9-bp deletions as well as het
eroplasmic mutations (Lin et al., 2003; Park et al., 2007). These findings 
indicate that the increase in mtDNA oxidative damage and deletions 
observed in the myocardium of people with atrial fibrillation may 
contribute to impairment of mitochondrial bioenergetics and trigger an 
oxidative vicious circle that ultimately causes atrial myopathy and leads 

to atrial fibrillation. The relationship between mtDNA content and the 
occurrence of atrial fibrillation has been investigated in patients 
enrolled in the Atherosclerosis Risk in Communities project. Results 
from this study indicate the existence of an inverse association between 
mtDNA copy number and the risk of atrial fibrillation, independent of 
traditional cardiovascular risk factors (Zhao et al., 2020). Recent find
ings have also shown a relationship between mitochondrial haplogroups 
and the risk of atrial fibrillation (Roselló-Díez et al., 2021). 

Finally, focal myocardial necrosis due to myocardial infarction has 
been associated with high levels of mtDNA (Bliksoen et al., 2012). This 
increase in cell free mtDNA was also indicated to contribute to local and 
systemic inflammation following myocardial infarction (Bliksoen et al., 
2012). 

5. Is mitophagy a therapeutic target in cardiac aging? State of 
the art and future perspectives 

The accrual of dysfunctional mitochondria is a well-established 
phenotypic alteration of the aged heart and evidence indicates that 
mitophagy impairment is a major contributor to organelle dyshomeo
stasis and tissue dysfunction (Eisenberg et al., 2016; Inuzuka et al., 
2009; Ren et al., 2017; Wang et al., 2019). Genetic and pharmacological 
interventions targeting mitophagy have shown great potential towards 
extending lifespan in preclinical models (Table 1) (Ryu et al., 2016; 
Schiavi et al., 2015). 

In particular, the overexpression of Parkin in Drosophila has been 
reported to enhance the turnover of defective mitochondria via shifting 
mitochondrial dynamics towards fission and to slow aging (Rana et al., 
2013). Parkin overexpression in the heart of old mice has also been 
shown to promote the incorporation of defective mitochondrial into 
autophagosomes and alleviate age-related cardiac functional decline 
(Hoshino et al., 2013). The oral administration of the mitophagy inducer 
urolithin A, a natural compound derived as a gut metabolite of ellagic 
acid, has been reported to extend lifespan in C. elegans and improve 
muscle function in rodents (Ryu et al., 2016). Moreover, dietary 
administration of the natural polyamine spermidine to old mice has been 
shown to reduce cardiac hypertrophy and preserve diastolic function via 
the promotion of cardiomyocyte mitophagy and mitochondrial respi
ration (Eisenberg et al., 2016). Of note, this cardioprotective effect was 
absent in cardiomyocytes lacking the autophagy-related protein ATG5 
(Eisenberg et al., 2016). Some evidence indicates that high levels of 

Table 1 
Summary of studies that used genetic and pharmacological interventions targeting quality control pathways to counteract cardiac aging.  

Species Intervention(s) Targeted pathway(s) Functional implications Reference 

C. elegans Urolitin A Mitophagy Attenuation of cardiac aging Ryu et al., 2016 
D. melanogaster Parkin overexpression Mitochondrial dynamics Attenuation of cardiac aging Rana et al., 2013 
Mouse Short-term calorie restriction/ 

rapamycin administration 
Protein oxidation and ubiquitination Reversion of age-dependent cardiac hypertrophy and 

diastolic dysfunction 
Dai et al., 2014 

Mouse Spermidine Mitophagy and mitochondrial 
respiration 

Reduction of cardiac hypertrophy and preservation of 
diastolic function 

Eisenberg et al., 
2016 

Mouse Parkin overexpression General autophagy Alleviation of age-related cardiac functional decline Hoshino et al., 
2013 

Mouse Tuberin (TSC2) knock-in mutations Mammalian target of rapamycin 
(mTORC1) 

Cardiac protection against pressure-overload Ranek et al., 
2019 

Mouse Pharmacological and genetic inhibition 
of mTORC1 

Ras homology enriched in brain 
(RHEB) and mTORC1 

Reduction of myocardial damage during ischemia, 
especially in obese patients 

Sciarretta et al., 
2012 

Mouse TAT-Beclin 1 General autophagy /mitophagy Attenuation of heart mitochondrial dysfunction 
during pressure overload 

Shirakabe et al., 
2016 

Mouse Calorie restriction Cell scaffolding and apoptosis Prevention of aging cardiomyopathy Yan et al., 2013 
Mouse Swimming exercise Mitochondrial quality control and 

apoptosis 
Improvements of post-myocardial infarction cardiac 
remodeling 

Zhao et al., 2018 

Mouse Dasatinib, quercetin, and navitoclax Senescent cells Restoration of vascular endothelial function Zhu et al., 2015 
Rabbit Inhibitors of histone deacetylase General autophagy Reduction of myocardial infarct size during ischemia- 

reperfusion 
Xie et al., 2014 

Rat Enalapril Mitochondrial quality control Mitigation of age-dependent cardiac hypertrophy and 
oxidative damage 

Picca et al., 
2018b 

Rat Exercise preconditioning Mitophagy Cardioprotection through mitohormesis Yuan et al., 2018 
Rat Exercise preconditioning General autophagy Alleviation of exercise-induced myocardial injury Wan et al., 2021  
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dietary spermidine correlate with reduced blood pressure a lower inci
dence of CVD also in humans (Eisenberg et al., 2016). 

The preservation of efficient MQC to maintain a healthy mitochon
drial network is also an attractive therapeutic approach in the treatment 
of CVD (Bertero and Maack, 2018; Murphy et al., 2016). In particular, 
promotion of autophagy has been linked to mitochondrial function and 
cardiovascular homeostasis (Bertero and Maack, 2018; Murphy et al., 
2016). Lifestyle (i.e., nutrition and physical activity) and pharmaco
logical interventions targeting autophagy are emerging candidates that 
could be harnessed for the stimulation of general autophagy in the 
cardiovascular system. Short-term calorie restriction or the adminis
tration of rapamycin, a known inhibitor of the mammalian target of 
rapamycin (mTOR), has also shown to trigger general autophagy and 
reverse myocardial ischemia, cardiac hypertrophy, and cardiac aging 
(Dai et al., 2014; Ranek et al., 2019; Sciarretta et al., 2012; Yan et al., 
2013). Furthermore, the cell-permeable ATG6/Beclin1-derived 
autophagy-inducing peptide (TAT-Beclin-1) has been shown to promote 
autophagy/mitophagy by mobilizing the endogenous protein Beclin-1 
and to attenuate mitochondrial dysfunction in the heart during pres
sure overload (Shirakabe et al., 2016). The administration of the 
angiotensin converting enzyme inhibitor enalapril to old rats has been 
indicated to offer cardioprotection during aging by mitigating age- 
dependent cardiac hypertrophy and oxidative damage (Picca et al., 
2018b). This effect was associated with increased mitochondrial mass, 
mitochondriogenesis and MQC signaling (Picca et al., 2018b). Finally, 
inhibitors of histone deacetylase have been tested for the ability of 
blunting I-R injury and have shown cardioprotective effect including 
reduction of myocardial infarct size during I-R at least in part by 
inducing autophagy (Xie et al., 2014). 

The activation of mitophagy by exercise has a key role for its adap
tative responses (Guan et al., 2019; Marquez and Han, 2017). Acute and 
chronic exercise modulates the activity of LC3 I and its autophagosome- 
membrane-associated lipidated form LC3 II and disrupt the p62 complex 
in different tissues (Chen et al., 2018; He et al., 2012; Yuan et al., 2018; 
Zhao et al., 2018). In particular, early exercise preconditioning has a 
protective role on acute cardiovascular stress via translocation of BNIP3 
to mitochondria and the recruitment of the mitophagy effector LC3 
(Yuan et al., 2018). These findings have recently been confirmed and 
expanded by Wan et al. (2021), who reported that exercise pre
conditioning prevented cardiac injury by modulating the transcription 
and translation of many LC3 lipidation-associated proteins. In one of the 
few studies investigating the chronic effects of exercise, Zhao et al. 
(2018) observed that swimming-training-induced improvements in 
post-myocardial infarction cardiac remodeling was accompanied by 
reduced LC3-II and p62 levels and increased PINK/Parkin expression. In 
contrast, BCL2 knockout mice, that are deficient in stimulus-induced but 
not basal autophagy, show marked impairment in exercise-induced 
mitophagy, which is accompanied by reduced maximal exercise capac
ity and glucose tolerance (He et al., 2012). 

Taken as a whole, these findings indicate that the regulation of 
autophagy/mitophagy may be a therapeutic strategy for treating or 
alleviating the burden of CVD. However, a major challenge is the defi
nition of more specific targets of the autophagy/mitophagy pathway in 
relation to CVD, considering that autophagy stimulators may also 
regulate other critical cellular processes. Furthermore, under certain 
conditions, excessive mitophagy may be detrimental (Liu et al., 2013; 
Saito and Sadoshima, 2015). Indeed, the critical window within which 
the stimulation of mitophagy becomes cardioprotective instead of 
inducing further damage especially in the context of compromised 
quality control processes is yet to be defined. Furthermore, it will be 
crucial to clarify whether triggering mitophagy may be a valuable 
therapeutical approach once cardiac mitochondrial damage has 
accumlated. The development of techniques that provide robust mea
surement of mitophagy in vivo as well as methods that allow evaluating 
the autophagy/mitophagy flux in humans are necessary to answer these 
research questions (Klionsky et al., 2021). 

Finally, genetic models have revealed that the accumulation of se
nescent cells contribute to the pathophysiology of cardiovascular aging 
and promotes CVD progression via the expression of a proinflammatory 
and profibrotic senescence-associated secretory phenotype (SASP) fac
tors (Dookun et al., 2020). Based on these findings, therapeutics able to 
induce the selective elimination of senescent cells via apoptosis have 
been developed. These senescent cell-targeted apoptotic inducer com
pounds are termed senolytics and their potential to ameliorate age- 
associated CVD is currently under investigation (Dookun et al., 2020). 
In particular, dasatinib, quercetin, and navitoclax have shown great 
potential towards the attenuation or prevention of CVD mostly via 
restoration of vascular endothelial function (Zhu et al., 2015). In 
particular, the interdependent regulation of senescence and mitophagy 
warrants investigation to develop novel therapeutics that may overcome 
the side effects of these drugs. 
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