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Abstract: Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated
neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates
in plasticity-related processes including memory, cognition, mood and sensory functions. Among the
many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution,
lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently
attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal
ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly
from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural
stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the
long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and
anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics)
may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this
review is to summarise the available information regarding the influence of the gut microbiota on
neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of
this emerging knowledge for the fight against neurodegeneration and brain ageing.

Keywords: gut microbiota; gut-brain axis; adult neurogenesis; ageing; neural stem cells; neurodegen-
eration; nutrients; antioxidants; polyphenols

1. Introduction

The search for new therapeutic targets against brain ageing and associated neurode-
generative diseases represents one of the most urgent and challenging issues in current
biomedicine, due to the increasing proportion of the elderly population worldwide [1].
Among the leading causes of ageing and neurodegeneration, the limited renewal capacity
of brain cells [2], alterations of brain vasculature [3,4] and neuronal/glial dysfunction [5]
are accompanied by an age-dependent decline in the brain damage repair systems, which
include adult neurogenesis [6–10]. Neurogenesis can be defined as the generation of new
neurons, glial cells and other neural lineages from neural stem cells (NSCs) and neural
progenitor cells (NPCs) [11,12]. This process includes the maturation, migration and func-
tional integration of NSCs or NPSs into the preexisting neuronal network [13,14]. When it
occurs in adult life, it is known as adult neurogenesis (AN). Although NSCs are present
in several brain regions, the subgranular zone of the hippocampus and the subventric-
ular zone of the lateral ventricle are the main AN niches [15]. AN in other adult brain
regions (e.g., the neocortex, striatum, amygdala and substantia nigra) is limited under
normal physiological conditions, but could be induced after injury [16]. Maintenance of
neurogenesis contributes to brain repair after damage and is believed to play a role in
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stress-responses and higher functions involving brain plasticity such as memory and cogni-
tion [6,17–20], mood [21], or perceptual (e.g., olfactory) learning [22,23]. Accordingly, an
impairment in neurogenesis, as seen during ageing or in pathological conditions [24], has
been associated with seizures [25,26], depression [27], and decline of learning abilities [28].
Impaired neurogenesis may occur because of a reduction in the number and/or function
of NSCs and NPCs [29]. This may be due to the synergic action of several mechanisms
operating in the brain in ageing or neurodegenerative conditions: inflammation [30,31],
oxidative stress [32], or toxic substances like short-chain fatty acids (SCFAs), branched chain
amino acids and peptidoglycans, originating from an altered intestinal microbiota [33].
Gut-resident microbial communities are in turn modulated by extrinsic factors, such as
lifestyle and diet; importantly, imbalances affecting this complex ecosystem can impact the
permeability of the body barriers, including the blood brain barrier (BBB) and the enteric
barrier, so as to allow the passage of potentially noxious substances to brain tissue along
the so-called gut-brain axis (GBA) [34,35].

To counteract the deterioration of neurogenesis, mechanisms that could be exoge-
nously regulated, such as the composition of gut microbiota, are of particular interest. Gut
microbiota is comprised of several species of microorganisms, including bacteria, yeast,
and viruses [36], cohabiting in a delicate balance whose disruption (dysbiosis) can lead to
aberrant neural and glial reactivity accompanied by loss of neurogenic ability [37]. Thus,
a functional relationship links microbiota, GBA and neurogenesis [5,34], and alterations in
this axis not only affect the neural regulation of the gastrointestinal tract, but, also contribute
to several brain disturbances, such as mood (e.g., depression, anxiety) and neurodevelop-
mental (e.g., autism) [38,39] and cognitive disorders (e.g., Alzheimer’s disease) [34,40–42].
Therefore, in establishing a bidirectional connection between enteric microbes and the brain,
GBA exploits several anatomic structures, systems, and metabolic routes [34], such as the
neuroendocrine (by the hypothalamic–pituitary–adrenal (HPA) axis) and neuroimmune
systems, the sympathetic and parasympathetic arms of the autonomic nervous system,
including the enteric nervous system, the vagus nerve [43], and the immune system. Not
surprisingly, therefore, the GBA has been portrayed as a “second brain” [34].

As an additional layer of complexity, many factors can influence microbiota composi-
tion, including infection, mode of birth delivery, use of antibiotic medications, the nature of
nutritional provision, environmental stressors, host genetics and ageing [44,45]. Among the
potential therapeutic approaches aimed at the microbiota to target GBA and neurogenesis,
diet composition appears particularly attractive for its feasibility. For instance, natural
antioxidants and anti-inflammatory molecules, such as dietary polyphenols, have long
been investigated as potential adjuvants to support AN [46]. In simple terms, maintaining
a healthy brain across the lifespan [47] may simply require “good” intestinal bacteria and
the right diet to keep them going.

The purpose of this review is to summarise the currently available information re-
garding the influence of the gut microbiota on AN and the potential of microbiota-centred
interventions as a strategy against brain ageing and neurodegeneration. To address the
topic we followed the classical methodological frameworks for a state-of-the-art review [48].
A list of keywords (neurogenesis, ageing, neural stem cells, gut-microbiota, gut-brain-axis,
nutrients, polyphenols, and neurodegeneration) was initially identified. Then, different
keyword combinations, each containing the term “neurogenesis”, were used to interrogate
the following sources: PubMed, Embase, Medline, Scopus, Web of Knowledge and Google
Scholar. Articles published in English and indexed as original articles, meta-analysis re-
views, narrative reviews, clinical cases and comments to the editor, with qualitative and
quantitative data, were included in the analysis. Although the time range was not limited,
the most recent publications were prioritized.

2. Evidence for the Connection between Intestinal Microbiota and Neurogenesis

Several clinical and experimental studies point to a functional connection between
intestinal microbiota and neurogenesis through the GBA. This emerging evidence implies
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that microbiota composition may represent both a causative determinant and a therapeutic
target in diseases where neurogenesis plays a key role [47,49–52]. Experimental data in sup-
port of the influence of microbiota on AN can be grouped in four general domains: (a) data
from Germ-free (GF) animals; (b) data on substances derived from bacterial fermentation
of food; (c) changes in bacteria homeostasis due to exogenous factors (e.g., antibiotics or
stress); (d) consequences of dietary changes (Figure 1):
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Figure 1. Schematic representation of the four main experimental models used to investigate the
functional linkages between intestinal bacteria and adult (mainly hippocampal) neurogenesis. Bio-
chemical and functional parameters employed in most studies for the evaluation of neurogenesis and
its microbiota-induced modifications are listed in the central, brain-shaped field.

(a) GF gut: GF animal models, usually mice or rats, grown up without any exposure
to microorganisms, constitute an essential tool in studying the influence of the gut micro-
biota on brain function; not surprisingly, one of the first studies that highlighted the effect
of the microbiota on neurogenesis was conducted on this model.

Using bromo-2-deoxyuridine (BrdU) immunohistochemistry, it was shown that, com-
pared to conventionally raised mice, GF and GF–colonized mice exhibited a trend to
increased cell proliferation, predominantly in the dorsal hippocampus, accompanied by
alterations in the hippocampal brain-derived neurotrophic factor (BDNF) [19]. In agree-
ment, another study reported an altered expression of synaptic plasticity-related genes,
with significantly lower BDNF mRNA expression in the hippocampus, amygdala, and
cingulate cortex in GF mice; of note, these areas participate in neurogenesis and are key
components of the neural circuitry underlying behaviour. Along similar lines, Kundu and
colleagues [49], investigated the effects of transplanting the gut microbiota from young or
old donor mice into young GF recipient mice [49]. They found that the transplant-induced
hippocampal AN is in parallel with the activation of the pro-neurogenic FGF21-AMPK-
SIRT1 signalling pathway. Moreover, it has been observed that intestinal bacteria and
components of the bacterial cell wall maintain the adult enteric neuron system and nitrergic
neurons by promoting intestinal neurogenesis via the Toll-like Receptor 2 (TLR2) [53].

(b) Substances produced by food fermentation: Converging lines of evidence point
to the potential role of food fermentation substances produced by gut bacteria on the
modulation of AN. This is the case of the SCFA butyrate, synthesized from non-absorbed
carbohydrates by colonic microbiota [54]. In an animal model of ischemia it was demon-
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strated that the histone deacetylase inhibitor, sodium butyrate, stimulates the incorporation
of BrdU in the subgranular and the subventricular zone of the hippocampus, striatum,
and frontal cortex in rats subjected to permanent cerebral ischemia. This treatment also
increased the number of cells expressing the polysialic acid-neural cell adhesion molecule,
nestin, the glial fibrillary acidic protein, the phospho-cAMP response element-binding
protein (CREB), and BDNF in various brain regions after brain ischemia [55]. Accord-
ingly, it was also demonstrated that oral sodium butyrate impacts brain metabolism and
hippocampal neurogenesis in pigs [56].

(c) Changes in bacteria homeostasis due to exogenous factors (e.g., antibiotics or
stress): Prompted by the emerging notion that the intestinal ecosystem can influence the
vegetative and cognitive functions of the host [57,58], several studies have focused on the
impact of antibiotics on microbiota and gut-brain communication. In mice, depleting gut
microbiota with antibiotics, from weaning onward, induces cognitive deficits, specifically
in memory retention, and leads to a significant reduction of BDNF in the adult brain, maybe
by the involvement in AN [59]. However, while consistent with the observed changes,
a specific impact of microbiota depletion on neurogenesis was not directly demonstrated
in this study. This aspect was instead specifically addressed by Môhle et al. [60], who re-
ported a long-lasting impairment in neurogenesis, accompanied by behaviour deficits in
antibiotic-treated mice. It is worthy of note that these alterations were partially restored by
exercise (running) and probiotics administration. Mechanistically, the above treatments
increased the number of Ly6C(hi) monocytes [60], a cell population involved in immune
surveillance and host defense upon infections and inflammation. Moreover, elimination of
Ly6Chi monocytes by antibody depletion or by using knockout mice resulted in decreased
neurogenesis, whereas the adoptive transfer of Ly6Chi monocytes was able to preserve
neurogenesis after antibiotic treatment [60].

Besides antibiotics, the homeostasis of intestinal microbiota can also be affected by
other drugs and stress factors. Chronic stress can impact gut microbiota diversity, pro-
moting an increase in pathogenic bacteria at the expense of beneficial ones (dysbiosis).
This imbalance, in turn, affects lipid metabolism and decreases the endocannabinoid sig-
nalling system, thus reducing hippocampal AN. Of note, dysbiosis frequently accompanies
ageing and may lead to chronic inflammation and a decrease in pro-neurogenic bacterial
metabolites (such as SCFAs) in the senescent intestine [61].

(d) Dietary changes: High-fat or choline-deficient diets produce a specific gut mi-
crobiota signature in the small intestine and cecum, marked by increased propionate
and butyrate synthesis, mitochondrial biogenesis and generation of reactive oxidative
species (ROS) downstream of SCFAs. All of these variations affect NSCs fate, leading to
premature differentiation and depletion of the NSC pool in the AN niches of high-fat or
choline-deficient-fed mice, ultimately impairing AN [47]. On the other hand, dietary or
probiotic interventions have been indicated as effective therapeutic approaches to fight
stress-associated neurological disturbances operating through the GBA [17]. Importantly, a
clinical study on bacterial strains known to boost neurogenesis in mice reported improved
cognitive functions in adult patients with major depression; while the involvement of
neurogenesis in the effects observed in human subjects can be only indirectly inferred; the
consistency with results gleaned in the preclinical setting is intriguing [62,63]. Furthermore,
with regard to probiotics, it was found that in a rat model of early-life stress, maternal
separation caused a marked decrease in hippocampal BDNF, while the probiotic Bifidobac-
terium breve 6330 increased BDNF to levels observed in control animals, suggesting that
BDNF might be involved in the regulation of anxiety through microbiome-GBA [64]. Thus,
diet and probiotics represent major environmental determinants of the gut flora compo-
sition [65] and, as such, constitute potential tools for the restoration and maintenance of
brain homeostasis. Further information regarding extrinsic modulators of neurogenesis is
found in Section 3.2.
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GBA: Physiological Architecture of the Communication Way between the Intestinal Microbiota and
the Brain

The communication between the gut microbiota and brain through the GBA is the
result of a long-term symbiosis and co-evolution process which involves immunological,
endocrine, neurological, and metabolic signalling pathways [37]. The physiological mech-
anisms and elements underlying this neurogenesis-impacting communication involve:
(a) The parasympathetic system, mainly the vagus nerve; (b) The monoaminergic system;
(c) The neuroendocrine system, mainly the HPA; (d) The immune system; (e) biochemical
metabolites from microbiota metabolism (Figure 2).
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Figure 2. Anatomic-functional structure of the GBA. Dietary factors modify microbiota composition
and metabolism leading to the formation of secondary compounds that signal to the brain. Microbial
inputs are either relayed by the vagus nerve afferent fibers (green route) or travel through the systemic
circulation and the BBB to the SNC, where they perturb the HPA (red route). Vagus nerve affer-
ences and HPA, together with signals from the monoaminergic system and immune/inflammatory
molecules modify neurogenic circuits. More details regarding the brain-gut limb of the axis are in the
main text.

(a) The parasympathetic system: Neural transmission through the vagus nerve can
be activated or inactivated by microbial factors synthesized in the intestine, and represents
the main communication route between gut and brain. For instance, SCFAs produced
during food fermentation can evoke CNS responses by activating vagal chemoreceptors.
One remarkable example of these central responses is the “inflammatory reflex”, whereby
efferent inputs travelling through the vagus nerve inhibit the release of pro-inflammatory
cytokines in the periphery. Anti-inflammatory signals in turn preserve intestinal barrier
integrity, and, by doing so, indirectly affect hippocampal plasticity and neurogenesis [66].
On the afferent side of the vagus nerve-mediated communication, microbial signals may
have a role in supporting cell growth, differentiation and survival during neural develop-
ment [67]. In fact, vagotomized mice displayed a decrease of BDNF mRNA in all areas
of the hippocampus together with a reduced proliferation and survival of newborn cells,
and a decreased number of immature neurons, especially those with complex dendritic
morphology [68]. Thus, gut microbiota may modulate brain BDNF expression (and by
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extension, AN) through neuronal inputs relayed by the vagus nerve. Of note, altered BDNF
expression is a distinctive feature of several neurodegenerative disorders, e.g., Alzheimer’s
disease [69].

(b) The monoaminergic system: Neural-mediated effects of the gut microbiome on
hippocampal neurogenesis may also involve the monoaminergic (especially serotoninergic)
system [37]. Serotonin and its precursor tryptophan are important signalling molecules in
both the CNS and the gastrointestinal tract. Serotonin exerts modulatory effects on stress,
anxiety, mood, and cognition [70,71]; moreover, it participates in hippocampal homeostasis
and promotes hippocampal AN [72]. Investigating the impact of intestinal microbiota on
the hippocampal serotonergic system, Agus et al. 2018 reviewed this topic and explain
that in several experiments, compared to conventionally raised controls, GF male mice
had elevated serotonin levels and increased plasma concentrations of tryptophan [73].
The authors also found that fecal transfer from mice exposed to mild chronic stress to
healthy controls impaired the pro-neurogenic effects of fluoxetine, a standard selective
serotonin reuptake inhibitor previously known to promote the proliferation, differentiation,
and survival of progenitor cells in the hippocampus, and to influence the plasticity of newly
generated neurons [74].

(c) The HPA axis: Evidence exists that metabolites released by intestinal microbes
may enter the bloodstream, cross the BBB and directly reach the brain, where they cause
hormonal interference as well as cognitive changes [75]. Perturbation of the HPA axis in
turn results in intestinal dysfunction via excess release of glucocorticoids (cortisol and cor-
ticosterone), mineralocorticoids (aldosterone) and catecholamines (dopamine, epinephrine
and noradrenaline) [76]. The impact on HPA and the neuroendocrine axis likely represents
a major mechanism for microbiota-related brain and behavioural changes [75].

Neural stem and progenitor cells (NSPC) express the glucocorticoid and mineralcor-
ticoid receptors, and several in vitro studies have highlighted a direct inhibitory effect of
corticosteroids (especially at high doses) on the proliferative and differentiative capacity of
neural precursors [77,78]. Mechanistically, dexamethasone, via the glucocorticoid receptor,
induces the expression of DKK1 (Dikkopf1), an inihibitor of neurogenic signalling through
the Wnt pathway, in human NPSC [79]. Additionally, high dose cortisol, possibly through
the serum and glucocorticoid inducible kinase 1, inhibited Hedghog signalling in human
hippocampal precursor cells, while downstream reactivation of the same pathway by the
smoothened agonist purmorphamine cancelled the inhibitory effect of cortisol on neuronal
differentiation [78]. Also of note, as in other cell types, cortisol elicits neural progenitor
resistance to insulin/insulin-like growth factor (IGF) signalling and blunts the activation of
the major downstream effectors ERK1 and AkT-mTOR. Accordingly, high dose IGF1 re-
versed the differentiation and survival defect displayed by cortisol-exposed rat embryonic
NSC [80]. Given the relevance of the above pathways for (adult and embryonic) neurogen-
esis, and their deep interconnection (i.e., Akt and Wnt signalling converge on the inhibition
of GSK3 beta), it is conceivable that GBA-controlled neurormonal stress responses impact
directly on niche-derived signals and the downstream intracellular pathways that normally
govern neurogenesis.

(d) The immune system: microbes govern the induction, training and function of the
host immune system. Reciprocally, the immune system maintains the symbiotic relationship
of the host with the biological diversity present in the microbiome. When operating opti-
mally, the immune system-microbiota alliance allows the induction of protective responses
to pathogens and the maintenance of tolerance to innocuous antigens [81].

The microglia constitute the most abundant innate immune cell population of the
CNS; microglial cells belong to the macrophage lineage, and comprise between 10% and
a 15% of all glial cells. Microglia is involved in CNS homeostasis, antigen presentation,
phagocytosis, and control of inflammation throughout life [82]. A recent study provided di-
rect evidence that microbiota can influence neurogenesis by modulating the brain immune
system specifically through this cell population [83]. In weaning mice administered a low
dose of dextran sodium sulphate to induce acute colonic inflammation, Salvo et al. 2020
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found that alterations of intestinal bacterial populations were paralleled by behavioural
deficits, diminished neurogenesis in adulthood, and increased hippocampal expression
of genes encoding pattern recognition receptor and T-helper 17 cell-related cytokines.
Moreover, hippocampal microglia displayed an activated phenotype in these animals, as
revealed by increased expression of the gene encoding the ionized calcium-binding adapter
molecule 1(Iba1) [83]. Bacterial-derived SCFAs have been shown to have a key role in
microglial maturation and its efficient functioning. GF mice display a reduction in both
microglial maturity and number, with morphological microglia abnormalities compared
to control mice. Likewise, mice treated with antibiotics show decreased microglial matu-
rity [84]. Furthermore, the microglia of GF mice do not exhibit an activated phenotype
in response to the intrusion of bacteria and viruses, which highlights the critical role of
microbiota in mounting an appropriate immune response in the CNS. Additionally, the
immature phenotype of microglia was also observed following antibiotic-induced micro-
biota depletion in specific pathogen-free mice, albeit with no significant change in the cell
number [85]. Importantly, the administration of SCFAs, food fermentation products of
microbial metabolism, normalized microglia functions in GF mice, indicating that the gut
microbiota is essential for the normal structure and function of this unique immune cell
population.

Besides microglia, astrocytes also participate in the CNS-microbiota cross-talk. Astro-
cytes have significant roles in ion homeostasis, neurotransmitter clearance, maintenance
of the BBB, support of neuronal signalling and relevant to this article, protection against
neuroinflammation [86].

Finally, as an additional line of immune/inflammatory communication between gut
microbes and the brain, evidence exists that bacteria and immunoregulatory factors released
from peripheral sites under the influence of the microbiome can damage the BBB and alter
its physical integrity and transport selectivity, or induce the local release of neuroimmune
substances from the barrier cells, ultimately leading to mental disturbances [86] in a fashion
that does not directly involve resident immune cells.

NPCs express receptors for a wide range of cytokines/chemokines, and the establish-
ment of a pro-inflammatory environment in NSC niches is clearly detrimental towards
neurogenic activities [87]. Accordingly, by transcriptomic profiling of human subependy-
mal zone (SEZ, a major adult neurogenic area) post-mortem tissue samples of a wide age
range, Bitar and colleagues recently reported a marked age-dependent increase of the
inflammatory signature, in parallel with a decrease of neurogenesis-related profiles [88].
Moreover, 3D mixed cultures of temporal lobe biopsies from epileptic patients revealed
enrichment of inflammatory cells and elevated levels of IL-1 and HMGBI (high mobility
group box 1), concomitant with impaired neurogenesis in vitro. Interestingly, the phar-
macological blockade of the two cytokines significantly improved precursor proliferation
and differentiation in 2D and 3D cultures, consistent with the notion that inflammatory
signals impair neurogenesis [89]. While the effect of inflammation and related oxidative
stress on rodent models of neurogenesis has long been established, these recent papers
have the merit of convincingly extending this concept to human samples. Of note, unlike
IL-1 and HMGBI, inflammatory mediators related to cell damage and microglial activation,
other “neuropoietic” cytokines such as LIF, CNTF and CT-1 promote NSC self-renewal
and progenitor cell division and differentiation in mouse brain, likely through the Janus
kinase-signal transducer and activator of the transcription (JAK/STAT) pathway [90].

(e) Chemical mediators from microbioma metabolism: communication between the
gut microbiota and CNS also occurs through microbial-derived intermediates, the most rel-
evant being SCFAs [33], tryptophan metabolites [73] and secondary bile acids [91]. Among
SCFAs, acetate, propionate, and butyrate are the most abundantly present in the intestinal
lumen. These molecules interact directly with enteroendocrine cells, mucosal immune
cells, and vagal nerve terminations to propagate bottom-up signalling [92]. Moreover, since
they can cross the BBB and bind to brain G protein-coupled receptors, SCFAs can act on
both the peripheral and central nervous systems [29], thus exerting their immunomod-
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ulatory and anti-inflammatory influence on brain function at multiple levels [85]. More
specifically, SCFAs modulate the release of neuropeptides such as serotonin and peptide
YY [93], which is potentially relevant for GBA and involved in AN. In addition, SCFAs
can affect the integrity of the BBB and regulate the secretion of 5-hydroxytryptamine by
enterochromaffin cells, which indirectly impacts emotion and memory. Most relevant to
neurogenesis, physiological levels of SCFAs were found to directly stimulate the growth
and differentiation of human neural progenitor cells in vitro, a finding corroborated by
the increased expression of several neurogenesis-related genes (ATR, BCL2, BID CASP8,
CDK2, VEGFA, E2F1, FAS, NDN) in the same experimental setting [94]. These effects on
NPCs could be mediated, at least in part, by the SCFA-stimulated endogenous synthesis of
serotonin in adult NSC [95]; unfortunately, to the best of our knowledge, this intriguing
possibility has yet to be tested.

3. Main Modulators of the Microbiota with Impact on Neurogenesis through the GBA
3.1. Intrinsic Modulators: Ageing, Oxidative Stress and Inflammation

A large body of literature supports the notion that neurogenesis can be influenced
by several pathophysiological conditions including neuroinflammation, oxidative stress,
brain injury, adverse early-life stress, and ageing. Relevant to the present article, many of
these diverse and often synergistic factors may involve gut microbiota in the causal chain
of events leading to impaired proliferation and differentiation of neural precursors in the
brain. As an example, in mice deprived of social interactions post waning, changes in gut
microbiota composition were found to be associated with learning and memory defects,
reduced hippocampal levels of IL-6 and IL-10, and impaired neurogenesis [96]. Other stud-
ies have shown that gut microbial composition alterations are frequently associated with
neuroinflammation, reduced hippocampal neurogenesis and behaviour disorders such as
depression. For instance, Diviccaro et al., 2019 [97] observed in rats treated with finasteride,
an inhibitor of the enzyme 5-α-reductase involved in steroid metabolism, a long-term
inhibitory effect on neurogenesis accompanied by changes in gut microbiota and an inflam-
matory state, together with a depressive-like behavioural profile [97]. Furthermore, lower
levels of butyrate-producing bacteria in the gut [98] and inflammation of different tissues
were found in spontaneously hypertensive rats, suggesting a role for dysbiosis-related
cytokine derangement in vascular dysfunction. Interestingly, primary astrocyte cultures
from these animals exhibit high basal levels of specific inflammatory cytokines, and bu-
tyrate treatment reduces inflammatory markers, again pointing to microbial metabolites as
regulators of neuroinflammation [99].

Thus, changes in the composition and metabolic properties of intestinal bacterial
communities have consistently been associated with brain inflammation, impaired neuro-
genesis, and downstream behavioural defects in rodent models of disease; while microbe-
triggered neuroinflammation may arguably represent a mechanistic explanation for these
findings, however, the actual cause-effect relationships and their molecular underpinnings
require further investigation.

In agreement with Harman’s free radical/oxidative stress theory [100] of ageing, oxida-
tive stress is alleged as the primary contributor to neurogenic and cognitive decline in the
elderly [101]. The rate of oxidative damage increases in senescent tissues, in parallel with a
decrease in the efficiency of the antioxidant and repair mechanisms [102–105]. In a current
model, AN decline in the ageing brain is principally caused by oxidative stress and neu-
roinflammation, which interferes with the pro-neurogenic signalling pathways and factors
implicated in self-renewal and differentiation of NSCs, like SIRT1, NF-κB, Notch, Nrf2, and
Wnt/β-catenin. Along parallel lines of evidence, important changes in the gut microbiota
have been described during ageing. More specifically, age-related gut dysbiosis is deemed a
major contributor to the global inflammatory state of the elderly (known as inflammaging).
Mechanistically, dysbiosis leads to the release of endotoxins such as lipopolysaccharides
and other proinflammatory metabolic products into the systemic circulation via an increase
the intestinal permeability, and hence to the CNS through a damaged BBB. In particular,
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dysbiosis could concur to increase the intestinal and BBB permeability in neurodegener-
ative disease (e.g., Parkinson’s disease), enhancing the entrance of microbiota-produced
substances into the CNS [106] (Figure 3). In ageing and neurodegenerative conditions,
microglia exhibits a highly activated phenotype and secretes neurotoxic pro-inflammatory
mediators, nitric oxide, cytokines and chemokines (e.g., interleukin IL-1β, IL-6, IL-8, tu-
mor necrosis factor-α (TNFα), transforming growth factor-β), and ROS [107,108]. On the
other hand, the “aged”-type gut microbiota is accompanied by increased levels of several
cytokines (e.g., IL6, IL-10, TNF-α, TGF-β), the activation of TLR2, NF-κB and mTOR, and
decreased levels of cyclin E and CDK2. Specifically, in aged humans and in centenarians,
gut bacteria of the phylum Proteobacteria exhibit a positive correlation with IL-6 and IL-8,
while Ruminococcus lactaris correlates with low IL-8 [109]. Thus, even in a small quantity,
typical microbial alterations produced in a senescent intestine are associated with gut and
brain inflammation [81,110,111].
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Figure 3. Central role of the SIRT1-NF-kB signalling pathway in neuroinflammation and its mod-
ulation by dietary, microbial and immune factors from the intestine. Cytokines, bacterial wall
components and ROS activate NF-kB, while polyphenols inhibit proinflammatory signalling via
SIRT-1 mediated inhibitory deacetylation of the factor. Both enteric and BBB act as microbe-modifiable
checkpoints in the intestine-gut communication. See the text for details.

Several lines of evidence point to the NF-kB signalling pathway [112] and the Notch
signalling cascade [113] as central points for the activation of microglia and by extension
to neuroinflammation and its downstream pathologic consequences including impaired
neurogenesis. NF-κB is expressed both in neurons and glia [114,115], and following stress
signals, such as an accumulation of ROS or proinflammatory molecules, the coordinate
action of protein kinases that phosphorylate the NF-kB inhibitor IkB [116], and protein
deacetylases like SIRT-1 (a potent deacetylator of the lysine 310 of RelA/p65 subunit),
modulate the nuclear translocation of the p50/p65 factor and its transcriptional activity
at the promoter regions of proinflammatory genes [117–121]. In particular, deacetylation
by SIRT1 inhibits the proinflammatory transcriptional program activated by NF-kB, mak-
ing this circuit attractive for the interventional control of neuroinflammation [122–124].
As an example, in c-Rel knockout mice, the unbalanced activity of aberrantly acetylated
RelA in the basal ganglia accelerates the senescence of dopaminergic neurons, triggering
Parkinson’s-like changes of the substantia nigra with neuroinflammation, and accumu-
lation of alpha-synuclein and iron [125]. Thus, the manipulation of NF-κB acetylation
and downstream signalling may be valuable in neurodegenerative disorders, including
Alzheimer’s and Parkinson’s disease [126]. Considerable interest exists in developing
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efficient NF-κB inhibitors for neurodegenerative diseases. Strategies that block molecules
upstream of the NF-κB pathway or the associated signalling adapters or those that target
the IκB inhibitory proteins have been shown to exhibit significant propensity for systemic
and off-target toxicities. Strategies that directly target p65/p50 dimers are likely to regain
the homeostasis. Since elevated p65 is highly expressed only in pathologically activated
cells, selective targeting of this NF-κB subunit may yield therapeutic drugs with better
safety profiles. In recent years, chemical derivatives of natural compounds that inhibit
NF-κB have been evaluated for therapeutic potential in neurodegenerative diseases. Mech-
anistically, the active chemical moiety of many natural compounds such as the diterpenes
have been shown to form adducts with select residues of p65, compromising its DNA
binding and transactivation ability [127]. Along these lines of investigation, Lim et al.
isolated anti-inflammatory Lactobacillus johnsonii CJLJ103 (LJ) from human fecal microbiota
and provided it orally to mice treated with LPS. LJ administration improved LPS-induced
memory impairment, inhibited NF-κB activation, enhanced CREB phosphorylation, and
increased BDNF expression in the hippocampus [128]. Other studies have shown that gut
microbiota alteration by extrinsic stress increases NF-kB activation and TNF-α expression,
inducing memory impairment in animal models. Conversely, by restoring gut microbiota
composition, an attenuation of the neuroinflammation symptoms in the hippocampus
was observed [129]. NF-κB overactivation contributes to the transcriptional signature of
ageing [120,130], being relevant for neurogenesis, blocking the reprogramming of aged
cells into the pluripotent stem cell (iPSCs) [131,132]. On the contrary, genetic and pharma-
cological inhibition of the NF-κB signalling pathway prevents age-associated characteristics
in different mouse models from accelerated ageing and prevents cell differentiation in
favor of a pluripotent state [114,133]. Similarly, the activation of Notch signalling promotes
gliogenesis and supports self-renewal of NSCs [134], thus contributing to the maintenance
of the undifferentiated state and the active self-renewing growth of NSCs [135]. Notably,
the Notch signalling pathway is also involved in the regulation of microglia activation in
response to stress situations such as hypoxia by increasing the expression and translocation
of intracellular Notch receptor domain (NICD) together with RBP-Jκ and target gene Hes-1
expression, partly through the crosstalk with NF-κB/TLR4/MyD88/TRAF6/pathways.
Specifically, Notch inhibition reduced NF-κB/p65 expression and translocation [135]. In-
triguingly, Notch and Wnt/β-catenin signalling pathways are essential for the maintenance
of intestinal functions and homeostasis [136,137], and are modulated by both microbiota
and diet [136].

Relevant to the present article, of the few gastrointestinal tract-derived microbes so
far studied, all appear capable of triggering an NF-κB-miRNA-146a signalling pathway
to promote neuropathological changes such as amyloidogenesis, apoptosis, inflammatory
neurodegeneration, synaptic and neurotropic defects. Furthermore, microbial components
secreted in the gut (e.g., neurotoxic exudates, endotoxins and exotoxins, fragilysin, select
lipoglycans, lipopolysaccharide LPS, and microRNA-like small non-coding RNAs) affect
the entire neural system [138,139]. Therefore the modulation of these factors and their
impact on the Wnt/ β-catenin, Notch and NF-κB signalling may serve at multiple levels of
the GBA as a prospective target for inhibiting microglia activation and inflammation, with
the aim of improving neurogenesis in neurodegeneration and ageing [113].

3.2. Extrinsic Modulators

The microbiota-GBA-neurogenesis circuit is amenable to control by extrinsic modulators
that could be exploited therapeutically. These include lifestyle, physical exercise, and above
all diet modifications, for example through caloric restriction or diet component adjustments.

3.2.1. Antioxidants and Anti-Inflammatories: Polyphenols

Several studies indicate that dietary antioxidants can attenuate oxidative damage
and preserve cognitive function [140] in the ageing brain by suppressing the expression of
senescence-related genes [140,141]. A decrease in AN accompanies age-related cognitive
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decline and correlates with reduced concentrations of antioxidants in both serum [142] and
brain tissue [142], thus providing a strong rationale for antioxidant supplementation [143].
Polyphenols (e.g., resveratrol) are plant-derived natural compounds endowed with antioxi-
dant and anti-inflammatory properties and are able to cross the enteric and BBB [144–146].
The antioxidant activities of polyphenols are manifold: they (a) directly quench ROS [147],
(b) inhibit the major ROS-forming enzymes, including monoamine oxidase or xanthine
oxidase [148], (c) chelate metal ions (iron and copper) involved in ROS reactions [149], and
(d) regulate the redox metal homeostasis and prevent the metal deposition and neurotoxic-
ity, with important implications for neurodegenerative diseases as dementia, Alzheimer’s
disease and Parkinson’s disease [150]. Most important, polyphenols can modulate sig-
nalling pathways and factors relevant to neurogenesis, including SIRT1, NF-κB, Nrf2 and
Wnt/β-catenin [46], and are under active investigation as adjuvants in neurodegenerative
disorders with impaired AN. At the opposite end of the GBA, polyphenols modify mi-
crobiota composition by favouring the expansion of some bacterial species and inhibiting
others. Furthermore, gut bacteria can metabolize polyphenols into neurotransmitters and
bioactive metabolites with pro-survival and anti-inflammatory effects on neurons [85]. The
effect of polyphenols on intestinal microbes and their recently highlighted importance as
intermediate substrates for microbial synthesis of bioactive factors adds a new dimension to
the long described neuroprotective and proneurogenic action of these natural compounds,
opening them to further research aimed at microbiota and GBA-centered interventions
against neurodegeneration and brain ageing symptoms [93].

3.2.2. Polyunsaturated Fatty Acids (PUFAs)

PUFAs are essential unsaturated fatty acids with more than one double bond (C=C).
They are important nutrients that must be obtained primarily from the diet or from supple-
ments as mammals cannot synthesize them de novo. Long chain PUFAs can be divided into
two main biologically important groups: n-6 PUFAs (omega-6) and n-3 PUFAs (omega-3),
with their first double bond at C6 or C3 counting from the methyl C, respectively. Besides,
Linoleic acid (n-6 PUFA) and α-linolenic acid (n-3 PUFA) are essential fatty acids, as humans
can’t produce them and are the precursor of other important PUFAs [151,152]. Among the
nutritionally important PUFAs, α-linolenic acid, eicosapentaenoic acid and docosahex-
aenoic acid are highly concentrated in the brain and have antioxidant, anti-inflammatory
and antiapoptotic effects [153]. Relevant to the present article, dietary PUFAs have a signifi-
cant impact on the intestinal microbial ecosystem [154]. In mice engineered to overproduce
n-6 PUFAs and to increase the n-6 to n-3 ratio, signs of systemic inflammation have been
reported in association with evidence of intestinal dysbiosis (increased Proteobacteria while
reduced Bacteroides and Actinobacteria) and abnormal gut permeability. In the same
study, instead, transgenic enhancement of n-3 PUFAs tissue content inhibited LPS induced
inflammation, preserved and stimulated the growth of Bifidobacterium, and preserved the
intestinal barrier [155]. While the authors focused their attention on metabolic endotoxemia
as the main dysbiosis-associated disorder in their transgenic animals, this work outlines a
possible PUFA-microbiota-brain signalling circuitry to be further explored.

3.2.3. Probiotics/Prebiotics

Natural bioactive molecules such as probiotics and prebiotics can modify the gut
microbiota composition and are therefore attracting increasing interest for the adjuvant
treatment of an array of dysbiosis-associated disorders, from intestinal inflammation to
autism spectrum disorders [156]. According to a criteria established by the WHO, a pro-
biotic is defined as a live organism which provides a benefit to the host when provided
in adequate quantities [157]. Numerous organisms meet the criteria, but the leading ones
are S. boulardii, the Gram-negative E. coli strain Nissle 1917, various lactic-acid-producing
lactobacilli strains, and a number of bifidobacteria strains (for a list see Table 1 of [158]).
Instead, prebiotics are defined by the International Scientific Association of Probiotics and
Prebiotics as a selectively fermented ingredient that results in specific changes in the compo-
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sition and/or activity of the gastrointestinal microbiota, thus conferring benefits upon host
health [159]. The majority of them are a subset of carbohydrate groups, mostly oligosac-
charide carbohydrates such as fructo-oligosaccharides and galacto-oligosaccharides. The
effects of prebiotics on human health are mediated through their degradation products by
microorganisms; fermentation of prebiotics by gut microbiota produces SCFAs, including
lactic acid, propionic acid, and butyric acid. This last, for example, influences intestinal
epithelial development. Since SCFAs can diffuse to blood circulation through enterocytes,
prebiotics have the ability to affect not only the gastrointestinal tract but also distant site
organs such as the brain [160], for example by the vagus nerve [161]. Some prebiotics, such
as fructo-oligosaccharides and galacto-oligosaccharides, have regulatory effects on BDNF,
neurotransmitters (e.g., D-serine), and synaptic proteins (e.g., synaptophysin and NMDA
receptor subunits) [162,163]. Other beneficial effects of probiotics involve the maintenance
of immune homeostasis through the block of pathogen growth via the release of lactic acid,
the inhibition of systemic immune responses, and the preservation of intestinal barrier
integrity [164,165]. Relevant to the present article, the administration of probiotics has been
reported to impact cognition and behaviour; for example the combination of Lactobacillus
helveticus and Bifidobacterium longum decreases anxiety in rats and humans [166]. In aged
rats, the administration of VSL#3, a probiotic mixture, reduces inflammation by reducing
IL-10 protein expression and contributes to the increase BDNF and synapsin mRNA in the
hippocampus [167]. In a study investigating the effect of Lactobacillus strains on cognitive
decline in ageing-accelerated mice, a diet supplemented with Lactobacillus paracasei K71
improved cognitive performance probably through an upregulation of hippocampal BDNF
expression [168]. In rats chronically fed with a chronic high-fat diet, the supplementation
with Lactobacillus paracasei HII01was able to increase hippocampal plasticity and attenuate
brain mitochondrial dysfunction and microglial activation [169]. The administration of
SLAB51, a probiotic formulation of lactic acid bacteria and bifidobacteria, activates SIRT1
and promotes antioxidant and neuroprotective effects in a mouse model of Alzheimer’s
disease [170]. All together these results seem to indicate that probiotics may be beneficial
in maintaining brain function; although a solid link with neurogenesis is still missing, the
generation of SCFAs modulation of oxidative stress and inflammation and the upregulation
of hippocampal BDNF all represent potential “pro-neurogenic” activities of probiotics and
prebiotics to be further investigated in the appropriate experimental models [61].

3.2.4. Physical Exercise

Physical exercise and the gut microbiome have been independently described to
prevent age-related global brain atrophy and both increase brain volume in the frontal
lobes and left superior temporal lobe, which are important for cognition, attention and
memory [171]. Data suggest that within the hippocampus, the dentate gyrus is susceptible
to exercise intervention, with an increase in exercise-related neurogenesis. Specifically in
humans, aerobic exercise was linked with the upregulation of serum levels of BDNF (a me-
diator of neurogenesis in the dentate gyrus) and with greater hippocampal volume and a
subsequent decrease in psychological disorders (e.g., depression, anxiety) [172]. Moderate-
intensity aerobic exercise training has also been described to improve mood and brain
functional activation in older adults aged 60–79 years [173,174]. To date, specific mecha-
nisms linking exercise with GBA and the brain have not been described; however, exercise
appears to alter the gut biodiversity in both quantitative and qualitative ways [175]. Aero-
bic exercise has been posited to increase microbiome diversity, alter functional metabolism
and modify the by-products released by intestinal bacteria [176]. More specifically, it has
been demonstrated that aerobic exercise improves microbiome diversity in humans increas-
ing genera of the Firmicutes phylum (specifically, Faecalibacterium prausnitzii and species
from the genus Oscillospira, Lachnospira, and Coprococcus), which produce an enriched
profile of SCFAs [177]. Some of the identified SFCAs (acetate, propionate, and butyrate,
which are produced by gut microbes from protein, fibers, and nondigestible starches [178]),
are essential to neuro-immunoendocrine regulation. For example, SCFAs influence neuroin-
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flammation by affecting glial cell morphology and function as well as by modulating the
levels of neurotrophic factors, increasing neurogenesis, contributing to the biosynthesis of
serotonin, and improving neuronal homeostasis and function [179]. Additionally, exercise-
induced changes in intestinal microbiota may improve the function of the gut-vascular
barrier (GVD), possibly by increasing the intestinal content of the bile acid analogue and
farnesoid X receptor agonist obeticholic acid. In view of the recently discovered functional
linkage between GVD with the BBB [180], a positive impact of these changes on brain
function and in particular on neurogenic activities in BBB-supported niches could easily be
envisaged [181]. At the moment, however, the possibility that this gut-centered circuitry
contributes to neurogenesis regulation by physical exercise remains speculative.

4. Future Challenges and Conclusions

Although much evidence points to a pivotal role for intestinal microbiota and bacteria-
derived metabolites in the gut-brain communication axis and in particular in the modula-
tion of AN, the consolidation of this critical knowledge and its possible translation to the
clinical practice still face a number of daunting challenges. The first challenge deals with
the lack of reliable approaches to reproducibly assess AN in humans, and above all in living
individuals. This limitation applies to the entire AN research field, to the point that it was
not until recently that the question as to whether AN is relevant to human health has begun
to be settled [182,183]. Even in the most rigorous studies, adult neurogenesis is assessed by
the immuno-histochemical detection of putative markers for neural precursors and imma-
ture neurons whose reliability is mainly inferred from animal models. Additionally, since
no prospective labelling is possible in human samples, uncertainty exists as to whether
neuroblasts/immature neurons will fully differentiate and integrate long term in the preex-
isting neural network [184]. Research on human adult neurogenesis and its modulation
by endogenous and exogenous factors including nutrition, microbiota and lifestyle would
benefit greatly from the possibility of detecting and measuring the process non-invasively.
In this respect, initial enthusiasm resulting from the possibility (reported some 15 years
ago) of detecting NPCs by nuclear resonance spectrometry brain imaging in vivo [185] has
not been followed up by convincing evidence. The development of biochemical markers
and/or imaging approaches to quantify new neurons/neural precursors and evaluate
their functionality, coupled with advances in metagenomics and metabolomics techniques
for the individualized characterization of intestinal microflora (for which this article is
concerned) will hopefully help overcome these seemingly insurmountable obstacles.

A second challenge comes from the elucidation of the specific molecular mechanisms
underlying the influence of gut microbiota on neurogenesis, even in the experimental
(i.e., animal) setting. In fact, many of the currently hypothesized mechanism are chains
of logical connections between phenomena (i.e., microbiota regulation by dietary factors
→ microbial control of neuroinflammation → modulation of neurogenesis by inflammag-
ing) occurring at the two ends of the GBA, without any mechanistic linkage being truly
demonstrated. Related to this, distinguishing direct (i.e., affecting neuronal precursors)
and indirect (i.e., resulting from systemic neurohormonal or even behavioural response)
effects of intestinal bacteria on neurogenesis will likely require further theoretical and
methodological efforts.

Specifical future lines of research could clarify how selected molecular targets involved
in neurogenesis, such as NF-κB and SIRT1, are susceptible to modification by diet com-
ponents or microbiome metabolites, as well as how multiple molecular pathways act in a
synergic crosstalk. Overall, an integrative approach appears advisable based on the study
of the topic from different perspectives. More basic research on animal and cell culture
models is needed to characterize compounds potentially active on neurogenesis and gut
microbiota in terms of dosing, bioassimilation and the combinatorial effect, both in physio-
logical and pathological settings. On the other hand, more clinical research is needed (with
the limitations acknowledged above), to clinically test the efficacy of promising molecules,
particularly antioxidants and anti-inflammatory natural compounds of microbial origin,
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for their neuroprotective and possibly neurogenic effects. The ultimate goal (or hope) of
this future research will be to establish the basis for the discovery of advanced therapeutics
and the identification of novel biomarkers, which may help with early intervention and the
prevention of brain disorders in which neurogenesis likely plays an essential role.
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AN adult neurogenesis
BBB blood brain barrier
BDNF brain-derived neurotrophic factor
BrdU bromo-2-deoxyuridine
CREB cAMP response element-binding protein
GBA gut-brain axis
GVD gut-vascular barrier
CNS central nervous system
GF germ-free
HPA hypothalamic–pituitary–adrenal axis
IGF insulin-like growth factor
IL interleukin
NPCs neural progenitor cells
NSCs neural stem cells
LJ Lactobacillus johnsonii CJLJ103
PUFAs Polyunsaturated fatty acids
ROS reactive oxygen species
SEZ subependymal zone
SCFAs short-chain fatty acids
TNFα tumor necrosis factor-α
TLR2 toll-like receptor
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