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Background: Multiple chemical sensitivity (MCS) is a chronic condition with somatic, cognitive and affective
symptoms that follow contact with chemical agents at usually non toxic concentrations. We aimed to assess
the role of genetic polymorphisms involved in oxidative stress on anxiety and depression in MCS. Materials
& methods: Our study investigated the CAT rs1001179, MPO rs2333227, PON1 rs662 and PON1 rs705379
polymorphisms in MCS. Results: The AG genotype of the PON1 rs662 and the TT and CT genotypes of the
PON1 rs705379 were involved in anxiety and depression. Discussion: These results are in line with existing
evidence of PON1 involvement in MCS and suggest a further role of this gene in the exhibition of anxiety
and depression in this disease.
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Multiple chemical sensitivity (MCS) is a chronic syndrome characterized by different somatic, cognitive and
affective symptoms occurring after exposure to chemical agents at concentrations that are not usually associated
with toxic reactions in the general population [1,2]. MCS etiology and pathogenesis are not clarified, with no
laboratory abnormality being consistently associated with it. It mainly affects women between 40 and 50 years [3,4],
without differences in ethnicity, education and economic status [5]; its prevalence is not well defined since it is
not a universally accepted diagnosis [6–8]. Common symptoms include weakness, lethargy, sore throat, hyperosmia,
dyspnea, dizziness, headache, confusion and difficulty concentrating [1].

The Cullen Criteria were extended by Lacour [9], according to whom MCS is a chronic condition that causes
significant lifestyle or functional impairments for at least 6 months (a); CNS recurrently symptoms are related to
self-reported odor hypersensitivity (b); at least one CNS symptom is associated to at least one symptom of another
organ/system (c); symptoms are related to the exposure to low levels (d) of multiple unrelated chemicals (e) and
improve or are resolved when exposure is avoided (f ).
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Table 1. Genes possibly involved in the manifestation of psychological symptoms in multiple chemical sensitivity.
Gene Name Function Mechanisms involved Ref.

PON1 Paraoxonase-1 Antioxidant activity of HDL and protection of
LDL from oxidative modification
Biodegradation of organophosphates and
oxidized phospholipids.
Hydrolysis of pesticides and nerve gases

Increase of lipid peroxidation, oxidative stress and
hydroperoxide lipids. Differences in the regulation of
enzymatic activity, expression and polymorphisms have
been reported in most psychiatric disorders

[16–20]

CAT Catalase Converts hydrogen peroxide into water and
oxygen.
Clearance of reactive oxygen species (ROS)

Increased ROS and oxidative stress. Differences in the
regulation of enzymatic activity have been reported in
patients with GAD and depression

[21–23]

MPO Myeloperoxidase Peroxidase enzyme expressed in neutrophil
granulocytes produces hypohalous acids to
carry out their antimicrobial activity. Involved
in inflammation regulation and oxidative
stress.

The increase in activity is associated with a rise of
oxidative stress, inflammation and mood disorders

[24–29]

SOD2 Manganese-dependent
superoxide dismutase

Clear mitochondrial ROS Increased ROS and oxidative stress. Differences in the
regulation of enzymatic activity have been reported in
patients with anxiety and depression

[21–23]

GSTM1,
GSTT1,
GSTP1

Glutathione S-transferase A family of isozymes involved in the
detoxification of xenobiotics by catalyzing the
nucleophilic attack by GSH

Increased oxidative stress and inflammatory processes.
Differences in the regulation of enzymatic activity and
polymorphisms have been reported in mood disorders

[30]

Anxiety and depression have been attributed to the social and work hardships related to the disease, and frustration
of being affected by medically unexplained conditions [10]. Besides this, some authors argued that MCS diagnosis
is a misdiagnosis of an unrecognized psychiatric disorder [11,12] or a ‘psychosomatic’ illness [13,14]. These theses are
supported by a remarkable overlap between the diagnostic criteria of somatoform disorders and MCS symptoms [15].
Furthermore, anxiety and depression may also constitute a principal component between MCS symptoms, even
relatively to genomic correlates (Table 1), although no somatic origins of these symptoms have been demonstrated.

Individual responses to chemicals are so varied that over time a very wide range of nosological terms and
entities have been used to describe sensitivity to environmental factors and chemical intolerances, including
‘chemical intolerance’, ‘environmental sensitivities’ [10], ‘ecological illness’, ‘environmental illness’ and ‘idiopathic
environmental intolerances’ (IEI), a term coined by the WHO in 1996, which also refers to hypersensitivity to
electromagnetic fields, radio signals, loud noise and intolerance to odors [14]. Today, considering that symptoms do
not always occur in response to a chemical, MCS is viewed as an aspect of the IEI, and in the scientific literature,
the terms MCS and IEI are mostly interchangeable [13,14].

Patients with MCS have an increased likelihood of having a history of a psychiatric disorder [31] and a very high
rate of psychiatric comorbidity. MCS patients significantly showed higher rates of depression and anxiety than the
general population, with more frequent lifetime diagnoses of major depressive disorder and/or generalized anxiety
disorder [12,32,33]. Other reported frequent psychiatric comorbidities were histrionic personality disorder [15,34],
panic attacks [32], as well as trauma and childhood abuse [13,35].

MCS has different biological correlates. Alterations of the nitric oxide/peroxynitrite (NO/ONOO−) cycle were
related to the formation of peroxynitrite, and subsequent neuronal sensitization and neuroinflammation involved
in MCS [36]. Oxidative stress has been implicated in the etiopathogenesis of both MCS and other psychiatric
disorders [16,17,37], in which the SOD2 [21–23] and GSTM1 [30] genes were involved. Furthermore, oxidative stress
has been related to mitochondrial dysfunction [38,39] and changes in neuroplasticity [40,41].

Genes with a role in oxidative stress, including paraoxonase1 (PON1) [42,43], catalase (CAT) [21–23,40,4144,45]

and myeloperoxidase (MPO) [46,47] were consistently involved in the pathophysiology of anxiety and depression.
Changes in the activity of paraoxonase have been considered possible pathophysiological correlates of MCS [48].

The PON1 gene is located on the chromosome 7 long arm (7q21.3-22.1) [49] and encodes paraoxonase, a
calcium-dependent glycoprotein synthesized in the liver and secreted in the blood. It bounds the HDL, and is re-
sponsible for most of their antioxidant activity, protecting the LDL from oxidative modification, and counteracting
the formation of atherosclerotic plaques. PON1 plays a key role in the biodegradation of various organophosphates
(OPs) and oxidized phospholipids and participates in hydrolysis of pesticides and nerve gases [50]. PON1 A-575G
polymorphism has been related to the magnitude of paraoxonase activity [51], while the C-108T polymorphism to
variation in the amount of its activity [52]. Different antidepressants (i.e. mirtazapine and escitalopram), displayed
a potential inhibitory effect on PON1 activity in vitro [53], as well as on 6-phosphogluconate dehydrogenase and
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glucose-6-phosphate dehydrogenase enzymes [54]. Also, other drugs, including some sulfonamides, antihyperten-
sives, antineoplastics, some quinones, benzenesulfonamide derivatives and usnic and carnosic acids showed potential
inhibitory effects on PON1 [55–60].

PON1 A-575G heterozygotes are more likely to present neurological symptoms, which were more common in
Gulf War Syndrome veterans [61–63]; a lower mean activity of the PON1 enzyme has been reported in post-traumatic
stress and attention deficit and hyperactivity disorders [64]. Some biological correlates of post-traumatic stress could
be shared with MCS, fibromyalgia and chronic fatigue syndrome [65,66].

Patients with bipolar disorder showed diminished PON1 activity correlated with A-575G polymorphism, which
suggested that these polymorphisms may play a role in the pathophysiology of bipolar disorder, type I, due to the
decreased ability to cope with stress oxidative [18]. Furthermore, A-575G polymorphism was significantly associated
with depressive symptoms in women [38]. PON1 polymorphisms, activity and expression have been correlated with
the diagnosis of schizophrenia [67–69], first-episode psychosis [19] and mood disorders [20,42,70].

MPO (myeloperoxidase) is a heme enzyme expressed in brain cells [71] and immune cells; it is involved in
inflammation regulation and oxidative stress [72]. Its activation is correlated to hypochlorous acid and other toxic
oxidants production, with subsequent antimicrobial function [24,25,73]. Low MPO levels correlated with reduced
risk of inflammatory states [26] and depression [74–77]. MPO deficiency also attenuates cytokine production [27].
MPO has been associated with oxidative stress and inflammation and involved in recurrent MDD and related
cognitive dysfunction [28,29], and in bipolar I disorder [78].

CAT (Catalase) is one of the primary antioxidant enzymes against superoxide. It catalyzes the decomposition
of hydrogen peroxide to oxygen and water and plays an important role in reactive oxygen clearance [79]. Different
studies have described CAT polymorphisms and activities with various pathophysiological states and diseases [80],
including major depressive [44] and bipolar [81] disorders, and schizophrenia [82].

Our main hypothesis was that PON1, CAT and MPO polymorphisms might have a role in the pathophysiology
of anxiety and depressive symptoms in patients with MCS. The main objective of this study was to identify gene
polymorphisms that constitute predictors of anxiety and depressive symptoms in patients with MCS.

Materials & methods
This was a single-center observational study conducted at the Centre of Personalised Medicine, "Sant’Andrea"
University Hospital, Rome, Italy, during the years 2014–2015. All admitted patients required a medical consult
and a pharmacogenomics assessment for previous and proven drug treatment resistance. All those who manifested
their interest in participating were considered possible candidates.

Inclusion criteria were a manifestation of MCS syndrome according to the Cullen [1] and Nethercott et al. [83]

criteria for MCS extended by Lacour (see description above) [9]; age ≥18 years; and ability to provide valid informed
consent. Exclusion criteria included pregnancy, recent brain injury, severe medical illness, DSM-5 [84] diagnoses of
schizophrenia-spectrum disorder, substance use disorder, other acute psychiatric disorders, and inability to provide
informed consent. Based on our inclusion and exclusion criteria, the final sample included 129 of 173 assessed
patients.

During the medical consult, the physician investigated the presence of MCS symptoms through the compilation
of a checklist of symptoms as described in another study of our group [85]. Participants underwent venous blood
sampling for functional biochemical analyses. All patients were fully informed about the observational nature of
the study, and each provided written informed consent.

Genetic analyses
Genomic DNA was isolated from peripheral blood samples using the X-tractor Gene system (Corbett Life Science,
Australia), according to the manufacturer’s protocol. We studied the following polymorphisms: CAT C-262T
(rs1001179), MPO G-463A (rs2333227), PON1 A-575G (rs662) and PON C-108T (rs705379). We performed
genotyping with the MassARRAY system, in other words, a MALDI-TOF mass spectrometry platform by the
iPLEX chemistry (Agena Bioscience, CA, USA). We used the Agena Bioscience Assay Design 4.0 software to design
the locus-specific amplification and extension SNP primers (Table 2), considering a success rate of 97.9–100% for
the genotype call of each SNP.
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Table 2. Amplification and extension primers used in the multiplex genotyping assay.
Gene name Polymorphism Oligonucleotides (F: forward; R: reverse; E: extension)

CAT C-262T rs1001179 F
R
E

ACGTTGGATGAGCAATTGGAGAGCCTCGC
ACGTTGGATGAGGATGCTGATAACCGGGAG
AGCCCCGCCCTGGGTTCGGCTAT

MPO G-463A rs2333227 F
R
E

ACGTTGGATGCTCTAGCCACATCATCAAT
ACGTTGGATGGGCTGGTAGTGCTAAATTC
CTTTGGGAGGCTGAGGC

PON1 A575G rs662 F
R
E

ACGTTGGATGTAGACAACATACGACCACGC
ACGTTGGATGGATCACTATTTTCTTGACCC
TTTCTTGACCCCTACTTAC

PON C-108T rs705379 F
R
E

ACGTTGGATGCTTCTGTGCACCTGGTCGG
ACGTTGGATGTGCTGGGGCAGCGCCGATT
CGCCGATTGGCCCGCCCC

Statistical analyses
We used the IBM SPSS R© Statistics 24.0 (Armonk, NY, USA: IBM Corp. 1989, 2016) for all analyses, except for
the Hardy–Weinberg equilibrium deviation test, for which we used an online calculator based on the methods of
Rodriguez et al. [86,87].

We performed descriptive statistics with a one-way analysis of variance for the continuous variables and the
Chi-square (χ2) test for categorical variables. We performed a binary logistic regression with the ’Enter’ method,
using the presence/absence of both generalized anxiety and depressed mood as the dependent variable, and the
polymorphisms of genes involved in cellular oxidative stress (PON1 A575G, PON1 C-108T, CAT C-262T and
MPO G-463A) as the independent, categorical variables. We set the cut off for statistical significance at (two-tailed)
p <.05.

Results
Study participants were 129 MCS patients (112 women and 17 men) with a mean age of 51.58 years (SD = 11.34).
The group of women did not differ significantly from the group of men in age (F = 0.603; p = 0.439). The sample
showed significant prevalence of women (χ2 = 69.961; p <.001). Patients most frequently showed hyperosmia
(96.8%), asthenia (82.4%) and dyspnea (81.6%). We reported the main clinical characteristics of this sample
in another study on MCS [85]. Considering the whole sample, 70 patients (54.26%) had comorbid anxiety and
depression (63 women, 7 men; mean age = 51.75 years, SD = 10.07); 7 patients showed generalized anxiety but not
depressed mood; one patient had depressed mood but not anxiety; the other 51 patients did not show generalized
anxiety nor depressed mood. We summarized the sociodemographic and clinical characteristics of the study sample
in Table 3.

The analyzed SNPs were in Hardy–Weinberg equilibrium. Logistic regression showed that our model was
significant for a good predictability of comorbid anxiety and depressive symptoms (Omnibus Tests of Model
Coefficients χ2 = 22.263; p = 0.004) and explained over 25% of the variance (Nagelkerke R2 = 0.253). Overall,
this logistic regression model proved to be useful, with good positive predictive value (66.4%). PON1 A575G and
PON1 C-108T polymorphisms were significant predictors of comorbid anxiety and depressed mood. The odds
ratio (OR) for PON1 A575G AG versus GG was 10.403 (unstandardized coefficient B = 2.342; p = 0.011; 95%
CI: 1.71–63.43), while that of AG versus AA was 4.04 (B = 1.397; p = 0.008; 95% CI: 1.44–11.36). The overall
effect of PON1 A-575G polymorphism on anxiety and depressive symptoms was significant (Wald = 9.646; df: 2;
p = 0.008). The OR for PON1 C-108T CT versus CC was 5.559 (B = 1.715; p = 0.006; 95% CI: 1.63–19), and
for TT versus CC was 4.814 (B = 1.571; p = 0.019; 95% CI: 1.3–17.86). The overall effect of PON1 C-108T
polymorphism on anxiety and depressive symptoms was significant (Wald = 7.925; df: 2; p = 0.019). The logistic
regression showed that CAT C-262T and MPO G-463A polymorphisms did not predict comorbid anxiety and
depressed mood (Table 4).

Discussion
Our results showed that two polymorphisms of the PON1 gene, which is involved in cellular detoxification, predict
comorbid anxiety and depressed mood in patients with MCS. Our sample was mainly composed of women, in line
with many reports of the high prevalence of MCS in middle-aged women in the USA, Europe and Japan [88–90].
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Table 3. Demographic and clinical characteristics of the study sample.
Sample Men Women Test p-value

Number 17 112 � 2 = 69.961 �0.001

Age (standard deviation) 49.59 (10.67) 51.89 (11.46) 1-way ANOVA F = 0.603 0.439

Symptom Absent (%) Present (%) χ2 p-value

Hyperosmia 3.2 96.8 109.512 �0.001

Asthenia 17.6 82.4 52.488 �0.001

Dyspoea 18.4 81.6 49.928 �0.001

Cough 26.4 73.6 27.848 �0.001

Cephalalgia (headache) 28 72 24.2 �0.001

Tachypnea 28.8 71.2 22.472 �0.001

Attention deficit 30.4 69.6 19.208 �0.001

Sense of confusion 33.6 66.4 13.448 �0.001

Nausea 35.2 64.8 10.952 0.001

Sense of obnubilation 36.8 63.2 8.712 0.003

Sense of suffocation/choking 41.6 58.4 3.528 0.06

Dyspepsia 41.6 58.4 3.528 0.06

Sleep disturbance 42.4 57.6 2.888 0.089

Paresthesia 44 56 1.8 0.18

Generalized anxiety 44.8 55.2 1.352 0.245

Decision-making deficit 46.4 53.6 0.648 0.421

Arthromyalgia 47.2 52.8 0.392 0.531

Gastric pyrosis 48.8 51.2 0.072 0.788

Pruritus 49.6 50.4 0.008 0.929

Depressed mood 49.6 50.4 0.008 0.929

Dizziness 53.6 46.4 0.648 0.421

Rash 54.4 45.6 0.968 0.325

Fibromyalgia 55.2 44.8 1.352 0.245

Working memory deficit 55.2 44.8 1.352 0.245

Erythema 55.2 44.8 1.352 0.245

Diarrhea 57.6 42.4 2.888 0.089

Meteorism 57.6 42.4 2.888 0.089

Motor incoordination 58.4 41.6 3.528 0.06

Palpitations 58.4 41.6 3.528 0.06

Chest tightness 64 36 9.8 0.002

Vomiting 64 36 9.8 0.002

Hyporexia 66.4 33.6 13.448 �0.001

Trembling 70.4 29.6 20.808 �0.001

Pressure peaks 70.4 29.6 20.808 �0.001

Gastro-esophageal reflux 72 28 24.2 �0.001

Cystitis 73.6 26.4 27.848 �0.001

Recurrent fever 76 24 33.8 �0.001

The AG genotype of the A-575G polymorphism of the PON1 gene has about tenfold probability of manifestation
of anxiety and depression compared with the GG genotype. The TT genotype of the C-108T polymorphism of the
PON1 gene also showed higher (4.5) probability of depressed mood and anxiety compared with the CC genotype,
and the CT versus CC also showed a risk higher than 5.5-fold.

This is in-line with the existing evidence of involvement of PON1 in the manifestation of MCS [48], although
there are some inconsistent findings in this regard [91–93]. However, our results suggest an additional and specific
role for both the PON1 A-575G and C-108T polymorphisms in the exhibition of anxiety comorbid with depressed
mood in MCS.

future science group 10.2217/pme-2019-0141
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Table 4. Logistic regression model for predictors of comorbid generalized anxiety and depressed mood.
Variables in the equation B SE Wald df p-value Exp(B) 95% CI for EXP(B)

Lower Upper

Step 1
Contrast 1

CAT C262T (CC) 2.736 2.000 0.255

CAT C262T (CT) 0.304 0.464 0.429 1.000 0.512 1.355 0.546 3.366

CAT C262T (TT) −1.926 1.345 2.051 1.000 0.152 0.146 0.010 2.034

PON1 A575G (AA) 9.646 2.000 0.008

PON1 A575G (AG) 1.397 0.527 7.027 1.000 0.008 4.043 1.439 11.356

PON1 A575G (GG) −0.945 0.861 1.204 1.000 0.272 0.389 0.072 2.102

PON1 C108T (CC) 7.925 2.000 0.019

PON1 C108T (CT) 1.715 0.627 7.487 1.000 0.006 5.559 1.627 18.996

PON1 C108T (TT) 1.571 0.669 5.516 1.000 0.019 4.814 1.297 17.864

MPO G463A (AA) 2.876 2.000 0.237

MPO G463A (AG) −0.381 1.340 0.081 1.000 0.776 0.683 0.049 9.448

MPO G463A (GG) 0.412 1.336 0.095 1.000 0.758 1.509 0.110 20.703

Constant −1.530 1.462 1.096 1.000 0.295 0.217

Step 1
Contrast 2

CAT C262T (TT) 2.736 2.000 0.255

CAT C262T (CT) 2.230 1.370 2.647 1.000 0.104 9.298 0.634 136.423

PON1 A575G (GG) 9.646 2.000 0.008

PON1 A575G (AG) 2.342 0.922 6.447 1.000 0.011 10.403 1.706 63.427

PON1 C108T (TT) 7.925 2.000 0.019

PON1 C108T (CT) 0.144 0.519 0.077 1.000 0.781 1.155 0.418 3.193

MPO G463A (GG) 2.876 2.000 0.237

MPO G463A (AG) −0.793 0.468 2.875 1.000 0.090 0.453 0.181 1.132

Constant −2.418 1.597 2.294 1.000 0.130 0.089

Omnibus tests of model coefficients Model summary Hosmer and Lemeshow Test

Chi-square df p-value - 2 Log
likelihood

Cox & Snell
R Square

Nagelkerke R
Square

Chi-square df p-value

Step 1 22.263 8 0.004 123.358 0.188 0.253 1.193 8 0.997

Classification

Observed Predicted, selected cases

Comorbid AD Percentage
correct

No Yes

Step 1 Comorbid
AD

No 25 20 55.6

Yes 16 46 74.2

Overall percentage 66.4

Dependent variable: Comorbid generalized anxiety and depressed mood. Independent variables entered on Step 1: CAT C262T, MPO G463A, PON1 A575G and PON1 C108T polymor-
phisms. Step 1 contrast 1: Contrast reference categories are: CAT C262T (CT vs CC; TT vs CC); PON1 A575G (AG vs AA; GG vs AA); PON1 C108T (CT vs CC; TT vs CC) and MPO G463A
(AG vs AA; GG vs AA). Step 1 Contrast 2: Contrast reference categories are: CAT C262T (CT vs TT); PON1 A575G (AG vs GG); PON1 C108T (CT vs TT) and MPO G463A (AG vs GG). Bold
italic font denotes p-values significant for less than 0.05.
AD: Anxiety and depressed mood; B: Unstandardized coefficient; df: Degree of freedom; Exp(B): Odds ratio; SE.: Standard error.

In particular, the condition of heterozygosity of the A-575G polymorphism of PON1 (rs622) and the presence
of the T allele in the genotype of the C-108T polymorphism (rs705379) are more frequently correlated with the
manifestation of anxiety and depression in subjects with MCS. Why the heterozygous condition of the rs622 can
be more at risk for anxiety/depression in MCS should be the subject of further studies. A possible hypothesis is
that phenomena due to linkage disequilibrium may be involved. Another aspect concerns the protective role of the
C allele in the rs705379 genotype on the manifestation of anxiety and depression in MCS, which is also worthy of
further scientific studies.

A deficit in detoxifying OPs has been hypothesized in the etiopathogenesis of MCS; this has been confirmed by
data showing an association between PON1 polymorphisms, MCS [48], and outcome of OP poisoning [94].
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Low PON1 activity in patients with anxiety correlated with high levels of lipid peroxidation, oxidative stress
and hydroperoxide lipids, and has been involved in the etiopathogenesis of generalized anxiety [43]. Cholinergic
hyperactivation has been implicated in the pathophysiology of anxiety and depression, and response to antide-
pressant treatment [95]. OPs act as cholinesterase inhibitors and subacute intoxication with OP insecticides induce
anxiogenic effects [96]. PON1 protects from oxidative stress by detoxifying OPs that are potential cholinesterase
inhibitors in the peripheral and CNS [97,98]. When the enzyme is inhibited, it may not hydrolyze acetylcholine,
leading to the accumulation of the neurotransmitter, which would, in turn, increase macrophage release of proin-
flammatory cytokines involved in anxious mechanisms [99]. The toxic effects involve parasympathetic, sympathetic,
motor and CNSs [100]. These data are in-line with inverse correlations between acetylcholinesterase and anxiety,
as well as with PON1 activity, whereby subjects with low PON1 activity may be at greater risk of severe state
anxiety [43]. Furthermore, polymorphisms of PON1 and ACHE genes, which are adjacent in the locus 7q21-22
and influence reciprocal expression in an allelic dependent manner [97] may play a role in susceptibility to chronic
organophosphorus intoxication [100].

Recent studies showed the role of neuroinflammation in the pathogenesis of mood and anxiety disorders [101–105].
Neuroinflammation and oxidative stress have also been correlated with anxiety disorders, and sleep deprivation
and anxiety [106–108]. Oxidative stress and diminished capacity in detoxifying organophosphates have been involved
in the pathophysiology of MCS [36]. This evidence is in line with the involvement of oxidative stress in the
pathophysiology of mental disorders, based on the vulnerability of the CNS to free radicals. These could damage
the structure of the neuronal cell, reacting with the membrane lipids, proteins and nucleic acids [106,109–111].

Furthermore, limbic hyperactivation has been correlated to sensitization caused by neurogenic inflammation [112].
Another important aspect regards the odor processing in MCS patients. Some neuroimaging studies showed that
exposure to odorants in MCS correlated to dysfunctions in the hippocampus, amygdala and thalamus [113]. MCS
patients also showed hyperactivation of the anterior cingulate cortex and cuneus-precuneus related to exposure to
odors, but without signs of neuronal sensitization [114].

The functionality of the frontal cortex in MCS subjects must be further investigated, as there is evidence of both
increased and reduced metabolism during exposure to odors. MCS patients showed increased metabolism than
controls in the prefrontal cortex during olfactory stimulation, and for about 20–30 s in the orbitofrontal cortex after
stimulation, at the recognition threshold or usually perceived level [115]. These functional neural changes have been
related to cognitive and memory processing adaptations during past exposure to unsafe chemicals [115]. Another
study showed frontal cortex hypoactivation, with possible active recruitment of the left inferior temporal cortex
during olfactory stimulation [116].

These data suggest that patients with MCS process odors differently from the healthy population, pointing to
the need for further investigation on the relationships between anxiety-depressive symptoms, oxidative stress and
odor processing in MCS.

Further investigations are needed with the aim of clarifying the factors related to the expression levels and
activity of the paraoxonase enzyme, which is influenced not only by its related genetic polymorphisms but also by
environmental factors and/or substances that can increase or decrease its expression and consequently its activity.
In fact, it has been shown that cigarette smoking, a high-fat diet and several drugs, including antidepressants, anti-
hypertensives, antiepileptics, cardiovascular, antineoplastics, some quinones, benzenesulfonamide derivatives, usnic
and carnosic acids, and sulfonamides can decrease the activity of paraoxonase [52–60], which in turn can influence
the levels of atherosclerosis and risk of the onset of cardiovascular, neurological and psychiatric diseases [20,51,56].

This evidence showed that the regulation of paraoxonase is very complex, and it is still necessary to shed light
on how these factors interact with each other to define its activity levels. This point to the need of further studies
aimed to research other mechanisms underlying the PON1 activity and the pathophysiological correlates that
can be associated with different organic and psychiatric conditions, including atherosclerosis, hypertension, other
cardiovascular illnesses and anxiety, and depression.

Limitations
The results of this study must be considered with caution because of their preliminary nature and considering the
following limitations. First, the sample size we obtained was not large enough to yield definite results, especially in
the light of the fact that peculiarity of the population. Second, results are not corrected for multiple comparisons;
however, this was related to the exploratory nature of the study. Third, the lack of use of assessment scales for
anxiety and depression constitutes a significant limitation, for which the results of this study should be taken with
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caution and need to be replicated. However, the compilation of a checklist by a physician allowed an adequate
categorical assessment of symptoms. Furthermore, the lack of a control sample from the general population made
our results not applicable to other than this population, the existence of which has still to gain consensus.

Future perspective
Due to the serious state of suffering of some affected subjects, understanding the etiopathogenesis of MCS and
finding optimal therapy represents an invariable challenge for medicine. In the next few years, new studies that
include neuroimaging data and correlations with psychological and psychopathological dimensions are necessary to
understand the nature of this pathology. A growing body of evidence seems to demonstrate the close link between
cellular detoxification, oxidative stress, psychiatric disorders and MCS; then new therapies could be developed to
prevent brain damage from free radicals, such as the use of antioxidant agents, anti-inflammatory drugs, dietary
recommendations and nutritional interventions [117,118]. Oxidation-reduction mechanisms could be a novel target
for pharmacological intervention in MCS, also considering that pharmacogenomics will support the choice of
targeted therapies in the field of precision medicine [119]. The recognition of specific polymorphisms that may be
related to the efficacy of the pharmacological response may direct the clinician in the best choice of treatments that
can be undertaken in this category of patients, also for the treatment of anxiety-depressive symptoms.

Conclusion
In this study, we showed PON1 polymorphisms to predict anxiety and depressive symptoms in an MCS population.
The PON1 AG versus GG genotype of the A575G polymorphism increased the likelihood of reporting depressive
or anxiety symptoms by more than ten-times, and PON1 C-108T also appears to be significantly involved in the
manifestation of comorbid generalized anxiety and depressed mood in MCS. These results apply to an MCS sample
and have to be tested in the general and other populations.
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21. Fındıklı E, Camkurt MA, İzci F et al. The diagnostic value of malondialdehyde, superoxide dismutase and catalase activity in drug naı̈ve,
first episode, non-smoker generalized anxiety disorder patients. Clin. Psychopharmacol. Neurosci. 16(1), 88–94 (2018).
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54. Özaslan MS, Balcı N, Demir Y, Gürbüz M, Küfrevioğlu Öİ. Inhibition effects of some antidepressant drugs on pentose phosphate
pathway enzymes. Environ. Toxicol. Pharmacol. 72, 103244 (2019).
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