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Abstract: Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis,
and cell death/survival signaling. An immunostimulatory property of mitochondria has also been
recognized which is deployed through the extracellular release of entire or portioned organelle
and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions
involving mitochondria have been described. Each type of connection has functional implications
that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific
cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extra-
cellular release of mitochondrial components and subsequent ignition of systemic inflammation.
Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunc-
tion and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA.
The close relationship between mitochondrial dysfunction and cellular senescence further supports
the central role of mitochondria in the aging process and its related conditions. Here, we provide an
overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing
mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the
participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes
with senescence and age-associated conditions.

Keywords: exosomes; extracellular vesicles; inflamm-aging; senescence; mitophagy; mitochondrial
damage; mitochondrial dynamics; mitochondrial-derived vesicles; mitochondrial-lysosomal axis;
oxidative stress

1. Introduction

Mitochondria are cytoplasmic double-membrane organelles residing within eukary-
otic cells. Mitochondria are vestiges of the incorporation of an anaerobic bacterial ancestor
into an unicellular eukaryote which occurred over a billion years ago [1]. The endosym-
biotic fusion marked the evolution of eukaryotic cells via a serendipitous switch towards
aerobic respiration. From an evolutionary perspective, this metabolic change contributed
to eukaryote complexity and the development of multicellular life [2]. While initially
envisioned as resident and isolated, mitochondria are increasingly recognized as “social”
organelles immersed into the cytoplasmic fluid together with other organelles with which
they interact and coordinate a plethora of cellular activities [3,4].

Different from other cytoplasmic organelles, mitochondria are semi-autonomous as
they possess their own genome, the mitochondrial DNA (mtDNA) [5]. This nucleic acid
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is a circular double-stranded molecule spanning approximately 16 kb pairs and encodes
for 37 genes (13 messenger RNAs, 22 transfer RNAs, and 2 ribosomal RNAs). MtDNA is
responsible for the synthesis of hydrophobic protein subunits of the electron transport chain
(ETC), the apparatus that enables cellular respiration by coupling oxygen consumption
with the generation of a membrane potential at the inner mitochondrial membrane. The
latter is the bioenergetic core of the cell via production of adenosine triphosphate (ATP) that
fuels most cellular activities. Mitochondria are involved in a number of other vital activities,
including regulation of ionic (calcium and iron) levels, hormone synthesis, antioxidant
detoxification, iron-sulfur cluster and heme biosynthesis, and programmed cell death [6].

MtDNA exists in hundreds to thousands of copies within the cell. This number, which
reflects mitochondria abundance and/or mitochondrial mass, varies according to cell
metabolism and in response to several intrinsic and extrinsic stimuli [7]. The large mtDNA
copy number compared with the amount needed to support oxidative phosphorylation
may reflect the mitochondrial involvement in organelle signaling and/or deployment of
immune functions [8].

The recognition of an intrinsic mtDNA immunostimulatory property is a feature that has
revolutionized the mitochondrial outlook in the context of several inflammatory conditions [8].
In addition to the pro-inflammatory domains of circulating mtDNA molecules, the formation of
non-canonical nucleic acid structures during mtDNA transcription and replication holds unique
features that may engage nucleic acid sensors and trigger innate immunity [8].

Although possessing a certain degree of independence, mitochondria are under the
control of the nucleus with regard to mtDNA stability and sequence evolution over time [9].
This is made possible by their strategic relocation near the nucleus, whereby mitochondria
form contact sites able to generate output signals that can influence the expression of
nuclear genes [10].

Dynamic homo- and heterotypic interactions involving mitochondria have been de-
scribed. Inter-organelle communications are enabled by several processes/structures,
including fusion, nanotunnel protrusion, and inter-organelle contact sites [11]. Although
the exact mechanisms regulating the formation and the activity of these structures are
presently unknown, each type of connection has functional implications that can be reg-
ulated to optimize mitochondrial activity to meet the bioenergetic demands of a specific
cell/tissue [12].

The analysis of these mitochondrial properties and the molecules involved in such com-
munication may help unveil the complex interactions that mitochondria establish to achieve
their own homeostasis. Indeed, mitochondrial metabolism and its alterations have been listed
among the nine pillars of the geroscience paradigm, and are a key target amenable for anti-aging
interventions [13]. In this regard, the close relationship among mitochondrial dysfunction, in-
flammation and cellular senescence, and their contribution to aging and age-related conditions
confer further priority to the understanding of these processes.

Here, we provide an overview of (1) the mitochondrial genetic system and the potential
routes for generating and releasing mtDNA intermediates; (2) the contribution of circulat-
ing mtDNA to inflammation; (3) the participation of inter-organelle contact sites to mtDNA
homeostasis; and (4) the link of these processes with senescence and age-associated conditions.

2. Mitochondrial Genetics: MtDNA Transcription, Replication, and the Generation of
Non-Canonical Structures

The transcription of mtDNA guides the synthesis of a subset of hydrophobic ETC
complex subunits through mtDNA-encoded ribosomes (12S and 16S) and 22 tRNAs [14].
Hydrophyilic ETC subunits and proteins involved in mtDNA transcription, translation,
replication, and maintenance are nuclear-encoded and are co- or post-translationally im-
ported into the organelle [7,15].

A large non-coding arc of mtDNA, the so-called displacement-loop (D-loop) region,
harbors both the heavy- (HSP) and the light-strand promoter (LSP) of mtDNA transcription,
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along with the origin of heavy-strand replication (OH) and conserved cis-acting elements.
Hence, the D-loop is a major regulatory site of mtDNA activity and synthesis [16].

The expression of mtDNA genes starts at both promoters and begins with the tran-
scription of RNA primary transcripts (for both mtDNA strands) that are almost full-length
and are processed into mature mRNAs by specific RNases. Almost synchronously, the
transcripts generated by the LSP are used as primers for mtDNA replication of the leading
strand that follows a replicative asymmetric mode. The termination of transcription and/or
specific RNA processing occurs downstream LSP, and strand extension by the mtDNA
polymerase γ (Pol γ) generates the 3′ end of this mtDNA strand. Following Pol γ-guided
DNA synthesis, the enzyme activity becomes stalled or terminated approximately 1 kb
past the LSP. The newly synthesized mtDNA strand remains bound to the template and
forms a stable three-stranded D-loop structure. This latter is a hallmark of the mammalian
mtDNA replicating structure with uncertain biological relevance [14,16] (Figure 1). MtDNA
synthesis downstream from the 3′ end of the D-loop region is mandatory for mtDNA
replication, which requires priming of the lagging strand at multiple mtDNA sites. A
major replication starter is the origin of light-strand replication (OL), which is located
~12 kb away from the OH and enables asynchronous replication of the leading and lagging
strands. As a result of these events, large stretches of single-stranded DNA (ss-DNA) and
RNA–DNA hybrids originate and persist as intermediates of mtDNA synthesis. Other
modes of mtDNA replication have been described and involve a “bootlace” mechanism
following the incorporation of processed mtDNA transcripts [17] (Figure 1).
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While an intrinsic immunostimulatory property has been recognized in the bacterial-
like hypomethylated CpG motifs of the mtDNA molecule [18], the generation of non-
canonical nucleic acids structures during mtDNA transcription and replication has also
been suggested to be sensed by and trigger innate immunity by engaging nucleic acid sen-
sors [8]. In particular, ssDNA, RNA–DNA hybrids, and mtDNA-derived higher-order nu-
cleic acid structures, including triplexes, R-loops, and four-way junctions, are recognized by
the innate immunity via the cyclic guanosine monophosphate–adenosine monophosphate
synthase (cGAS) and other pattern-recognition receptors (PRRs) [8]. These supramolecular
structures are able to hijack the repair systems and have gained much attention as mecha-
nisms that may bridge the molecular routes regulating mitochondrial biogenesis with those
controlling tissue homeostasis [19].
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3. Mitochondrial DNA Mutations and Diseases

A wide range of mtDNA mutations and polymorphisms have been identified in several
pathological conditions (i.e., chronic progressive external ophthalmoplegia, Kearns–Sayre
syndrome, Leber hereditary optic neuropathy (LHON), mitochondrial encephalopathy,
lactic acidosis, stroke-like episodes, myoclonus, epilepsy, ragged-red fibers, and neurogenic
weakness with ataxia and retinitis pigmentosa) (reviewed in [20]). Of note, both mutated
and wild-type mtDNA allele variants can co-exist in the same individual, a condition
referred to as heteroplasmy, which explains the wide spectrum of disease severity [20].

A high proportion of mutated mtDNA molecules must be harbored by the cell to
impact oxidative phosphorylation and ATP production (threshold effect) [21]. Therefore,
individuals inheriting a high proportion of mtDNA heteroplasmy are more prone to severe
disease than those with low levels. However, families affected by diseases transmitting
only mutated mtDNA (homoplasmy) (i.e., LHON) show very low penetrance. Hence,
factors other than genetics, including physiological and environmental conditions, have an
impact on disease etiology and penetrance [22]. Moreover, a specific mtDNA polymorphic
variation (i.e., population haplogroup) and, in particular, the European haplogroup J
have been identified in several LHON families [23], supporting a role for the genetic
background in the clinical expression of the disorder [24]. Common haplogroups have
also been associated with the risk of developing neurodegeneration, (i.e., Parkinson’s
disease [25] and Alzheimer’s disease [26]), and other late-onset disorders, including type II
diabetes [27,28].

Acquired mtDNA mutations have been identified in tissues and organs of people
with late-onset disorders [29,30]. In particular, combinations of point mutations and large-
scale mtDNA deletions can accumulate at different rates in the cells and undergo clonal
expansion over the life-course until reaching critical levels and affecting cellular bioener-
getics. The generation of preclinical models bearing these mutations has allowed for the
establishment of a causal link between the clonal expansion of mtDNA mutations and
age-related conditions [31,32], as well as their role as drivers of aging itself. The accumula-
tion of mtDNA mutations may contribute to the appearance of aging phenotypes through
mechanisms involved in tumorigenesis and cellular senescence [33,34]. Indeed, mtDNA
mutations promote tumor growth via metabolic remodeling which triggers cellular senes-
cence as an oncosuppressive response. Over time, the accumulation of mtDNA mutations
increases the burden of senescent cells in the body and contributes to the development of
aging phenotypes [35].

MtDNA heteroplasmy seems to occur more frequently than previously thought [36,37],
and the high mutational load observed in older age may result from life-long clonally expanded
mtDNA mutations that were likely inherited at a very low level of heteroplasmy at birth [38].
While the exact mechanisms regulating mtDNA mutation inheritance and penetrance are
largely unknown, several lines of evidence indicate that mtDNA manipulation may represent
a promising route for preventing and treating diseases for which mtDNA mutations play a
key role.

The involvement of mtDNA in pathological conditions has largely been investigated
in relation to inherited and/or acquired mutations in resident mtDNA. However, there
is also evidence for a possible role of mtDNA displacement into the circulation in the
pathogenesis of several conditions. In particular, a pattern of pro-inflammatory mediators
pertaining to innate immune responses, including tumor necrosis factor alpha (TNF-α)
and interferons (IFNs), have also been indicated to link cellular senescence with chronic
low-grade inflammation [39]. In the next sections, the mechanisms of mtDNA release and
the inflammatory signaling pathways elicited by circulating mtDNA molecules during
aging and associated conditions are described.

4. Mitochondrial DNA: A Signaling Molecule beyond Organelle Boundaries

The proximity of the mitochondrial genome to the ETC, a major intracellular source
of reactive oxygen species (ROS), exposes mtDNA to oxidative damage, thus making
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mtDNA highly polymorphic and subject to a high mutational rate. These mutations can
interfere with ETC assembly and, hence, contribute to mitochondrial dysfunction via
impairment of ATP production, dispersion of transmembrane potential, and increase of
ROS production [40]. These events culminate in oxidative damage to cellular structures.

The possibility that mtDNA, along with other organellar components, may translocate and
signal into the cytosol or at the extracellular level was not fully appreciated until recently. Indeed,
mtDNA has been shown to be released into the cytosol in a dose-dependent manner under
oxidative stress induced by lipopolysaccharide [41]. To reach out the cytosol, the mitochondrial
genome must cross the inner and the outer mitochondrial membranes. This process may be
facilitated by the opening of mitochondrial permeability transition pores [42]. Apoptosis is one
of the mechanisms promoting the formation of these macro-pores for mtDNA escape. Indeed,
activation of the pro-apoptotic proteins BAK and BAX form gateway structures for mtDNA
herniation and release into the cytosol [43]. In this scenario, the integrity of mtDNA and the
morphology of the mitochondrial membrane are preserved as opposed to necrosis that involves
mtDNA rupture [44]. Therefore, intact mtDNA is released from the mitochondrial matrix into
the cytosol during apoptosis, whereas necrosis may release mtDNA fragments outside the cells
as circulating cell-free (ccf)-mtDNA. Indeed, ccf-mtDNA has been detected in the extracellular
fluid of necrotic cells in the setting of acute tissue injuries, such as trauma, acute myocardial
infarction, and sepsis [45].

Cells may also enact other forms of mitochondrial outer membrane permeabilization
(MOMP) that are characterized by partial depolarization [46]. MOMP is triggered in the
setting of mild stressors that favor the oligomerization of the voltage-dependent anion
channel proteins (VDAC1 and VDAC3) and lead to pore formations that allow mtDNA
fragments to reach the cytosol [47]. In this case, inner mitochondrial membrane permeabi-
lization occurs through yet unknown mechanisms which may involve the mitochondrial
permeability transition pore [48].

Ccf-mtDNA is not necessarily membrane-free. Indeed, the human plasma also con-
tains intact cell-free mitochondria [49]. In addition, ccf-mtDNA has been retrieved within
extracellular vesicles (EVs), a set of small lipid membrane vesicles of ~30–400 nm of di-
ameter that are released by several cell types. Different types of EVs have been identified
according to their surface characteristics and biogenesis. The majority of EVs are exosomes,
microvesicles, and apoptotic bodies, although current isolation techniques make it diffi-
cult to differentiate the various subtypes. Exosomes are released through the fusion of
a multivesicular body with the plasma membrane. Since these specific subtypes of EVs
emerge from the endo-lysosomal pathway, they are very informative of the intracellular
degradative routes regulating cellular quality control processes. Microvesicles, instead, are
formed through pinching off of the plasma membrane, and apoptotic bodies are released
during apoptosis [50,51]. Proteins, lipids, and nucleic acids are delivered to target cells by
EVs [52–54] and the pathophysiological status of the originating cell influences the compo-
sition of newly-formed EVs [55]. MtDNA fragments have been identified within exosomes
released by astrocytes and myoblasts [56,57]. EVs derived from mesenchymal stem cells
and astrocytes in response to oxidative stress and containing mitochondrial components
in addition to mtDNA have also been described [58,59]. Nevertheless, the mechanisms
regulating the loading of mitochondrial constituents into EVs and their role/signaling
outside the cells require further investigation.

The whole mitochondrial genome has been identified in circulating EVs isolated from
patients with metastatic breast cancer resistant to hormonal therapy, and a role in cancer
resistance has been proposed for this horizontal mtDNA transfer [60]. In particular, the
acquisition of mtDNA through EVs was shown to restore oxidative phosphorylation in
cancer stem-like cells [60]. Moreover, cancer cells producing higher levels of mtDNA-
enriched EVs were also able to induce faster metabolic reprogramming in response to
oxidative stress and contribute to hormonal therapy resistance [60]. However, few data are
available on exosome characteristics and signaling in aging and associated conditions. For
instance, circulating MDVs have been identified in older adults with physical frailty and
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sarcopenia [61,62] and in patients with Parkinson’s disease [63]. The observation that EVs
derived from mesenchymal stem cell were able to attenuate mitochondrial damage and
inflammation by stabilizing mitochondrial DNA may indicate that these EVs hold signaling
roles and may represent pivotal mediators in conditions characterized by dysfunctional
mitochondria [64]. The recognition of mitochondrial disfunction among the pillars of
aging makes the characterization of mitochondrial-derived vesicles (MDVs) a relevant
mechanism to be investigated to identify biomarkers that may be informative on aging and
related phenomena.

Mitochondrial markers were also identified in larger platelet-derived EVs using flow
cytometry [65] and visualized by electron microscopy analysis within EVs released by mes-
enchymal stem cells as an attempt to outsource mitophagy [58]. Similarly, mitochondrial-
derived EVs have been identified among the EVs produced by activated monocytes to
stimulate type I IFN and TNF responses in endothelial cells [66]. Finally, EVs can transfer
mtDNA from T lymphocytes to dendritic cells [67] to trigger an inflammatory response via
the toll-like receptor-9 (TLR-9)−nuclear factor kappa B (NF-κB) pathway in patients with
heart failure [56].

5. Circulating Cell-Free MtDNA: A Trigger of Inflammation

Ccf-mtDNA can be present either as double-stranded short (<1 kb) or long (up to
21 kb) fragments. Whether these mtDNA fractions have a functional role similar to mtDNA
molecules released by differentiated cell populations is currently unknown [68].

Ccf-mtDNA acts as a damage-associated molecular pattern (DAMP) and is able to
trigger inflammation, coagulation, and immunity, as well as to induce cell death and
tissue damage [69]. MtDNA is immunogenic because of its bacterial ancestor. Although
DNA methyltransferases are present within mitochondria [70,71], mtDNA contains many
unmethylated CpG motifs [72] that can trigger inflammation through the activation of
pattern recognition receptors (PRRs) such as TLR9 [72–75]. These PRRs are differentially
expressed in tissues and cell types, and the pro-inflammatory effects of mtDNA can be
enhanced by oxidative modifications [76]. Immune cells such as monocytes, macrophages,
plasmacytoid dendritic cells, and B lymphocytes [77] express TRL9, as well as other cells
such as hepatocytes, epithelial cells, and cardiomyocytes [73,78,79].

MtDNA triggers inflammation through activation of TRL9 within the endolysosomal
compartment [72,80]. TRL9, in turn, activates the adaptor myeloid differentiation primary
response protein 88 (MyD88)/mitogen-activated protein kinases (MAPKs)/NF-κB or IFN
regulatory factor 7 (IRF7) pathway [81,82], with subsequent production pro-inflammatory
cytokines and adhesion molecules to enhance leukocyte differentiation and extravasation
into tissues [82]. High levels of ccf-mtDNA have been associated with the development of
cardiovascular disease, including atherosclerosis, hypertension, acute myocardial infarction,
and heart failure via triggering the TLR9-dependent inflammatory pathway [41,77,83,84].

The inflammasome, a cytosolic multiprotein machinery mainly expressed in immune
cells such as macrophages, is another target of circulating mtDNA. This complex is con-
stituted by four receptors, including nucleotide-binding oligomerization domain (NOD),
leucine-rich repeat (LRR) receptor kinase, and (NOD)-like receptor family pyrin domain
containing protein 1 (NLRP1) and NLRP3, NLR family CARD domain-containing protein
4 (NLRC4), and absent in melanoma 2 (AIM2) [85]. Intact and oxidized mtDNA can pro-
mote inflammation via inflammasome activation by binding to the NLRC4 and NLRP3
complexes, respectively [86]. During myocardial ischemia/reperfusion injury, cardiac
fibroblasts show upregulation of NLRP3 inflammasome [87]. Moreover, in people with
type 2 diabetes, circulating mtDNA is sensed and recognized by AIM2 inflammasome
determining an increased production of interleukin (IL)-1β and 18 by macrophages [88,89].

An additional component of the innate immune system is the cGAS-stimulator of
interferon genes (STING) DNA-sensing pathway. cGAS binds mtDNA and recruits STING
to induce IRF-3 phosphorylation via TANK-binding kinase (TBK). The production of type
I and type III IFNs (b and k1) and IFN-stimulated nuclear gene product are induced by
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IRF-3 [90]. Conversely, the cleavage of cGAS and the downstream transcription factor
IRF-3 via apoptotic caspases may act as a non-inflammatory mechanism of cell demise by
impairing cGAS sensing of mtDNA [91–93].

Finally, DNA PRRs are also activated by intermediates of mtDNA replication and tran-
scription. Indeed, mtRNA−DNA hybrids that form during transcription, long stretches
of ss-DNA, and R-loops containing RNA−DNA hybrids with a non-template ss-DNA
are sensed and recognized by cGAS [73] (Figure 2). The identification of high levels of
pro-inflammatory mediators pertaining to innate immune responses in cellular senescence
and chronic low-grade inflammation lends further support to a role of these mtDNA inter-
mediates in triggering PRR-mediated responses [39]. However, their specific involvement
in age-related conditions and senescence is currently unknown.
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Figure 2. Schematic representation of major signaling pathways through which the displacement
of mitochondrial components can trigger inflammation. A decline in the efficiency mitochondrial
quality control processes may lead to the intracellular accrual of oxidized components, including
mtDNA, that further engulf the mitophagy machinery. These debris can be cleared by the cell along
alternative non-degradative routes that release mitochondrial-derived components into the cytoplasm
or the extracellular compartment. Displaced mitochondrial-derived components can be recognized
as damage-associated molecular patters and trigger inflammation by activating three distinct sig-
naling pathways via the interaction with (1) cytosolic cyclic GMP-AMP synthase (cGAS)-stimulator
of interferon genes (STING) DNA-sensing system; (2) toll-like receptors (TLRs); (3) nucleotide-
binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome. ATP, Adenosine triphosphate; cGAMP, Cyclic guanosine monophosphate–adenosine
monophosphate; GTP, guanosine triphosphate; IFNs, interferons; IL, interleukin; IRAK, interleukin
1 receptor associated kinase; IRF, interferon regulatory factor; mtDNA, mitochondrial DNA; MyD88,
Myeloid differentiation primary response 88; TBK1, TANK-binding kinase 1; TFAM, mitochondrial
transcription factor A; TNF-α, tumor necrosis factor-α; TRAF, TNF Receptor Associated Factor 6.
Created with BioRender.com, accessed on 18 January 2022.

6. How Mitochondria “Socialize”: Mitochondrial Contact Sites

Cellular organelles are not isolated but establish physical interactions with one an-
other. Communications between mitochondria and other cellular components are vital for
deploying their functions and their dynamics change with age [94]. As such, mitochon-

BioRender.com
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drial contacts are crucial molecular platforms contributing to age-associated mitochondrial
dysfunction and gateways for mtDNA release and signaling.

6.1. Mitochondria−Endoplasmic Reticulum

Physical interactions between mitochondria and the endoplasmic reticulum (ER)
membranes are referred to as mitochondria−ER contacts (MERCs) (Figure 3). Several
aspects of mitochondrial functions, such as mitochondrial dynamics, calcium homeostasis
and mitophagy are influenced by MERCs [95]. Due to their implication in all these activities,
and especially in the modulation of redox signaling, altered MERCs have been associated
with aging and related disorders [96].
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Figure 3. Schematic representation of mitochondrial contact sites. To coordinate all the activities and
achieve homeostasis, mitochondria use molecular platforms through which establish contacts with
the endoplasmic reticulum, lysosome, peroxisome, and lipid droplet. ACSL1, acyl-CoA synthase long
chain family member 1; Mfn2, mitofusin 2; MDM34, Mitochondrial distribution and morphology
protein 34; ORP, oxysterol-binding protein-related proteins; PEX, peroxisomal integral membrane
protein; PLIN1, peripilin 1; PTPIP51, protein tyrosine phosphatase interacting protein 51; RAB7,
Ras-related in brain 7; SNAP23, synaptosomal-associated protein 23; VAMP4, vesicle-associated
membrane protein 4; VPS13A, Vacuolar Protein Sorting 13 Homolog A; Created with BioRender.com,
accessed on 21 January 2022.

Mitochondrial dynamics consist of fission and fusion events that allow shaping mi-
tochondrial morphology from fragmented to filamentous organelles. MERCs are rich in
proteins involved in fission and fusion. Mitochondrial fission is favored by ER tubules that
interact with mitochondria, defining fission sites and enhancing dynamin-related protein 1
(DRP1) functions [97]. DRP1 is recruited by the mitochondrial fission 1 protein (FIS1) and
the mitochondrial fission factor (MFF) that can also localize at the ER, thus representing a
platform for DRP1 oligomerization [98]. Moreover, ER-localized inverted formin 2 (INF2)
stimulates actin polymerization at ER-mitochondrial contact sites, increase calcium efflux
from the ER to the mitochondria, and initiate mitochondrial membrane constriction via
myosin, favoring DRP1 oligomerization and DRP1-mediated fission [99]. Less is known
about the reason why these proteins are shared by ER and mitochondria. One possibility is
that ER behaves as a regulator of mitochondrial dynamics being responsible for sequestra-
tion of these proteins in case of excessive fission or initiation of mitochondrial membrane
constriction if fusion is too low [94].

MERCs are also involved in mitochondrial fusion. Key proteins in this process are
mitofusin (Mfn) 1 and 2. Mfn2 is one of the first identified proteins localized at MERCs,
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while Mfn1 does not localize to ER [100,101]. Mechanisms by which Mfn2 regulates MERCs
are still unclear as it was demonstrated that MERCs formation can be both promoted and
inhibited by Mfn2 [102,103]. Aging is associated with reduced ER-mitochondria contact
sites, thus having a negative impact on mitochondrial dynamics and several other processes
regulated by the two organelles [104].

Intracellular calcium is stored mostly in the ER and mitochondria, and MERCs repre-
sent sites where calcium is exchanged between the two organelles [95]. Calcium can exit
from the ER through the 1,4,5-trisphosphate receptor (IP3R) and can enter mitochondria
via the mitochondrial calcium uniporter (MCU). Moreover, mitochondrial permeability
transition pore and ER sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) enable calcium
release from mitochondria and uptake by the ER, respectively [105].

Mitochondrial fragmentation observed in aged cells can also be explained by an al-
tered calcium exchange between the ER and mitochondria, with increased calcium release
from the ER followed by a decreased uptake by mitochondria. Indeed, the mitochondrial
localization of DRP1 is stimulated by calcium derived from the ER [106]. Mitochondrial
calcium uptake is also regulated by oxysterol-binding protein-related protein 5 (ORP5),
localized at MERCs [107]. This protein is also involved in regulating mitochondrial func-
tion. Indeed, at ER-mitochondria contact sites, ORP5 and ORP8 interact with the protein
tyrosine phosphatase interacting protein 51 (PTPIP51), localized on the outer mitochon-
drial membrane, and defects in mitochondrial morphology and respiratory functions are
observed following ORP5/ORP8 deletion [107]. The interaction between these proteins
enable the transfer of phosphatidylserine from the ER to mitochondria, where it is con-
verted in phosphatidylethanolamine (PE) which is important for mitochondrial structure
and function [107]. Therefore, the lipid composition of ER−mitochondria interface can be
modulated by MERCs, which also influences other processes—such as autophagy—that
are stimulated by increased levels of PE [108]. The selective degradation of mitochondria
by mitophagy is influenced by ER−mitochondrial contacts. Indeed, calnexin on the ER
membrane interacts with FUN14 domain-containing 1 (FUNDC1), localized at the mi-
tochondria, thereby stimulating the recruitment of DRP1 during mitophagy in order to
initiate mitochondrial fission [109]. Therefore, mitophagy is reduced with age also as a
consequence of a decrease in ER−mitochondria contacts [110].

Mitochondrial morphology is influenced by a process that occurs specifically in the
ER, known as ER-specific unfolded protein response (ER−UPR) [111]. Unfolded proteins
activate the protein kinase RNA-like endoplasmic reticulum kinase (PERK) which, in
turn, activates eIF2α, that causes a reduction of protein translation [112]. Mitochondrial
morphology is regulated by this mechanism that favors an increased ATP production
to enable the cell to cope with ER−UPR, a process named stress-induced mitochondrial
hyperfusion (SIMH) [113].

In aging cells, impaired ER−mitochondria contact sites cause accumulation of mis-
folded protein at the ER−mitochondrial interface [104]. Therefore, it is not surprising
that age-associated disorders are characterized by accumulation of toxic proteins at the
ER−mitochondria interface, having negative effects on calcium uptake, autophagy, mito-
chondrial respiration, and ROS production [114].

6.2. Mitochondria−Lysosomes

The existence of a connection between mitochondria and lysosomes has become
clear since the observation that alterations in lysosomes, often seen in neurodegenerative
diseases, were reflected by impaired mitochondrial networks [115]. The first observations
came from experiments in yeast cells where decreased vacuolar acidification and altered
mitochondrial dynamics were detected [116]. In the same paper, the authors demonstrated
that mitochondrial fragmentation was prevented by the expression of the subunit A of the
yeast V-ATPase V1 domain. The treatment with the inhibitor of V-ATPase concanamycin A
did not rescue mitochondrial fragmentation, indicating that this was strictly dependent on
V-ATPase activity [116].
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The close relationship between mitochondria and lysosomes is mediated by two
transcription factors, TFAM and transcription factor EB (TFEB). The first is fundamental
for mtDNA transcription and replication, and, therefore, mitochondrial biogenesis [117].
Likewise, TFEB is crucial for lysosomal biogenesis [118]. A recent report showed that TFAM-
deficient cells are characterized by high mitochondrial fragmentation and dysfunction. In
these cells, the nuclear translocation of TFEB activates the mitochondrial master-regulator
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) leading to
co-regulated lysosomal and mitochondrial biogenesis [119,120].

Mitochondria and lysosomes have also physical interactions (Figure 3), as demon-
strated by Wong and co-workers [121]. These contacts are mediated by active GTP-bound
lysosomal Ras-related in brain (RAB) 7, while FIS1, through recruiting Tre-2/Bub2/Cdc16
member 15 (TBC1D15) to mitochondria, determines the separation of two organelles,
stimulating RAB7 GTPase activity [121]. Contacts are important for mitochondrial dynam-
ics since the same group demonstrated that mitochondrial fission was decreased by the
expression of a constitutively active mutant of RAB7 (RAB7Q67L), increasing mitochondria-
lysosomes contacts [121]. The formation of these contacts is totally independent of metabo-
lite transfer, autophagosome biogenesis or mitophagy, as demonstrated by the fact that
mitochondria-lysosomes do not show expression of autophagosomal markers [121], nor
are they influenced by genetic ablation of autophagy receptors [122].

Mitophagy is not only influenced by the ER−mitochondria, but also by mitochondria−
lysosome contacts. The interaction between TBC1D15, microtubule-associated protein
1 light chain 3 (LC3), and FIS1 is pivotal for regulating RAB7 activity and the formation
of the isolation membrane that engulfs damaged mitochondria. Instead, LC3-tagged
phagosomes without cargo orientation appear when TBC1D15 is depleted or its RABGAP
activity is inhibited [123]. These findings indicate that the formation of the isolation
membrane requires RAB7 activation, while the detachment of LC3-positive membranes
from microtubules needs RAB7 inactivation [124].

During aging, a progressive reduction of mitophagy occurs, thereby leading to the
accumulation of damaged mitochondria with a detrimental effect on cellular homeostasis
and with particularly negative effects for long-lived cells, more sensitive to this phe-
nomenon [125]. Recently, a new mechanism for the elimination of damaged mitochondria
was identified and described to operate via MDVs [126,127].

The molecular mechanisms that coordinate the formation of MDVs are still poorly
understood. One possibility is represented by the accumulation of proteins near mitochon-
drial membranes, under oxidative stress conditions. In response to protein aggregation,
mitochondrial membrane originate curvatures and produce a vesicle [128]. This latter
can reach the late endosomes/multivesicular bodies (MVBs) [129] or peroxisomes for
cargo detoxification [130]. However, MDVs from mildly damaged mitochondria can fuse
with MVBs and be secreted as exosomes, which may represent an indirect evidence of
mitochondria/endolysosomal system crosstalk [60,63].

6.3. Mitochondria−Peroxisomes

As mentioned above, mitochondria and peroxisomes are in communication through
MDVs [130]. Interestingly, they also show physical interaction (Figure 3). Indeed, the
peroxisome membrane elongation and fission protein peroxisomal integral membrane
protein 11 (PEX11) interacts with mitochondrial distribution and morphology protein
34 (MDM34), localized on mitochondria [131]. Moreover, peroxisomes share the fission
machinery with mitochondria. DRP1 is required for the formation of a constriction ring
that allows peroxisomal fission [132]. DRP1 is recruited at the constriction sites by PEX11β
which does not have scission activity, but peroxisomes appear enlarged and elongated
following its ablation, thus indicating that it is essential for peroxisomal fission through
modulation of DRP1 activity [131,133,134].
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The mechanisms of mitochondrial-peroxisomal communication are still under investi-
gation, but, given the importance of peroxisomes and mitochondria in lipid metabolism,
ROS signaling, and protein exchange, they may have a role in aging [135].

6.4. Mitochondria−Lipid Droplets

Though for long time considered just an inert cytoplasmatic inclusion of fat, in recent
years lipid droplets (LDs) have begun to be considered as full-fledged organelles with
several functions [136]. Every eukaryotic cell contains LDs and their main function is
the storage of fatty acids in the form of neutral lipids, mostly triacylglycerols and sterol
esters, and hydrolysis [137]. To carry out this function, they possess a unique structure
encompassing a core of neutral lipids surrounded by a phospholipid monolayer [138].
Several proteins, such as perilipins (PLINs), are associated with the monolayer and are
fundamental for LD functions and dynamics [139,140].

The size of LDs changes depending on nutrient conditions, with an enlargement in
the case of fatty acid abundance and shrinking during starvation, when fatty acids are
used for energy production through β-oxidation [141]. Cellular homeostasis is guaranteed
by these organelles, protecting the cells from lipotoxicity caused by excessive fatty acid
accumulation [136]. Indeed, dysregulation of lipid metabolism is associated with several
diseases, many of which are also characterized by an increase in LD abundance [142]. In
this context, LDs have gained attention for their potential role in cancer and neurodegen-
eration. For instance, a form of Charcot–Marie–Tooth type 2 (CMT2) disease, an axonal
neuropathy affecting the peripheral nervous system, is caused by a missense mutation in
the diacylglycerol O-Acyltransferase 2 (DGAT2Y223H), an enzyme involved in the synthe-
sis of triglycerides [143]. Moreover, in CMT2 type 2 B (CMT2B), caused by mutations in
RAB7 gene, an accumulation of LDs was observed in the cytoplasm, further highlighting
the role of altered LD dynamics in neurodegeneration [144,145].

Originally it was thought that inter-organelle contact sites only concerned subcellular
compartments with a phospholipid bilayer. However, inter-organelle communication
engages also monolayer organelles, such as LDs and RNA granules, or stress granules,
which are devoid of membranes [95].

LDs form contact sites with ER, through interaction between acyl-CoA synthetase
fatty acid transport protein 1 (FATP1) localized at the ER, and DGAT2, localized at the LD
membrane [146].

LD−mitochondria contact sites are established during nutrient deprivation or cell
growth, two conditions characterized by a high demand of phospholipids for membrane
biosynthesis and lipids for β-oxidation [147,148]. Furthermore, the complex constituted by
RAB18 on LDs and the tethering complex NRZ (NAG-RINT1-ZW1) associated with soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor (SNAREs) is involved in
LD−mitochondria contacts [149].

PLIN5 is localized on the LD membrane, and it was described also as fundamental for
LD−mitochondria contact sites for its ability to recruit LDs to mitochondria. Nevertheless,
the interacting partner of PLIN5 on the outer mitochondrial membrane is not yet known,
and the mechanism of mitochondria recruitment has not been elucidated [150].

Other proteins involved in LD−mitochondria contacts are still under investigation.
The interaction between Mfn2 and PLIN1 was identified in LD−mitochondria of brown
adipocytes [151]. Moreover, by using the BioID tool that is able to detect candidate
protein−protein interactions in living cells, a set of other interactors were identified [152].
For instance, the acyl-CoA synthase long chain family member 1 (ACSL1) on mitochondria
interacts with the synaptosomal-associated protein 23 (SNAP23) and vesicle-associated
membrane protein 4 (VAMP4) on LDs [153] (Figure 3).

Several studies are ongoing to investigate other proteins involved in LD recruitment on
mitochondrial. Moreover, the contacts described so far are highly dynamic, fitting the “kiss and
run” paradigm. However, a more stable interaction, known as anchoring, between LDs and
mitochondria bind has been described. This type of contact has been identified in oxidative
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tissues such as brown adipose tissue, skeletal muscle, and the myocardium [154]. Emerging
evidence invites questions about the role of LD−mitochondria contacts in immune function.
In hepatocytes, lipopolysaccharide induces PLIN 5 downregulation, consequent detachment
of mitochondria from LDs, and decrease of β-oxidation and ketogenesis [155]. In contrast,
the increase of PLIN5 in human THP-1 macrophages determines increased LD−mitochondria
contacts and reduced antibacterial function [155]. Notably, the antibacterial proinflammatory
activity of M1 macrophages is based on glycolysis, while anti-inflammatory M2 macrophages
preferentially use fatty acid oxidation and oxidative phosphorylation, supporting the rationale
for LD−mitochondria detachment in response to M1-polarizing stimuli such as lipopolysaccha-
ride [156].

Aging is characterized by several mitochondrial alterations, from the increase of oxida-
tive stress to alterations in mitochondria dynamics, such as fragmentation of mitochondrial
network, reduced number of mitochondria, mtDNA mutagenesis, and loss of mitochondrial
membrane potential [157,158]. Recently, in yeast as well as in mammalian cell lines, it was
demonstrated that, under stress conditions, the interaction between LDs and mitochondria
increased in order to transport toxic proteins from mitochondria to LDs, protecting cells
from apoptotic death [159]. Another recent study in yeasts showed that an increase in LD
number extended cell survival during the stationary phase, paralleled by a progressive
increase in ROS levels. The results obtained in this study suggest that LD−mitochondria
contact sites are beneficial for cell fitness during yeast aging. Indeed, LDs contribute to
mitochondrial “rejuvenation”, eliminating toxic protein, attenuating oxidative stress, and,
finally, indicating a role of LD−mitochondria contact sites in longevity [160].

The transport of molecules between mitochondria and LDs is not limited to proteins,
but it also involves lipids. Upon stress condition and aging, phosphatidylinositols and
ergosterols (the yeast sterols) increase in mitochondria, while their content decreased
in LDs [161]. Proteins and lipids, shuttled between mitochondria and LDs, are then
degraded in the lysosome/vacuole during macrolipophagy [162]. Further studies on
LD−mitochondria contact sites in mammalian cells are required to confirm the importance
of this inter-organelle communication in longevity.

7. Mitochondrial Dyshomeostasis and Inflammation in Aging and Related Conditions

A global reduction in the capacity to cope with a variety of stressors and a progressive
increase in pro-inflammatory mediators are major characteristics of the aging process [163].
This phenomenon, referred to as “inflamm-aging”, is induced by a continuous antigenic
load and stress. Under these conditions, a state of permanent arrest of cell proliferation
occurs and leads to cellular senescence characterized by the acquisition of a senescence-
associated secretory phenotype (SASP) [164].

The tight relationship between inflammation and cellular senescence has also been
shown by gene expression studies revealing inflammatory gene expression patterns similar
in the two conditions [165]. Senescent human fibroblasts express several inflammation-
associated genes, including monocyte chemotactic protein-1, Gro-α, IL-1β, IL-15, TLR4,
and intercellular adhesion molecule 1 [166,167]. Inflammatory genes were found to be
up-regulated not only in senescent fibroblasts but also in senescent human hepatic stellate
cells [168]. However, this pattern was not found in senescent retinal pigment epithelial cells
and vascular endothelial cells, suggesting that inflammatory pathways associated with
senescence might be cell-specific.

A set of pro-inflammatory and pro-fibrotic factors and metalloproteases have been
identified among SASP molecules [164]. As a consequence of the progressive accumu-
lation of senescent cells and chronically released SASP molecules, inflammation, tissue
damage, and fibrosis can eventually ensue, which predispose to age-related conditions (e.g.,
metabolic disorders, atherosclerosis, muscle wasting and neurodegeneration) [169–171].
Tezze et al. [172] found that age-associated loss of the mitochondrial protein optic atrophy
1 (OPA1) was related to muscle atrophy and systemic inflammation. Indeed, OPA1−/−

mice showed an early aging phenotype and high circulating levels of several inflamma-
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tory cytokines (i.e., IL-1α, IL-1β, IL-6, and TNF-α). The accrual of senescent cells during
aging has been described in several animal models [173,174] along with an increase in
intracellular damage and reduced senescence immune surveillance [175,176]. A great deal
of research is ongoing to evaluate the effects of senolytics/senomorphics at eliminating
senescent cells and attenuating SASP production. As such, a deeper understanding of the
molecular mechanisms underlying cellular senescence and related signaling routes at the
systemic levels is crucial for devising specific anti-aging strategies.

Mitochondrial integrity is preserved by a set of quality control mechanisms of which
autophagy, and more specifically mitophagy, plays a major role [77]. Indeed, autophagy
limits the accumulation of pro-inflammatory factors and the dysregulation of this process
may result in increased cytoplasmic mtDNA-driven inflammation [177]. MtDNA can
be degraded by DNAses I contained in the autolysosomes [178], and the mtDNA–TLR9-
mediated inflammatory response was found to be increased in the heart of DNase II-
deficient mice developing cardiomyopathy [77]. Moreover, sterile inflammation following
mitochondrial dysfunction and the concomitant rise in mtDNA levels can trigger the
release of IL-1β and IFNα via cGAS engagement [179]. A dysregulation in the clearance of
dysfunctional mitochondria has also been hypothesized to determine the escape of oxidized
ccf-mtDNA or nucleoids which can trigger inflammation by interacting with PRRs [180].
Moreover, similar to the nuclear DNA system, disruption of processes involved in mtDNA
homeostasis, such as mtDNA replication and repair, can trigger cGAS–STING activation.
For instance, a defective mtDNA packaging into nucleoids following TFAM depletion is a
prominent signal for cGAS activity in diverse cells [181].

Recently, MERCs have also been indicated as molecular platforms contributing to
aging and age-related diseases via SASP signaling [182]. Indeed, alterations of MERCs
quantity and quality with aging and related diseases have been reported [95,96,104].

Pinti and collaborators [183] described an association between ccf-mtDNA and el-
evated levels of proinflammatory cytokines during aging. In particular, they observed
that the number of copies of ccf-mtDNA increased significantly after the fifth decade of
life, peaking past the age of 90 [183]. Interestingly, systemic levels of ccf-mtDNA de-
crease in healthy adults after moderate aerobic exercise, a well-known anti-inflammatory
intervention [184–186]. Sliter et al. [187] investigated the effect of exhaustive exercise
on inflammation in Parkin−/− or Pink1−/− mice. The authors observed that exhaustive
exercise caused a striking increase in serum levels of pro-inflammatory IL-6 and IFN-b.
Remarkably, deletion of STING or the administration of IFNAR-blocking antibody com-
pletely rescued a normal phenotype, suggesting that mtDNA released from damaged
mitochondria that are not cleared is responsible for the observed inflammation [187]. Spe-
cific alterations of the mitochondrial quality control axis have also been reported in muscle
biopsies from old hip-fractured patients with sarcopenia in whom a link between muscular
mitochondrial dysfunction and systemic inflammation via the release of mtDNA has been
hypothesized [188].

Inflammation also represents an underlying mechanism of neurodegeneration [189]. Al-
tered mitophagy and activation of cGAS–STING signaling have been indicated as a pathogenic
mechanism of Parkinson’s disease [187]. Familial forms of Parkinson’s disease carry missense
mutations in PINK1 and Parkin proteins whose deletion in mice induces an accumulation of
mtDNA and elevation of systemic cytokine levels [187]. Of note, the latter effect is fully abro-
gated by co-deletion of STING [187]. The cGAS–STING-dependent inflammation triggered by
mtDNA has also been involved in the neuropathological processes associated with amyotrophic
lateral sclerosis and frontotemporal lobar degeneration [48]. This has been mainly ascribed
to accrual of misplaced mitochondrial of TDP43, a DNA/RNA-binding protein, that induces
mtDNA release through mitochondrial transition pore opening and leakage via VDAC1. As a
consequence, a release of type I INFs and inflammatory cytokines in a cGAS–STING-dependent
manner occurs in human and mouse cells [48]. Depletion of STING in a preclinical model of
amyotrophic lateral sclerosis overexpressing TDP43 was also able to dampen neuroinflamma-
tion and mitigate disease progression. Finally, the elevation of type I INFs following STING
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activation has also been shown in models of Huntington disease [190] or neurodegeneration
and astrocytic inflammation guided by protein aggregates deposition [191].

8. Conclusions

Mitochondrial metabolism and its dysfunction have been listed among the nine pillars
of the geroscience paradigm and indicated as key targets amenable for anti-aging interven-
tions. The contribution of age-related changes in inter-organelle contacts to mitochondrial
dyshomeostasis has recently been investigated. These molecular platforms are implicated
in mitochondrial remodeling and transfer of selected molecules with pro-inflammatory
properties. A deeper characterization of these inter-organelle interactions and their con-
tribution to cellular senescence may be very informative towards the intricate pathways
regulating cellular decay during aging. The close relationship of mitochondrial signals
with cellular senescence and their contribution to aging and age-related conditions confer
further priority to investigating these processes.
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