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Abstract

In this paper, we investigate the value of derivational information in
predicting the inflectional behavior of lexemes. We focus on Latin, for
which large-scale data on both inflection and derivation are easily avail-
able. We train boosting tree classifiers to predict the inflection class of
verbs and nouns with and without different pieces of derivational infor-
mation. For verbs, we also model inflectional behavior in a word-based
fashion, training the same type of classifier to predict wordforms given
knowledge of other wordforms of the same lexemes. We find that deriva-
tional information is indeed helpful, and document an asymmetry between
the beginning and the end of words, in that the final element in a word
is highly predictive, while prefixes prove to be uninformative. The results
obtained with the word-based methodology also allow for a finer-grained
description of the behavior of different pairs of cells.
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1 Introduction
The aim of this paper is to investigate the extent to which derivational infor-
mation helps to predict the inflectional behavior of lexemes. Variation in the
way morphosyntactic property sets are realized in the inflected wordforms of
different lexemes is usually modelled by resorting to the notion of inflection(al)
classes. These can be defined as sets of lexemes that are inflected in the same
way, cf. Aronoff (1994: 64): “An inflectional class is a set of lexemes whose
members each select the same set of inflectional realizations”. In a less strict
definition, the members of an inflection class are required to have similar, but
not necessarily identical inflectional behavior: “lexemes that share similar mor-
phological contrasts”, cf. Brown & Hippisley (2012: Chapter 1, fn. 3).1

Within the framework of Canonical Typology (Corbett 2005, Brown, Chu-
makina & Corbett 2013), inflection classes are considered to be fully canonical if
they are purely morphological, i.e. if they are not motivated by external factors,
be they phonological, syntactic, pragmatic, or semantic, thus satisfying the cri-
teria subsumed under the principle of “independence” in Corbett (2009: 5 ff.).
However, as pointed out by Corbett (2009: 8 f.) himself, inflection classes are
on their turn a non-canonical phenomenon, constituting a deviation from the
canonical situation where the inflectional material is expected to be the same
across lexemes (Corbett 2009: 2). Therefore, the canonical ideal is rarely met
by actual instances of inflection classes. Indeed, there is growing evidence that
inflection classes are usually not completely arbitrary, although they are rarely
categorically predictable (cf. Stump 2015: 127).

Among the external factors that have been shown to be at least partly pre-
dictive of inflection classes, there is firstly the phonological shape of the stem.
Guzmán Naranjo (2019) shows that phonological properties of the stem are good
predictors of inflection class in a variety of inflection systems, by training ana-
logical models to predict the inflection class of lexemes from its stem phonology.
Using the same methodology, he shows that broad lexical semantics is predic-
tive of Kasem nominal classes, as is gender for Latin and Romanian. Gender
has also been proven to be informative on the inflectional behavior of lexemes
with different methodologies, namely by Stump & Finkel (2013: Chapter 5)
for Sanskrit using Principal Part Analysis, and by Pellegrini (2020: Chapter
5) for Latin with an information-theoretic, entropy-based methodology. Most
recently, Guzmán Naranjo (2020) and Guzmán Naranjo & Bonami (2021) both
show how phonology, gender and semantic information encoded in distribu-
tional vectors combine to predict the inflectional behavior of nouns in Russian
and Czech respectively.

Another piece of information that can be useful to predict the inflection class
of a lexeme is its derivational history. Previous work clearly documents on the
one hand cases where the inflection of a lexeme is determined by the derivational
process by which it is formed: for instance, Bonami & Boyé (2006) account for

1A comparable distinction is made by Dressler (2002) between “micro-classes” and “macro-
classes”. See Beniamine, Bonami & Sagot (2017) for a contemporary discussion.
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the irregular behavior of French denominal adjectives in -eux and -eur, with
feminine forms in -euse and -rice, respectively (e.g. rageur ‘rageful’, f.sg
rageuse, directeur ‘directorial’, f.sg directrice) by having the derivational
rule that creates them specifying directly two distinct forms. On the other
hand, there are many cases where a lexeme inherits – at least partly – the
inflectional behavior of the base from which it derives, as has been shown to
happen for a wide range of languages by Stump (2001: 98). Here, it suffices
to exemplify this case by means of the English verb understand, with the
irregular past (participle) understood, exactly like in the base verb stand, with
past (participle) stood.

More generally, several aspects of the derivational history of lexemes are
potentially informative on their inflection. Our aim in this paper is to provide
a quantitative evaluation of the actual predictive value of (at least some of)
these different aspects, and the interplay between them. To do so, we follow a
methodology similar to the one of Plaster, Polinsky & Harizanov (2013), that
use decision trees to identify a small number of semantic and formal factors that
are able to account for gender/noun class assignment in Tsez. We collect a large
dataset of Latin verbs and nouns with detailed information on their derivational
history (Section 2), and we train boosting trees to predict the conjugation class
of verbs and the declension class of nouns, using different pieces of derivational
information as predictors (Section 3).

In a recent trend in morphological theory, the inflectional behavior of lex-
emes is analyzed dispensing with the notion of an inflection class system, in a
fully word-based, abstractive (Blevins 2016) approach. In this perspective, the
task whose complexity needs to be evaluated does not consist in identifying an
abstract inflection class from abstract lexeme-level properties, but rather in in-
ferring the actual wordform filling the paradigm cell of a lexeme from the actual
wordform filling another cell of that same lexeme, in what Ackerman, Blevins &
Malouf (2009) call the “Paradigm Cell Filling Problem” (PCFP). Uncertainty
in the PCFP can be modelled by means of the information-theoretic notion of
conditional entropy (cf. Ackerman, Blevins & Malouf 2009, Bonami & Boyé
2014, Beniamine 2018), and it has been shown by Pellegrini (2020: Chapter
6) for Latin that taking derivational information into account allows for a re-
duction of entropy values, i.e. for easier predictions. In Section 4, we recast
the problem that we investigate in a word-based and abstractive perspective,
training our classifiers to predict wordforms from wordforms, rather than the
inflection class of lexemes. Lastly, in Section 5 we draw our conclusions and we
suggest directions for future research.

2 Data collection and annotation
This paper investigates the predictive value of derivation on inflection by fo-
cusing on Latin, a well-documented language for which both inflectional and
derivational information is easily available from different sources. In this sec-
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tion we detail how our datasets were compiled.2
In Section 3.2, the task we face is guessing the conjugation class of verbs.

To collect the sample that we use, firstly we take all the 3,348 verbal lexemes of
LatInfLexi (Pellegrini & Passarotti 2018; see also later in this paper): the size
of the dataset appears to be large enough to allow for reliable generalizations.
Importantly, the selection of lexemes in LatInfLexi, and consequently in our
sample, is based on frequency: the selected verbs are the ones recorded in the
Dictionnaire fréquentiel et index inverse de la langue latine (Delatte et al. 1981),
a frequency lexicon of Classical Latin, de facto excluding lexemes with low token
frequency.

We then tag these verbs for the conjugation they belong to. We take the
relevant information from the database of Lemlat, a large, recently renewed
morphological analyzer of Latin (Passarotti et al. 2017). We thus follow Lemlat
in relying on the traditional description of Latin verb inflection, that identifies
four conjugations distinguished on the basis of the theme vowel displayed in
the present infinitive – ā in the 1st, ē in the 2nd, e in the 3rd, ī in the 4th –
and a fairly large group of heteroclitic lexemes inflected like 3rd conjugation
verbs in some cells (e.g. prs.act.inf) and like 4th conjugation verbs in other
cells (e.g. prs.act.ind.3pl), that we call the ‘mixed conjugation’, following
Dressler (2002). We also use LatInfLexi to obtain the shape of the stem of
each lexeme in phonemic transcription, by taking the phonological transcription
of prs.act.inf provided by LatInfLexi and stripping the exponent (usually
constituted by theme vowel + re). Table 1 summarizes the outcome of this
classification, showing the number of verbs in each conjugation in our dataset
and providing examples to illustrate the relevant distinctions between classes.
One example is given also for the few verbs that fall outside this classification,
and are therefore simply tagged as irregular, like sum ‘be’.

[Table 1 about here.]

As for derivational information, we extract it from the Word Formation Latin
database (WFL; Litta & Passarotti 2020). Using this source, we tag the verbs
in our sample for several aspects of their derivational history, as shown in Table
2 below.3

[Table 2 about here.]

First of all, we obviously code the derivational affixes – prefixes and suffixes
– that appear in each lexeme. We also provide information on the derivational
family to which each lexeme belongs, coded by means of its “ancestor” – i.e.,
the base from which all the members of the family are ultimately derived. For
instance, creo, recreo and cresco are all in the family labelled as the simple
verb creo. In cases of compounding, where there are two ancestors (e.g. the

2The datasets are available at https://osf.io/z4kyp.
3Some modifications have been made to the derivational information provided by WFL,

in order to make it more compatible with the purpose of the present research. For a list of
these changes, the reader is referred to Pellegrini (2020: 179-180).
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adverb bene ‘well’ and the verb dico ‘say’ for the compound verb benedico),
we select the rightmost one.

Indeed, because of the suffixal nature of Latin inflection, one might assume
that the right side of wordforms is what matters most in general, and that the
inflectional behaviour of lexemes is mostly predictable from the last derivational
morph in linear order. From a qualitative inspection of Latin data, this expecta-
tion appears to be overwhelmingly confirmed. For instance, a suffixed verb like
cresco is assigned to the 3rd conjugation, like other lexemes formed by means
of the derivational suffix -sc-, which is the last derivational morph appearing
in the lexeme. Conversely, in recreo the last element in linear order before
inflectional markers is the stem of its base creo, and indeed the derived lexeme
is a 1st conjugation verb like its base, and the same holds for most prefixed verbs
in Latin (but see §3.2 below for exceptions). To be able to perform a quanti-
tative investigation of this aspect, we thus code the last non-inflectional morph
appearing in each of the lexemes of our dataset, i.e. either the last derivational
suffix – if there is any – or the ancestor – for simple and prefixed lexemes, and
also for cases of conversion and parasynthesis.

It is important to keep in mind that the linear order of morphs does not
always coincide with the order of morphological operations in the derivational
history. To clarify this, let us compare two complex verbs that display both
a prefix and a suffix, like condolesco and inardesco. While the suffix -sc-
is the last morph in linear order in both cases, the derivational history of the
two lexemes is very different: condolesco can be analyzed as derived by suf-
fixation of -sc- to condoleo ‘suffer greatly’, rather than as a prefixed verb,
since the putative base to which the prefix should be added, *dolesco, is not
attested. Conversely, inardesco is best analyzed as derived by prefixation of
in- to ardesco ‘take fire’, because *inardeo is not available as a base for
the suffixation of -sc-. Since also this structural order might play a role, we
add information on the last derivational operation performed to obtain each
lexeme in our sample.4 Verbs formed by means of different compounding pro-
cesses are all treated as having a generic “compounding” operation as the last
one. On the other hand, for cases of conversion and parasynthesis, we make
a distinction according to the lexical category of the base on which the opera-
tion is performed. Hence, we distinguish between noun-to-verb (e.g. coronaN
‘crown’→ coronoV) and adjective-to-verb (e.g. dignusA ‘worthy’→ dignoV)
conversion, and we distinguish both from cases of verb-to-verb converted fre-
quentatives/intensives selecting the Third Stem (e.g. rapioV ‘seize’, S3 rapt- →
raptoV); and we also distinguish between prefixes creating verbs from nouns
(e.g. pilusN ‘hair’ → depiloV) vs. adjectives (e.g. pravusA ‘crooked’ →
depravoV).

Regarding nouns, we cannot take our data from LatInfLexi directly, since
only 1,048 nominal lexemes are included there, which proves to be too small

4Note that things are not always as straightforward as in the examples provided here, and
in some cases both analyses are possible in principle: cf. Budassi & Litta (2017) for a detailed
discussion of this issue. In our classification, we simply follow the choice made by WFL in
this respect.
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a number to allow for solid generalizations. Therefore, we start from scratch
to obtain our dataset of nouns. We want the selection of lexemes to be based
on frequency, as it is in our sample of verbs. As a source of information on
this respect, we use the frequency lists of LatinISE, a large diachronic corpus of
Latin (McGillivray & Kilgarriff 2013), rather than the Dictionnaire fréquentiel
et index inverse de la langue latine, as in LatInfLexi. The information extracted
from the former is much more noisy than the one taken from the latter, but it
is also readily available in machine-readable format. Furthermore, we reduce
the amount of noise since we only keep the lexemes that are also recorded as
nouns in the database of Lemlat. We set our threshold of frequency at 4, so
as to obtain a sample whose size – 2,982 nouns – is roughly comparable to the
one of verbs. We also use the database of Lemlat to extract information on
the phonological shape of the stem – by semi-automatically transcribing into
IPA the stems recorded in there under the label of “Lexical Segment” (LES)
– and on the declension to which each noun belongs. Again, the classification
in inflection classes is the traditional one, identifying 5 declension, according to
the exponent used for gen.sg, as shown in Table 3, where we also display the
number of lexemes in each class.

[Table 3 about here.]

The derivational information provided for nouns is the same as the one
described above for verbs, and also the source is always the WFL database.
Additionally, we also code the gender (masculine, feminine or neuter) of each
nominal lexeme, as the examples of Table 4 illustrate.

[Table 4 about here.]

Finally, for the word-based predictions of Section 4 we simply use the data
of LatInfLexi, that provides the phonological transcription of the wordforms
filling all the non-defective and non-periphrastic cells in the paradigms of 3,348
Latin verbs. To shorten the time of the computation, we do not analyse full
paradigms. We rather focus on a 15-cell “distillation” (cf. Stump & Finkel
2013) – i.e., a reduced version where cells that are trivially predictable from one
another are conflated in a single zone, keeping only one cell for each zone, as in
the description of Pellegrini (2021).

3 Predicting inflection classes
3.1 Methodology
Our goal in this section is to assess whether various phonological and morpho-
logical properties of lexemes function as partial predictors of the inflection class
they belong to. Following previous work such as Plaster, Polinsky & Harizanov
(2013), Guzmán Naranjo (2019) and Guzmán Naranjo & Bonami (2021), we
propose to use methods from supervised machine learning to this end. A clas-
sifier is an algorithm that attempts to predict the value of some categorical
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dependent variable, here the inflection class, on the basis of a number of
other explanatory variables, representing here various pieces of phonological,
morphological and morphosyntactic information. It does so by capturing sta-
tistical associations between the relevant variables in training data, and relying
on these associations to make a prediction as to the value of the dependent
variable given the values of the explanatory variables for test datapoints that
were not part of the training data. The basic hypothesis for this line of research
is that the accuracy of a classifier is indicative of the predictive power of the ex-
planatory variables. If adding an explanatory variable to the classifier improves
accuracy, this entails that the information encoded in that variable does have
some predictive power in determining the value of the dependent variable.

The validity of this hypothesis is predicated on the quality of the classifica-
tion method. All classifiers presented in this paper rely on gradient boosting
(Friedman 2001, Mason et al. 2000) applied to decision trees, a method that
is known to capture efficiently complex interactions between variables, is not
too sensitive to spurious predictors, and has been successfully applied to pre-
diction of inflectional behavior in Czech by Guzmán Naranjo & Bonami (2021).
All models were trained and tested using the Python implementation of gra-
dient boosting in the scikit-learn package (Pedregosa et al. 2011). All results
below were obtained by performing 10-fold cross-validation: first, the dataset
is partitioned randomly in 10 equally-sized folds; then 10 classifiers are trained
successively on training data consisting of 9 of the folds and tested on the re-
maining, 10th fold. This allows one to get an accuracy result for each datapoint
based on a classifier that has not seen this data. Reported accuracies are the
proportions of correct predictions across all 10 classifier results.

Note that we choose to use a uniform classification method and hyper-
parametrization for all datasets.5 This has the practical advantage of reducing
the number of models to be trained, and the conceptual advantage of allowing
for meaningful comparisons across predictor sets. However, as each classification
method has its unique inductive biases, it is entirely possible that the choice of
a different method would lead to different conclusions.6

3.2 Predicting the conjugation of verbs
In this section, we discuss the results obtained by training our classifier to
predict the conjugation of Latin verbs using the different pieces of derivational
information coded in our dataset as predictors. Table 5 summarizes our results.

5All models used 500 boosting stages, a learning rate of 0.1, and a maximum tree depth
of 10. These hyperparameters were optimized by grid search over a small subset of the 1101
classification problems we report on in this paper.

6We also tried using Classification and Regression Trees as well as Random Forests with
various parametrizations to the classification problems presented in this section. This led to
qualitatively equivalent results, but a counterintuitive situations where spurious predictors
commonly led to a degradation of classification accuracy. We decided to report the boosted
tree results in the interest of presentational clarity, because spurious predictors tend to have
no effect on accuracy rather than a negative effect. We did not try any other classification
algorithm on the word-based classification problems we report on in Section 4.
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[Table 5 about here.]

Table 5 reports the estimated accuracy of models trained with different (com-
binations of) predictors and the 95% confidence intervals within which we can
reasonably assume the true accuracy to lie. Models are sorted by increasing
accuracy. The accuracy of the baseline classifier, that simply assigns everything
to the most frequent class, is also given for comparison. For the same reason,
the phonological shape of the final part of the stem – using only the last three
segments – is also included among our predictors. As we will see, this is also
useful to be able to disentangle the purely morphological predictive power of
derivational suffixes from information that can be inferred by final phonology
alone.

One model can be considered as clearly outperforming another one if their
confidence intervals do not overlap. Therefore, to evaluate the impact of dif-
ferent (combinations of) predictors, it is useful to group together models that
clearly outperform the same set of other models, as indicated in the last column
of Table 5. In Table 5, the different groups of predictors obtained in this way
are separated by a dashed line. The best models – the ones in the last group, i.e.
(16), (17) and (18) – all rely on some combination of final phonology and family
information. Among them, the optimal model can be reasonably considered to
be the one with fewer predictors, i.e. phonology+family.

Let us now move to a more detailed evaluation of the contribution of differ-
ent predictors. Prefixes prove to be very poorly informative of the inflectional
behavior of lexemes. On their own, they do not even beat the baseline. When
combined with other predictors, in the best-case scenario they do not change
the situation: for instance, adding prefix information to the model using the
classification in families as predictor, we obtain similar results, with overlap-
ping confidence intervals. In other cases, however, using prefixes even appears
to confuse the classifier, making accuracy values decrease: for instance, the
combination of phonological and prefix information is clearly outperformed by
the model using only phonology, and similarly prefix+suffix yields lower ac-
curacy values than suffix alone. The limited predictiveness of derivational
prefixes is not unexpected, given the inflectionally suffixal nature of Latin. Lex-
emes formed by means of the same prefix can be assigned to any conjugation, as
shown by the quantitative data of Table 6 – where only the 10 prefixes with the
largest number of derivatives are displayed, while the other prefixes are merged
together in the last line. This happens because the inflection class of the base
lexeme is almost always preserved in such cases, as the examples in (1) illustrate.

[Table 6 about here.]

(1) a. stoV:1st ‘stand’ → exstoV:1st ‘stand out’
b. torqueoV:2nd ‘twist’ → extorqueoV:2nd ‘twist out’
c. cludoV:3rd ‘shut’ → excludoV:3rd ‘shut out’
d. polioV:4th ‘smooth’ → expolioV:4th ‘smooth off’
e. capioV:mix ‘take’ → excipioV:mix ‘take out’
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For the same reason, the derivational family of a lexeme is expected to be
a very good predictor of its inflectional behavior: while knowing the prefix by
which the lexemes of (1) are formed does not help to infer their conjugation,
knowing the base from which they are ultimately derived allows for a very
safe guess. Some verbs that come from the 1st conjugation verb do ‘give’,
but are nevertheless assigned to the 3rd conjugation are the only exception to
this generalization. This is due to an analogical levelling of their paradigm
triggered by wordforms whose surface shape happens to be the same as if they
were assigned to the 3rd conjugation, because of the outcome of a phonological
process of weakening of front vowels in non-initial syllables that was active in
Old Latin, yielding e.g. *ob-damus > ob-dimus (like in 3rd conjugation verbs,
e.g. leg-imus). Indeed, among single derivational predictors,7 family is the one
with the highest accuracy values, and it is present in all optimal combinations
of predictors (the ones in the last group of Table 5).

The outermost derivational operation in the lexemes of our dataset is most
frequently prefixation, as shown in Table 7. Hence, it does not come as a surprise
that the predictor outermost displays a behaviour comparable (although not
identical) to the one of prefix: adding it as a predictor is never useful to infer
inflection class, and on its own it is outperformed even by the baseline.

[Table 7 about here.]

Differently than prefixes, derivational suffixes assign inflection class to the
lexemes they form, as clearly emerges from the data in Table 8. For instance,
all lexemes formed by means of the suffix -sc- belong to the 3rd conjugation,
regardless of the (nominal, adjectival or verbal) inflection of the base: hence,
we have for instance crescoV:3rd ‘grow’ from creoV:2nd ‘create’, hiscoV:3rd

‘open’ from hioV:4th ‘open’, frondescoV:3rd ‘become leafy’ from fronsN ‘leafy
branch’ and durescoV:3rd ‘grow hard’ from durusA ‘hard’.

[Table 8 about here.]

Indeed, suffixes prove to be partly informative on the inflectional behaviour
of lexemes in our dataset. However, from our results the information provided by
suffixes appears to be redundant with information on the phonological shape of
the last part of the stem: adding suffix to phonology does not yield a relevant
increase in accuracy, while the converse is true. Furthermore, the combination of
predictors phonology+family is the optimal predictor (no set of predictors leads
to significantly higher accuracy, and it is the simplest of the set of predictors
at that level of accuracy), and it clearly outperforms family+suffix. This
suggests that by using stem phonology it is possible to capture regularities that
go beyond the presence of a suffix, while the opposite is false.

It is clear why phonological information is preferable to information on suf-
fixes in this dataset. By far the most prevalent suffixes are -sc-, assigning verbs
to the 3rd conjugation, and -it-, assigning them to the 1st conjugation. As

7The only other predictor with comparable accuracy is the phonological shape of the stem.

9



it happens, verbs suffixed in -sc- form the vast majority of verbs with stems
ending in /sk/, and even nonsuffixed verbs with stems in /sk/ mostly fall in
the 3rd conjugation. Based on phonology alone, the classifier hence assigns all
verbs with stems in /sk/ to the 3rd conjugation, leading to perfect accuracy for
suffixed verbs. On the other hand, relying on morphological information alone
misses the generalization that verbs with stems in /sk/ tend to fall in the 3rd

conjugation even when they are unsuffixed. The same holds, mutatis mutandis,
for stems in /it/ and the 1st conjugation.

A similar behaviour is displayed by the predictor last. The value of this
category in our dataset corresponds to the value of suffix if there is one, to the
value of family otherwise. Hence, it is somewhat surprising that last proves to
be not as good a predictor as the combination of family+suffix. This suggests
that information on the derivational family is partly helpful even for suffixed
lexemes.

To confirm this, and to have a clearer picture that allows to abstract away
from the quantitative relevance of different derivational processes, it is useful
to have a look at the situation that arises when taking into account only verbs
that display a suffix on the one hand, only verbs that display a prefix on the
other hand (cf. Tables A1 and A2 in the Appendix). In the former case,
any combination including either phonology, suffix or last is categorically
predictive, as is expected since suffixes assign inflection class to the lexemes
they form; however, also family proves to have some predictive power, beating
at least the baseline: this confirms that family information plays a role even for
suffixed verbs, a fact that cannot be inferred from a qualitative analysis of Latin
data. In the latter case, the same observations that could be made on the full
dataset are still valid: thus, prefixes prove to be a spurious predictor even when
considering only verbs that do display a prefix. Importantly, phonology is still
a relevant predictor for nonsuffixed verbs, even in combination with family.
This indicates that there are phonological generalizations over stem shapes that
are partially predictive of inflectional behavior.

To sum up, for verbs the best derivational predictor of inflection class is the
family to which they belong. The optimal model is obtained by adding this
factor to the phonological shape of the last part of the stem. Furthermore, and
less expectedly, family information appears to be partly relevant even for suffixed
verbs. Also suffixes appear to play a role, as does the last derivational morph
of lexemes in linear order, but their role is limited and – most importantly
– redundant with the information already provided by final stem phonology.
Lastly, prefixes and the outermost derivational operation applied to lexemes
prove to be not informative at all on the inflectional behavior of the verbs of
our sample.

3.3 Predicting the declension of nouns
In this section, we turn to nominal inflection, training our classifiers to predict
the declension of Latin nouns in our dataset. Results are summarized in Ta-
ble 9 below, again displaying the accuracy, 95% confidence intervals and the
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(combinations of) predictors that are clearly outperformed – with no overlap in
confidence intervals – by each model.

[Table 9 about here.]

To the predictors used for verbs, we add gender, that is potentially informa-
tive on the inflection of a noun, because of the uneven distribution of nominal
lexemes among genders in different declensions, as summarized in Table 10. For
instance, assuming to know that a noun is neuter, it is possible to exclude the
1st and 5th declension from the ones to which it can be assigned, since there are
no neuter nouns in those inflection classes. Indeed, this factor is confirmed to
be a good predictor of inflection class assignment: it beats the baseline on its
own, adding it to other predictors always yields a significant increase in accu-
racy values, and it is always present in the combinations of predictors used by
the best models.

[Table 10 about here.]

Our results for nouns are similar to the ones obtained for verbs in showing
no predictive power of prefixes: again, the model using only prefixes does not
even beat the baseline, and adding prefix to a model usually either leaves the
situation unchanged or it actually makes accuracy values decrease. Another
confirmation concerns the role of suffixes, again mirrored by information on
the last derivational morph in linear order: adding suffix or last to a model
improves accuracy. Differently than what happened for verbs, for nouns suf-
fixal information appear to be complementary, and not redundant with final
stem phonology, as is shown by the fact that if suffix or last are added to
phonology, there is a significant increase in accuracy.

These facts are hardly surprising, since the same observations made above
for verbs on the inflection class assigning nature of derivational suffixes on the
one hand and on the transparency of derivational prefixes to the inflection class
of the base on the other hand also hold for nouns, as is clearly shown in Tables
11 and 12. Nouns that display the same prefix belong to different declensions.
Conversely, nouns displaying the same suffix are all in the same declension,
the only exception being constituted by diminutives like -cul- and -ll- that are
transparent to the gender of the base, and are accordingly assigned to different
declensions – the 1st if the base is feminine, the 2nd if it is masculine or neuter,
as the examples in (2) illustrate.

[Table 11 about here.]

[Table 12 about here.]

(2) a. aurisN:F-3rd ‘ear’ → auriculaN:F-1st ‘ear-lap’ (lit. ‘small ear’)
b. fascisN:M-3rd ‘bundle’ → fasciculusN:M-2nd ‘small bundle’
c. osN:N-3rd ‘mouth’ → osculumN:N-2nd ‘small mouth’
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On the other hand, there is a remarkable difference regarding the role of
family, that played such an important role for verbs. For nouns, family on its
own does not even outperform the baseline, and adding it to other (combinations
of) predictors is rarely helpful in a relevant way. In particular, there are models
with maximal predictiveness that do not include family as a predictor.

Another difference that jumps to the eye with respect to the results obtained
for verbal lexemes is the importance of the outermost derivational operation
performed on the nominal lexemes of the sample. This was found to be a
spurious predictor for verbs, while for nouns it proves to be the best single
predictor, and it is present in the optimal combination of predictors – the one
with fewer predictors among the ones of the last group of Table 9, namely
phonology+outermost+gender.

The explanation of these differences can be reasonably found in the different
quantitative relevance of the processes that are applied lastly in the derivational
history of lexemes in the sample of nouns and verbs. For verbs, the outermost
derivational operation is overwhelmingly prefixation, hence the models including
outermost as a predictor often use information on prefixes, that have been shown
to be poorly informative on the inflectional behavior of lexemes. Conversely,
lexemes where the outermost operation is suffixation are the most frequent in
the noun sample. In that case, the models including outermost thus exploit
information on the suffix displayed by lexemes, a factor that is shown to be
predictive of inflection class.

Similarly, the limited role of the derivational family of nouns is likely to
be due to two combined factors. First, there are comparatively fewer prefixed
nouns, and we saw that family information is most useful for prefixed items.
Second, in our dataset, nouns belong to comparatively smaller families than
verbs. 37% of nouns are alone in their family. This entails that for 37% of
the nouns, family information is absent from the training data, because there is
no other lexeme from the same family to learn from. The same holds only for
12% of verbs. In the same vein, the median family size is 2 for nouns and 6 for
verbs, entailing that classifiers for verbs tend to have a lot more information on
properties of the family to build on.

[Table 13 about here.]

Results obtained on the samples including only prefixed and suffixed lexemes
(cf. Tables A3 and A4 in the Appendix) confirm the conclusions drawn on the
full dataset, that can be summarized as follows. For nouns, among derivational
predictors information on suffixes is the most useful to help predicting inflection
class, with the last morph in linear order – most often, a suffix – consequently
playing a comparable role. Conversely, prefixes are poorly informative, and so is
information on the derivational family of lexemes. The optimal model for nouns
include two non-derivational predictors that prove to be strongly predictive of
the inflectional behaviour of lexemes, namely their gender and stem phonology,
together with the outermost derivational operation, where information on both
the suffix of the noun – if there is one – and the derivational family to which it
belongs are encapsulated.
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4 A word-based alternative: predicting verb forms
4.1 Rationale
In the previous part of this paper, the task we focused on was predicting the in-
flection class of lexemes, starting from an abstract lexeme identifier, represented
by their citation form. While this is the most usual way of investigating the in-
flectional behaviour of lexemes, it is not without its problems. On the one hand,
by framing the issue in this way, in a sense there is an overestimation of the
difficulty that is actually faced by speakers in discourse. This is due to the fact
that inflection class indexes are meant as summarizing the overall inflectional
behaviour of a lexeme: knowing that a lexeme belongs to a given inflection class
is tantamount to being able to fill its whole paradigm. However, the task that
speakers have to fulfil is simpler than that: it can be conceptualized as consisting
in producing the appropriately inflected wordform – as required by the syntactic
context – of a lexeme they already know, having encountered it at least once,
i.e. having been exposed to at least one of its other forms. On the other hand,
there is also a sense in which the difficulty of the task is underestimated by the
use of inflection classes, that very often do not capture all relevant aspects of
the inflectional behaviour of lexemes – especially when they are defined more
laxly as “macro-classes” of lexemes that inflect similarly rather than identically
(see the discussion in Section 1), as is usually done in traditional descriptions
like the ones we relied on in the previous section. This kind of simplification is
particularly relevant in Latin conjugations, that only refer to variation in the
selection of endings in imperfective cells, as was summarized above in Table 1.
However, if we also look at perfective cells and some nominal forms, like the
perfect participle or the supine, the endings are always the same for lexemes
of all conjugations, but there is remarkable allomorphy in the formation of the
stems on which these wordforms are based – the so called Perfect Stem and
Aronoff’s (1994) Third Stem, respectively. Table 14 exemplifies some of the
attested patterns, among which we find reduplication (e.g. in the Perfect Stem
cucurr-), vowel lengthening (e.g. in the Perfect Stem vēn- vs. Present Stem
ven-), apophonic alternation (e.g. in the Perfect Stem cēp- vs. Present Stem
cap-), and full suppletion in the case of fero. All this variation is simply not
considered by the traditional classification of conjugations.

[Table 14 about here.]

Of course, these issues potentially have an impact on the results presented
in Section 3. Indeed, at least in some cases, by limiting the investigation to the
traditional conjugations, some relevant details regarding the role of derivational
information are clearly neglected. Consider, for instance, the data of Table 15.

[Table 15 about here.]

Knowing that the verbs of Table 15 all belong to the derivational family of
facio, they can be assigned to the same conjugation as the base (i.e., the 3rd)
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with no uncertainty. However, if we focus on the more realistic task of guessing
prs.act.inf from prf.act.ind.1sg, things are not so straightforward: while
in calefacio the same pattern of stem allomorphy found in the base lexeme is
applied (Perfect Stem calefēc- vs. Present Stem calefac-), in inficio there is a
different pattern (Perfect Stem infēc- vs. Present Stem infic-). This is due to
the weakening of front vowels in non-initial syllables already mentioned in §3.2,
that was active in Old Latin, yielding in-ficio < *in-facio, but not in Classical
Latin, leaving more recent formations like cale-facio unaffected. In any event,
this variation generates uncertainty in the Paradigm Cell Filling Problem: given
a prf.act.inf in -fēcī, two possible alternatives are available for prs.act.inf,
that can end in -facere and -ficere. This uncertainty cannot be captured by
focusing on traditional conjugations only, since all these verbs are assigned to
the 3rd conjugation, because the endings of imperfective cells are always the
same.

To evaluate the impact of such facts on our results, in this section we recast
the problem of the impact of derivational information on inflectional predictions
in fully-word based, abstractive terms, following a methodology that we will
outline in the rest of this section.

4.2 The information-theoretic approach to the PCFP
In this subsection we review information-theoretic, word-based methods ad-
dressing the Paradigm Cell Filling Problem (PCFP). These will then serve as a
crucial inspiration to the approach developed in this paper.

Ackerman, Blevins & Malouf (2009) introduced the idea of using condi-
tional entropy to evaluate the difficulty of predicting what happens in an out-
put paradigm cell c′ knowing the form occupying paradigm cell c: the shapes of
wordforms occupying cells c and c′ are classified into types accross the lexicon
(typically characterized in terms of affixal exponents), allowing for the defini-
tion of corresponding random variables C and C ′ capturing the probability of
an arbitrary lexeme fitting into each of the possible types. Probabilities are then
evaluated on the basis of type frequency information computed over a large lexi-
con,8 and the conditional entropyH(C ′ | C) computed from these estimates how
much uncertainty there is on average when trying to guess the type of form filling
cell c′ knowing what type of form fills cell c. For instance, imagine that the Latin
verbal lexicon consists solely of the 5 familiar verbs relisted in Table 16, and
suppose that we are satisfied by indentifying form types as indicated. From this
we can estimate the difficulty of predicting the present infinitive from the first-
person singular of the indicative as H(prs.act.inf | prs.act.ind.1sg) = 0.8,
while in the opposite direction predicting the first-person singular from the in-
finitive is easier, as H(prs.act.ind.1sg | prs.act.inf) = 0.4. The asymmetry
is due to the fact that 4 out of 5 verbs have in the present 1sg endings which

8The earliest studies using this methodology (Ackerman, Blevins & Malouf 2009, Acker-
man & Malouf 2013) made the simplifying assumption that all inflection classes are equiprob-
able, leading to a very poor estimation of probabilities of inflectional types. Bonami & Boyé
(2014) and Sims (2015) were the first studies to rely on actual type frequency information.
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neutralize a binary distinction relevant in the infinitive (/-o:/ maps to either
/-a:re/ or /-ere, /-io:/ maps to either /-i:re/ or /-ere/, while only 2 out of 5
do so in the opposite direction (/-ere/ maps to /-o:/ or /-io:/; all three other
infinitive endings predict perfectly the present 1sg ending).

[Table 16 about here.]

This simple method was criticized by Bonami & Boyé (2014) and Bonami
& Beniamine (2016) for its reliance on a pre-existing classification of wordform
shapes whose choice is left to the analyst, leading to concerns on the exact
nature of what is measured and in some cases the possibility of circularity. A
simple illustration of the problem is presented in Table 17, where three extra
Latin verbs are added to the picture. It turns out that some first conjugation
verbs have a stem ending in /e/ (e.g. commeo ‘visit’) or /i/ (e.g. glacio
‘freeze’), and one third conjugation verb in our dataset has a stem ending in /i/
(immeio ‘make water into’). These verbs present a challenge for the application
of Ackerman et al.’s method. Clearly the exponent of first person is just /-
o:/, and the preceding vowel belongs to the stem, as it is constant accross the
paradigm. If we hence take the appropriate type of present 1sg to be /-o:/ in
these three cases, then our evaluation of the difficulty of predicting the infinitive
is essentially unchanged, with H(prs.act.inf | prs.act.ind.1sg) ≈ 0.86.9

[Table 17 about here.]

But clearly we are missing something here, if what we are interested in is
really how speakers can predict one form from another: while knowledge of
the rest of the paradigm allows us to infer that /e/ and /i/ are part of their
respective stems, a speaker exposed to just the prs.act.ind.1sg form cannot
know that: speakers do not hear morph boundaries. Hence, realistically, looking
at a word such as glacio, the expected behavior of a speaker should be hesitation
rather than certainty: this could be a first, third, fourth, or mixed conjugation
verb, because there are verbs in all four conjugations whose present 1sg form
ends in /-io:/.

Bonami & Boyé (2014) argue that the way out of this conundrum is to not
make any unchecked assumption about the classification of forms filling a cell,
but infer these in a principled way from an examination of the surface alterna-
tions present in the data and directly observable by speakers.10 Hence a basic
building block of a proper approach to the PCFP is an algorithm for classifi-
cation of pairs of words into alternation types. The PCFP can then be recast
as the problem of predicting which alternation type relates the forms filling two

9The numbers are not exactly the same as before, because by adding three items to our
toy lexicon we modified the type frequency of each inflection class.

10See Malouf (2017) for a completely different way of taking into account Bonami and
colleague’s critique: Malouf addresses the PCFP by showing that a recurrent network can
learn to accurately produce the unseen form of a lexeme in cell c from just a lexeme identifier,
on the basis of training data that contain other forms of that lexeme and the forms of other
lexemes in cell c.
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cells c and c′, given what knowledge of the form in c allows one to infer on which
alternations may be applicable. As a case in point, Table 18 illustrates how the
problem of predicting the present infinitive from the prs.act.ind.1sg is recast.

[Table 18 about here.]

In this simple example the alternations amount to substitutions of endings.
Once these alternations have been identified, predictor shapes (here the prs.act.ind.1sg)
are classified by identifying which alternations they could potentially lead to
given their phonological makeup. The set of such applicable alternations is
given in the last column. For instance, the set of applicable alternations for the
form /lawdo:/ is {a1, a3}: this form ends in /o:/ but neither in /eo:/, which is
required for application of alternation a2, nor in /io:/, which is required for the
application of a4 or a5. By contrast, the set of applicable alternations for the
form /lakio/ is {a1, a3, a4, a5}, because that form ends both in /o:/ and /io:/.
Hence we capture the fact that two wordforms of lexemes exhibiting the same
alternation (and hence belonging to the same inflection class) may have differ-
ent predictive power: /glakio/ is uninformative as to what could happen in the
infinitive in a way that /lawdo:/ is not. If we go on to compute the conditional
entropy of the alternation actually relating to forms given the class of the input
form, we find the value to be 1.5. This confirms that relying blindly on a pre-
existing classification of wordforms into shape types led to underestimate the
difficulty of the PCFP in this particular instance.

4.3 The PCFP as a classification problem
Our goal in this section is to build on the information-theoretic literature on
the PCFP to further our understanding of the predictive power of derivational
information for inflectional behavior. To this end, following a precedent set
by Guzmán Naranjo (2020), we recast the PCFP as a classification problem:
classifier accuracy takes the place of conditional entropy as our evaluation of
predictability. From Section 3 we retain the idea of constructing multiple clas-
sifiers using various combinations of morphological predictors as input, evaluate
their performance through cross-validation, and use this to assess the predic-
tive power of these various predictors. Although it would have been possible to
expand more directly on the information-theoretic approach, by adding deriva-
tional predictors to the set of conditioning variables in evaluations of conditional
entropy, there are a number of distinct advantages to the classification-based ap-
proach. First, a classifier can be directly interpreted as a model of the PCFP as
it arises for speakers: just as a speaker, the classifier is trained on partial knowl-
edge of the system, and then applied to unseen data. Second, the information-
theoretic approaches outlined above are predicated on unrealistic omniscience of
speakers on the relevant probability distributions. While this may be innocuous
as long as one is dealing with macroscopic phenomena for which large frequency
allows for accurate estimation of probability, such as inflectional macro-classes,
it is unsatisfactory when dealing with microscopic phenomena such as deriva-
tional families: in the typical situation where a speaker has been exposed to a
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handful of members of a family, they cannot be expected to have an accurate
estimation of the probability of a member of that family exhibiting a particular
inflectional behavior.11 The present approach has a built-in safeguard against
this omniscience problem, as the classifier’s generalizations can only be as good
as can be extracted from the incomplete sample of data seen in training. Third
and finally, the classification approach allows us to deploy exactly the same
machine learning algorithms used in Section 3, and hence allows for meaningful
quantitative comparison of our results.

From the information-theoretic literature on the PCFP reviewed in the pre-
vious subsection we retain two main ideas. First, we want to predict word-level
properties from word-level properties, rather than lexeme-level properties (inflec-
tion class) from lexeme-level properties (stem phonology and morphology); this
is the essence of a word-based approach. Second, we model the morphophono-
logical aspects of prediction using the insights of Bonami & Boyé (2014) and
Bonami & Beniamine (2016): our word-based classifiers predict the pattern re-
lating two wordforms on the basis of the relevant morphophonological properties
of the predictor form. Specifically, we use the algorithm introduced by Beni-
amine (2018) for automatic classifications of pairs of paradigmatically-related
wordforms into alternation types.12

Concretely then, for each pair of paradigm cells of interest, we trained a num-
ber of gradient boosting classifiers, using the same hyperparameters described
in Section 3. The dependent variable is always the type of alternation relating
the wordforms filling the two cells. In the simplest, vanilla classifiers, there is
a single predictor variable, which is the morphophonological class of the predic-
tor wordform, assessed as indicated in Section 4.2 through the set of applicable
alternations: the accuracy of that classifier is our estimation of the difficulty of
the PCFP taking only morphophonological information into account, and the
direct analogue of the information-theoretic assessment of the PCFP in Bonami
& Beniamine (2016) or Pellegrini (2020). It can also be compared to the classi-
fiers with only phonology as predictor in the setup of Section 3: as for these,
only phonological information is used for prediction, although now it is infor-
mation on the overall shape of a predictor word rather than just the stem. We
compare these vanilla classifiers to classifiers using extra dependent variables
encoding various types of derivational information. In the interest of time, we
focused on those variables that have been shown to have some predictive power

11As a reviewer notes, our sampling process is not realistic inasmuch as token frequency
is not into account. In this we follow the lead of Bybee (1995), Pierrehumbert (2001) and
Albright & Hayes (2003) who all argue that morphological patterns are extended on the basis
of type frequency only. See however Boyé & Schalchli (2019) for a general discussion of the
proper sampling of morphological data for the assessment of the PCFP.

12Although the toy data we use for illustration is simple enough that alternations can
always be seen as substitution of suffixes, one of the virtues of Beniamine’s algorithm is to
capture more complex types of alternations, including nonconcatenative alternations resulting
from infixation, root-and-pattern morphology, and suprasegmental exponence. This is crucial
to capturing some of the patterns in the Latin data, including complex stem alternations such
as those presented in Table 14. In addition, the patterns encode knowledge on the phonotactic
contexts within which each alternation is found.
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in Section 3: family information, suffix information, a combination of the two,
and the last non-inflectional morph in linear order.

We hence have five predictor combinations that we would in principle want
to evaluate on each of the 254× 253 = 64, 262 pairs of cells in the Latin verbal
paradigm. Since this is computationally unrealistic, as was hinted above in
Section 2 we follow the common practice of focusing instead on a distillation of
the paradigm in the sense of Stump & Finkel (2013), a set of cells each of which
is representative of a zone of perfect interpredictability. We use the same 15-
cell distillation Pellegrini (2021) derived by hunting for null conditional entropy
values between pairs of cells.

4.4 Results
In this section we present the results obtained with the word-based methodol-
ogy outlined above. Figure 1 reports the accuracy values of all classifiers using
the ‘vanilla’ configuration of predictors, that is, with no derivational informa-
tion. There are 210 such classifiers, as we are trying to predict what happens
in each of the 15 cells in the distillation from any of the remaining 14 cells.
It is worth noting that we find here for Latin the same situation documented
for various other languages using comparable quantitative methods to assess the
PCFP: prediction varies from trivial (accuracy of 1) to mildly difficult (minimum
accuracy 0.54), with some cells being overall good or bad predictors (compare
prs.act.ind.1sg and prs.act.ind.3pl rows), and easy or hard to predict (com-
pare prs.ptcp and prf.act.inf columns), with no simple correlation between
the two properties (e.g. the last two cells, based on the third stem, are strongly
interpredictable but badly connected with any other cells). This picture closely
corresponds to the entropy-based description of Latin verb inflection sketched
by Pellegrini (2021), to which the reader is referred for further details.

[Figure 1 about here.]

This set of ‘vanilla’ models will serve as the baseline for evaluation of the
value of different kinds of derivational information. For a first, coarse-grained
evaluation, in Table 19 we report the average accuracy values of all 210 classifiers
for each configuration of predictors.

[Table 19 about here.]

These results again suggest that the most useful derivational predictor is the
derivational family of lexemes, that alone is able to yield a relevant increase in
the accuracy of the vanilla model. Conversely, suffix information does not seem
to be very useful: it contributes nearly nothing in average accuracy improve-
ment, when added to other sets of predictors. As expected, the predictiveness
of the last morph appears to be exactly the same as the one obtained combining
family and suffix information.

Although these results are interesting, averaging over all classifiers of the
same type may hide interesting patterns: for instance, it may be the case that
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identical averages hide asymmetries where one type of classifier performs well
in a corner of the paradigm and poorly in another corner, while another type of
classifier does the opposite. It is precisely a virtue of a detailed word-based ap-
proach such as that developed here that we can make a more detailed assessment
and spot such situations.

To that effect, the 6 plots in Figure 2 provide a more detailed comparison of
6 pairs of classifiers. In each of the plots, each point indicates, for some pair of
cells in the distillation (A,B), the accuracy of two classifiers predicting B from
A using different sets of predictors. The diagonal line materializes the location
where all the dots should be if the two classifier types had exactly the same
performance. Points materialized by dark circles document cases where the
difference between the accuracy of the two classifiers is statistically significant
(the 95% confidence intervals around the accuracy value do not overlap), while
lighter crosses correspond to cases where it is not.

[Figure 2 about here.]

We comment the plots in turn, starting from the cleared cases. Looking at
the bottom right plot, we see that the last morph has exactly the same predic-
tive power as the combination of family and suffix information (bottom right
plot): all points are closely clustered on the diagonal, and there is a significant
difference for only 2 out of 210 classifiers.13 This is unsurprising, since the last
morph information is almost the same thing as the combination of family and
suffix information. However, this result contrasts with what we saw in §3.2,
where, using different methodology, we documented a lower accuracy for pre-
diction from phonology and last morph than from phonology, family and suffix.
The remaining plots visually seem to fall into two classes: in three of the plots,
points are really close to the diagonal, and very few pairs of classifier are signif-
icantly different, whereas in the two remaining ones, most points are markedly
higher than the diagonal, and differences are almost always significant. This
indicates that in the first three cases the classifier types have very similar per-
formance, whereas in the last two the more complex classifier type performs
markedly better than the simpler one. This confirms that the derivational fam-
ily information is overall highly predictive of inflectional behavior, while suffix
information is not.

However, it is notable that there are a few combinations of predictor and
predicted cells for which suffix information is predictive. Looking at this more
closely, it turns out that suffixes are usually helpful when predicting from the
prf.act.inf, which is the only cell in the distillation corresponding to the
Perfect Stem. The reason for this can be plausibly found in the fact that the
most frequent derivational suffix in our dataset, namely the inchoative -sc-, only
surfaces in the Present Stem: in cells based on the Perfect, verbs displaying that
suffix either are defective, or they use the same stem as in the base they derive

13That the points are not exactly aligned is to be expected, as there are nondeterministic
aspects of classifier training; hence even the exact same classifier trained on the exact same
data will not give rise to exactly the same results from one run to the next.
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from (e.g. ardesco ‘take fire’, with Perfect stem ars-, as in the base ardeo).
Therefore, when faced with perfective wordforms of similar verbs, speakers can
exploit their knowledge of the fact that they belong to the series of inchoative
verbs – information that they can be assumed to be able to infer at least partly
on semantic grounds – to guess the presence of the segment -sc- in wordforms
based on the Present Stem, despite the fact that such segment does not surface
in the phonological makeup of perfective wordforms. Hence, in such cases the
classification based on suffixes supplies information that is not redundant with
phonology, thus explaining the sharp increase in accuracy values.14

Now that we have observed exceptions to the nonpredictiveness of suffixes,
it seems worthwhile to worry about the opposite situation, namely pairs of
cells where the addition of family information does not lead to a significant
improvement in accuracy. Examining the plots more closely, however, this turns
out to be a purely mechanical effect: the very few nonsignificant points in the
relevant two graphs (top right and middle left) also correspond to the most
extreme values of accuracy, where the simpler model type has accuracy above
0.98: there is basically no remaining accuracy gain possible starting from such
a high value. More generally, this is an extreme case of the visible general
tendency that, as the accuracy of the simpler model rises, the difference in
accuracy between the two models decreases; again this is a mechanical effect
of the fact that the higher the baseline accuracy, the lower the possible gain
obtained by adding predictors. Hence, while we do document an overall strong
predictive power of family information across the paradigm, we do not document
differential effects of that predictive power for all combinations of predictor and
predictee cells.

To sum up, results obtained with the word-based methodology outlined
in §4.2 essentially confirm the findings of §3.2, based on stems and inflection
classes: knowing the derivational family to which verbs belong always helps to
predict their inflectional behaviour, while suffix information is mostly redundant
with phonology. However, this abstractive procedure also allows for interesting
observations on more or less systematic differences in the impact of derivational
information across pairs of cells.

5 Conclusions
In this paper, we have offered a quantitative assessment of the relation between
derivational information and inflectional behavior in Latin. In the first part
of the study, we have done so by resorting to the notion of inflection classes.
In many cases, our results confirm on a more principled ground the findings
of qualitative observations on Latin data. For instance, derivational prefixes
have been proven to be uninformative across the board, both for nouns and
for verbs. This is hardly surprising, since lexemes derived by means of the

14A similar situation holds for cells based on the Third Stem, where, however, the former
option of defectiveness is much more frequent, explaining why the impact of suffixes is less
relevant.
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same prefix can be assigned to any of the available inflection classes. On the
other hand, the derivational suffix displayed by lexemes and the derivational
family to which they belong both have a role to play, since the former normally
assigns inflection class to suffixed lexemes, while the latter is informative on the
behaviour of prefixed lexemes. Suffixation has the lion’s share in Latin nominal
derivational morphology: therefore, it comes as no surprise that derivational
suffixes are the most useful predictor of inflection when focusing on the noun
dataset. Conversely, prefixation is the most usual way of deriving new verbs
in Latin, which explains why the derivational family is most predictive when
focusing on the verb dataset. Furthermore, and less expectedly, our results show
that family information is partially predictive even for suffixed verbs, although
not as dramatically as suffix identity. This shows that our quantitative approach
is also capable of uncovering facts that could not be inferred from a qualitative
inspection of Latin inflection alone.

In the second part of this study, we have recast the problem in abstractive
terms. This word-based methodology has basically confirmed the findings of the
stem-based study. The two approaches, however, offer complementary perspec-
tives on the point at issue. The word-based approach is more realistic in that it
models a prediction task similar to the one that speakers actually have to face
in discourse, i.e. the so-called Paradigm Cell Filling Problem. Furthermore,
it allows for finer-grained distinctions about variation in the predictiveness of
derivational information across different (pairs of) cells: as a case in point, we
showed how suffixal information is relevant when predicting from the perfective
subpart of the paradigm, but not when predicting from other cells. The stem-
based approach, however, is still useful in that it provides a more holistic view
of structural aspects of the system, by framing the question in more familiar
terms, relying on the notions of inflection classes – that encapsulate a lot of
information on the inflectional behaviour of lexemes – and stems – that cannot
be identified in a principled way in our word-based procedure.

This study focused on Latin data for concreteness. It would of course be
highly relevant to replicate it on other languages, and hopefully be able to draw
typological lessons on the interaction of inflection and derivation. Unfortunately
such replications are quite costly, as they rely on the availability of a large
machine-readable lexicon15 with phonemically transcribed full paradigms and
detailed documentation of the derivational history of lexemes. Currently we do
not have at our disposal such a resource for any other language. Despite this,
we cautiously draw some conclusions for morphological theory and the structure
of morphological systems.

Our first conclusion concerns the Paradigm Cell Filling Problems and at-
tempts at evaluating it quantitatively. What this paper shows is that, at least
for Latin, knowledge of derivational information dramatically increases the pre-
dictability of inflected wordforms; this suggests that predictability measures as
reported in the literature overestimating the difficulty of the PCFP in a direc-

15How large depends on the intricacies of the morphological systems; but in our experience
one should aim for thousands of lexemes.
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tion that was not previously observed. Of course, it remains to be investigated
to what extent the detailed derivational knowledge encoded in our dataset is
available to speakers. First, while in some cases derivational relatedness is ob-
vious, it can be more or less opaque. To take an extreme example from our
dataset, while prohibeo is in the derivational family of habeo, speakers are
unlikely to be aware of that fact: the meaning of prohibeo (‘restrain’ or ‘pre-
vent’) is not obviously related to the one of the base (‘have’) and prefix pro-
(‘in front/favor of’) of which it is composed; and the form relationship is also
less than fully transparent. Hence our method may lead to overestimate the
ability of speakers to draw reliable inferences from derivational information. To
remedy for this simplification, a promising possibility is to modulate the predic-
tive power of derivational information on the basis of the transparency of the
relationship between words, where transparency could be evaluated using com-
putational methods from distributional semantics and phonological distance.
Second, even where derivational relatedness is transparent, it remains to be
seen whether speakers do indeed rely on that information in concrete prediction
tasks. This calls for experimentation with speakers, obviously on a language
other than Latin.

Our second conclusion concerns the relationship between the position of ele-
ments in the linear order of morphs and their impact on inflectional predictions.
While we have seen that prefixes, that are located on the left side of wordforms,
never help to predict inflection, right-side elements – namely, suffix and family
information – have been shown to be informative, at least to some extent. In-
deed, the last element in linear order proves to be predictive both for verbs –
where, however, it is redundant with phonological information – and for nouns,
while the structural order of application of different derivational procedures is
relevant only for nouns – but in that case the operation applied lastly usually
happens to coincide with the last element in linear order, since suffixation is
the more frequent strategy for deriving nouns in Latin. This state of affairs is
not really surprising: it appears to be the norm also in familiar Western Indo-
European languages with (mainly) suffixal inflection. This raises the question
of whether this situation is due to some historical accident, or is the outcome
a more general tendency. To provide an answer, it would be interesting to ex-
tend the investigation to a larger sample, including other languages with suffixal
inflection that, however, do not belong to the Indo-European family, but also
to languages with prefixal inflection, or displaying templatic, root-and-pattern,
morphology; a topic that we have to leave for future research.
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Appendix

Predictor Accuracy 95% CI Outperformed
predictors

(1) prefix 0.295 (0.276, 0.314) _
(2) prefix+suffix 0.311 (0.291, 0.33) _
(3) outermost 0.320 (0.3, 0.339) _
(4) baseline 0.438 (0.417, 0.459) (1)-(3)
(5) suffix 0.452 (0.431, 0.473) (1)-(3)
(6) last 0.452 (0.431, 0.473) (1)-(3)
(7) phonology+prefix 0.819 (0.803, 0.835) (1)-(5)
(8) phonology+outermost 0.830 (0.814, 0.846) (1)-(5)
(9) prefix+family 0.842 (0.826, 0.857) (1)-(5)
(10) phonology+last 0.866 (0.851, 0.88) (1)-(8)
(11) phonology+suffix 0.866 (0.851, 0.88) (1)-(8)
(12) phonology 0.866 (0.852, 0.881) (1)-(8)
(13) family 0.867 (0.853, 0.881) (1)-(8)
(14) prefix+family+suffix 0.874 (0.86, 0.888) (1)-(9)
(15) family+suffix 0.895 (0.882, 0.908) (1)-(13)
(16) phonology+prefix+family+suffix 0.935 (0.924, 0.945) (1)-(15)
(17) phonology+family+suffix 0.938 (0.928, 0.948) (1)-(15)
(18) phonology+family 0.938 (0.928, 0.948) (1)-(15)

Table A1: Accuracy of prediction of conjugation classes for various combinations
of predictors: only prefixed verbs
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Predictor Accuracy 95% CI Outperformed
predictors

(1) prefix 0.575 (0.515, 0.634) _
(2) baseline 0.653 (0.596, 0.71) _
(3) prefix+family 0.713 (0.659, 0.767) (1)
(4) family 0.769 (0.718, 0.819) (1)-(2)
(5) outermost 0.847 (0.804, 0.89) (1)-(3)
(6) family+suffix 0.993 (0.982, 1.003) (1)-(5)
(7) phonology+family 0.993 (0.982, 1.003) (1)-(5)
(8) prefix+family+suffix 0.993 (0.982, 1.003) (1)-(5)
(9) phonology+prefix+family+suffix 0.996 (0.989, 1.004) (1)-(5)
(10) phonology+family+suffix 0.996 (0.989, 1.004) (1)-(5)
(11) phonology+outermost 1.0 (1.0. 1.0) (1)-(5)
(12) phonology+prefix 1.0 (1.0. 1.0) (1)-(5)
(13) phonology+suffix 1.0 (1.0. 1.0) (1)-(5)
(14) suffix 1.0 (1.0. 1.0) (1)-(5)
(15) last 1.0 (1.0. 1.0) (1)-(5)
(16) prefix+suffix 1.0 (1.0. 1.0) (1)-(5)
(17) phonology+last 1.0 (1.0. 1.0) (1)-(5)
(18) phonology 1.0 (1.0. 1.0) (1)-(5)

Table A2: Accuracy of prediction of conjugation classes for various combinations
of predictors: only suffixed verbs
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Predictor Accuracy 95% CI Outperformed
predictors

(1) prefix 0.234 (0.201, 0.266) _
(2) prefix+family 0.344 (0.307, 0.38) (1)
(3) baseline 0.472 (0.434, 0.51) (1)-(2)
(4) family 0.505 (0.467, 0.544) (1)-(2)
(5) prefix+gender 0.602 (0.564, 0.639) (1)-(4)
(6) prefix+family+gender 0.722 (0.688, 0.756) (1)-(5)
(7) prefix+suffix 0.728 (0.694, 0.762) (1)-(5)
(8) gender 0.771 (0.739, 0.803) (1)-(5)
(9) family+gender 0.777 (0.745, 0.809) (1)-(5)
(10) phonology+prefix 0.792 (0.761, 0.823) (1)-(6)
(11) phonology 0.794 (0.763, 0.825) (1)-(7)
(12) suffix 0.806 (0.776, 0.836) (1)-(7)
(13) last 0.806 (0.776, 0.836) (1)-(7)
(14) phonology+family 0.821 (0.792, 0.851) (1)-(7)
(15) prefix+family+suffix 0.824 (0.795, 0.854) (1)-(7)
(16) outermost 0.838 (0.81, 0.866) (1)-(9)
(17) family+suffix 0.841 (0.813, 0.869) (1)-(9)
(18) phonology+suffix 0.843 (0.815, 0.871) (1)-(9)
(19) phonology+last 0.843 (0.815, 0.871) (1)-(9)
(20) phonology+outermost 0.853 (0.826, 0.881) (1)-(11)
(21) phonology+family+suffix 0.858 (0.831, 0.885) (1)-(11)
(22) phonology+prefix+family+suffix 0.860 (0.833, 0.886) (1)-(11)
(23) prefix+suffix+gender 0.922 (0.902, 0.943) (1)-(22)
(24) outermost+gender 0.934 (0.915, 0.953) (1)-(22)
(25) last+gender 0.942 (0.924, 0.96) (1)-(22)
(26) suffix+gender 0.942 (0.924, 0.96) (1)-(22)
(27) phonology+last+gender 0.942 (0.924, 0.96) (1)-(22)
(28) phonology+suffix+gender 0.942 (0.924, 0.96) (1)-(22)
(29) prefix+family+suffix+gender 0.948 (0.931, 0.965) (1)-(22)
(30) family+suffix+gender 0.948 (0.931, 0.965) (1)-(22)
(31) phonology+gender 0.950 (0.933, 0.966) (1)-(22)
(32) phonology+family+suffix+gender 0.950 (0.933, 0.966) (1)-(22)
(33) phonology+prefix+gender 0.953 (0.936, 0.969) (1)-(22)
(34) phonology+prefix+family+suffix+gender 0.953 (0.936, 0.969) (1)-(22)
(35) phonology+family+gender 0.954 (0.938, 0.97) (1)-(22)
(36) phonology+outermost+gender 0.956 (0.94, 0.971) (1)-(22)

Table A3: Accuracy of prediction of declension classes for various combinations
of predictors: only prefixed nouns
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Predictors Accuracy 95% CI Outperformed
predictors

(1) prefix+family 0.496 (0.469, 0.523) _
(2) prefix 0.527 (0.5, 0.554) _
(3) family 0.575 (0.548, 0.602) (1)
(4) baseline 0.613 (0.586, 0.639) (1)-(2)
(5) prefix+family+gender 0.668 (0.643, 0.694) (1)-(4)
(6) prefix+gender 0.683 (0.658, 0.708) (1)-(4)
(7) family+gender 0.714 (0.689, 0.738) (1)-(4)
(8) gender 0.727 (0.702, 0.751) (1)-(5)
(9) phonology+family 0.866 (0.848, 0.885) (1)-(8)
(10) phonology 0.875 (0.857, 0.893) (1)-(8)
(11) phonology+prefix 0.878 (0.861, 0.896) (1)-(8)
(12) prefix+suffix 0.935 (0.921, 0.948) (1)-(11)
(13) outermost 0.935 (0.921, 0.948) (1)-(11)
(14) prefix+family+suffix 0.935 (0.922, 0.949) (1)-(11)
(15) suffix 0.937 (0.924, 0.95) (1)-(11)
(16) last 0.937 (0.924, 0.95) (1)-(11)
(17) family+suffix 0.939 (0.926, 0.952) (1)-(11)
(18) phonology+prefix+family+suffix 0.945 (0.932, 0.957) (1)-(11)
(19) phonology+family+suffix 0.946 (0.934, 0.958) (1)-(11)
(20) phonology+outermost 0.951 (0.939, 0.963) (1)-(11)
(21) phonology+suffix 0.952 (0.941, 0.964) (1)-(11)
(22) phonology+last 0.952 (0.941, 0.964) (1)-(11)
(23) phonology+family+gender 0.965 (0.955, 0.975) (1)-(17)
(24) phonology+prefix+gender 0.971 (0.962, 0.98) (1)-(19)
(25) phonology+gender 0.972 (0.963, 0.981) (1)-(19)
(26) family+suffix+gender 0.986 (0.98, 0.993) (1)-(23)
(27) outermost+gender 0.986 (0.98, 0.993) (1)-(23)
(28) prefix+family+suffix+gender 0.988 (0.982, 0.994) (1)-(25)
(29) phonology+family+suffix+gender 0.988 (0.982, 0.994) (1)-(25)
(30) last+gender 0.988 (0.982, 0.994) (1)-(25)
(31) suffix+gender 0.988 (0.982, 0.994) (1)-(25)
(32) phonology+prefix+family+suffix+gender 0.988 (0.983, 0.994) (1)-(25)
(33) phonology+outermost+gender 0.989 (0.984, 0.995) (1)-(25)
(34) prefix+suffix+gender 0.989 (0.984, 0.995) (1)-(25)
(35) phonology+suffix+gender 0.990 (0.985, 0.995) (1)-(25)
(36) phonology+last+gender 0.990 (0.985, 0.995) (1)-(25)

Table A4: Accuracy of prediction of declension classes for various combinations
of predictors: only suffixed nouns
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Conj. Sample lexeme Stem prs.act.inf prs.act.ind.3pl Frequency

1st laudo ‘praise’ /lawd/ laudāre laudant 1,412
2nd moneo ‘warn’ /mon/ monēre monent 313
3rd lego ‘read’ /leg/ legere legunt 1,204
4th venio ‘come’ /wen/ venīre veniunt 190
mix. capio ‘take’ /kap/ capere capiunt 152
irr. sum ‘be’ /es/ esse sunt 77

Table 1: Type frequency of conjugation classes in the LatInfLexi dataset
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Lexeme Prefix Suffix Family Last
morph

Outermost
operation

creo
‘create’ _ _ creoV creoV creoV

cresco
‘grow’ _ -sc- creoV -sc- -sc-

recreo
‘recreate’ re- _ creoV creoV re-

condolesco
‘suffer much’ con- -sc- doleoV -sc- -sc-

inardesco
‘take fire’ in- -sc- ardeoV -sc- in-

corono
‘crown’ _ _ coronaN coronaN

conversion
(N→V)

digno
‘worthy’ _ _ dignusA dignusA

conversion
(A→V)

rapto
‘seize’ _ _ rapioV rapioV

conversion
(V→V)

depilo
‘pull out the hair’ de- _ pilusN pilusN

de-
(N→V)

depravo
‘distort’ de- _ pravusA pravusA

de-
(A→V)

benedico
‘commend’ _ _ dicoV dicoV compounding

Table 2: Sample annotation of derivational information on verbs
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Decl. Sample lexeme Stem nom.sg gen.sg Frequency

1st rosa ‘rose’ /ros/ rosa rosae 758
2nd lupus ‘wolf’ /lup/ lupus lupī 833
3rd urbs ‘city’ /urb/ urbs urbis 1,102
4th arcus ‘bow’ /ark/ arcus arcūs 272
5th spes ‘hope’ /sp/ spes speī 17

Table 3: Type frequency of nominal declension classes in our dataset
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Lexeme Gender Prefix Suffix Family Last
morph

Outermost
operation

alimentum
‘nourishment’ N _ -ment- aloV -ment- -ment-

proavus
‘greatgrandfather’ M pro- _ avusN avusN pro-

dea
‘goddess’ F _ _ deusN deusN

conversion
(N→N)

collega
‘colleague’ M con- _ legoV legoV

con-
(V→N)

agricola
‘farmer’ M _ _ coloV coloV compounding

Table 4: Sample annotation of derivational information on nouns
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Predictor Accuracy 95% CI Outperformed
predictors

(1) prefix 0.335 (0.319, 0.351) _
(2) outermost 0.367 (0.35, 0.383) _
(3) prefix+suffix 0.373 (0.357, 0.39) (1)
(4) baseline 0.431 (0.414, 0.448) (1)-(3)
(5) last 0.485 (0.468, 0.502) (1)-(4)
(6) suffix 0.485 (0.468, 0.502) (1)-(4)
(7) phonology+prefix 0.657 (0.641, 0.674) (1)-(6)
(8) phonology+outermost 0.816 (0.803, 0.829) (1)-(7)
(9) prefix+family 0.819 (0.806, 0.832) (1)-(7)
(10) family 0.821 (0.808, 0.834) (1)-(7)
(11) phonology 0.823 (0.809, 0.836) (1)-(7)
(12) phonology+last 0.824 (0.811, 0.837) (1)-(7)
(13) phonology+suffix 0.824 (0.811, 0.837) (1)-(7)
(14) prefix+family+suffix 0.857 (0.845, 0.869) (1)-(13)
(15) family+suffix 0.866 (0.854, 0.877) (1)-(13)
(16) phonology+family 0.920 (0.911, 0.93) (1)-(15)
(17) phonology+family+suffix 0.923 (0.914, 0.932) (1)-(15)
(18) phonology+prefix+family+suffix 0.925 (0.916, 0.934) (1)-(15)

Table 5: Accuracy of prediction of conjugation classes for various combinations
of predictors
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Conjugation
Prefix 1st 2nd 3rd 4th mix. irr.

e(x)- 116 18 101 23 10 3
con- 104 19 107 12 13 4
in- (entering) 88 14 104 13 9 4
ad- 78 21 78 8 9 3
de- 78 16 80 8 11 4
re- 75 19 82 10 7 3
per- 50 17 58 5 7 3
ob- 38 6 45 7 5 4
dis- 29 7 48 6 7 2
prae- 26 16 36 8 6 3
other prefixes 102 38 211 22 37 24

Table 6: Distribution across conjugations of verbs displaying the same
derivational prefixes
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Outermost operation Frequency
Prefixation 2,101
None (simple lexemes) 586
Conversion 407
Suffixation 165
Compounding 62
Parasynthesis 27

Table 7: Type frequency of outermost derivational operation in the verbs of our
dataset
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Conjugation
Suffix 1st 2nd 3rd 4th mix.

-sc- 0 0 172 0 0
-it- (frequentative) 69 0 0 0 0
-it- (factitive) 7 0 0 0 0
-cin- 4 0 0 0 0
-ess- 0 0 4 0 0
-ill- 3 0 0 0 0
-ig- 3 0 0 0 0
-er- 2 0 0 0 0
-ic- 2 0 0 0 0
-uri- 0 0 0 2 0
-il- 1 0 0 0 0

Table 8: Distribution across conjugations of verbs displaying the same
derivational suffixes
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Predictor Accuracy 95% CI Outperformed
predictors

(1) prefix+family 0.309 (0.292, 0.325) _
(2) prefix 0.332 (0.315, 0.349) _
(3) family 0.347 (0.33, 0.364) (1)
(4) baseline 0.370 (0.352, 0.387) (1)-(2)
(5) gender 0.522 (0.505, 0.54) (1)-(4)
(6) prefix+family+gender 0.572 (0.554, 0.59) (1)-(5)
(7) family+gender 0.578 (0.56, 0.596) (1)-(5)
(8) prefix+gender 0.593 (0.575, 0.611) (1)-(5)
(9) suffix 0.610 (0.593, 0.628) (1)-(6)
(10) last 0.610 (0.593, 0.628) (1)-(6)
(11) prefix+suffix 0.618 (0.6, 0.635) (1)-(7)
(12) prefix+family+suffix 0.631 (0.614, 0.648) (1)-(8)
(13) family+suffix 0.643 (0.626, 0.66) (1)-(8)
(14) phonology+prefix 0.657 (0.64, 0.674) (1)-(11)
(15) phonology+family 0.659 (0.642, 0.676) (1)-(11)
(16) phonology 0.664 (0.647, 0.681) (1)-(11)
(17) outermost 0.667 (0.65, 0.684) (1)-(12)
(18) phonology+last 0.695 (0.679, 0.712) (1)-(15)
(19) phonology+suffix 0.695 (0.679, 0.712) (1)-(15)
(20) phonology+prefix+family+suffix 0.699 (0.683, 0.716) (1)-(16)
(21) phonology+family+suffix 0.701 (0.684, 0.717) (1)-(16)
(22) phonology+outermost 0.717 (0.7, 0.733) (1)-(17)
(23) last+gender 0.792 (0.778, 0.807) (1)-(22)
(24) suffix+gender 0.792 (0.778, 0.807) (1)-(22)
(25) prefix+family+suffix+gender 0.819 (0.805, 0.833) (1)-(22)
(26) prefix+suffix+gender 0.825 (0.811, 0.838) (1)-(24)
(27) family+suffix+gender 0.831 (0.817, 0.844) (1)-(24)
(28) outermost+gender 0.865 (0.853, 0.877) (1)-(27)
(29) phonology+prefix+gender 0.879 (0.867, 0.891) (1)-(27)
(30) phonology+gender 0.881 (0.87, 0.893) (1)-(27)
(31) phonology+family+gender 0.884 (0.873, 0.896) (1)-(27)
(32) phonology+suffix+gender 0.886 (0.875, 0.898) (1)-(27)
(33) phonology+last+gender 0.886 (0.875, 0.898) (1)-(27)
(34) phonology+family+suffix+gender 0.895 (0.884, 0.906) (1)-(28)
(35) phonology+prefix+family+suffix+gender 0.896 (0.885, 0.907) (1)-(28)
(36) phonology+outermost+gender 0.900 (0.89, 0.911) (1)-(28)

Table 9: Accuracy of prediction of nominal declension classes for various com-
binations of predictors
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Declension m f n

1st 24 734 0
2nd 327 9 497
3rd 298 699 105
4th 266 5 1
5th 0 17 0

Table 10: Distribution of nominal declensions across genders
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Declension
Prefix 1st 2nd 3rd 4th 5th

con- 12 25 67 26 0
e(x)- 6 11 30 10 0
ad- 5 14 22 15 0
de- 9 9 28 8 0
in- (negation) 22 6 17 3 0
other prefixes 40 67 145 57 1

Table 11: Distribution across declensions of nouns displaying the same
derivational prefixes
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Declension
Suffix 1st 2nd 3rd 4th 5th

-(t)ion- 0 0 390 0 0
-tat- 0 0 157 0 0
-(t)or- 0 0 124 0 0
-i(a)- 119 0 0 0 0
-i(u)- 0 85 0 0 0
-cul- 11 21 0 0 0
-ll- 10 10 0 0 0
other suffixes 413 115 125 6 12

Table 12: Distribution across declensions of nouns displaying the same
derivational suffixes
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Outermost operation Frequency

Suffixation 1,291
None (simple lexemes) 968
Conversion 653
Prefixation 28
Compounding 24
Parasynthesis 18

Table 13: Type frequency of outermost derivational operation in the nouns of
our dataset

43



Conj. Sample lexeme prs.act.inf prf.act.ind.1sg sup.acc

1st laudo ‘praise’ laudāre laudāvī laudātum
2nd moneo ‘warn’ monēre monuī monitum
3rd curro ‘run’ currere cucurrī cursum
4th venio ‘come’ venīre vēnī ventum
mix. capio ‘take’ capere cēpī captum
irr. fero ‘bring’ ferre tulī lātum

Table 14: Allomorphy in wordforms based on the Perfect and Third Stem
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Lexeme Family Conj. prs.act.inf prf.act.ind.1sg

facio ‘make’ facio 3rd facere fēcī
calefacio ‘make warm’ facio 3rd calefacere calefēcī
inficio ‘put into’ facio 3rd inficere infēcī

Table 15: Variation in the inflectional behaviour of verbs that derive from facio
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prs.act.ind.1sg prs.act.infLexeme Form Type Form Type
laudo lawdo: -o: lawda:re -a:re

moneo moneo: -eo: mone:re -e:re

curro kurro: -o: kurrere -ere

uenio wenio: -io: weni:re -i:re

capio kapio: -io: kapere -ere

Table 16: Toy example for conditional entropy computations following the
methodology of Ackerman, Blevins & Malouf (2009)
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prs.act.ind.1sg prs.act.infLexeme Form Type Form Type
laudo lawdo: -o: lawda:re -a:re

moneo moneo: -eo: mone:re -e:re

curro kurro: -o: kurrere -ere

uenio wenio: -io: weni:re -i:re

capio kapio: -io: kapere -ere

commeo kommeo: -o: or -eo:? kommea:re -a:re

glacio glakio: -o: or -io:? glakia:re -a:re

immeio imme:io: -o: or -io:? imme:iere -ere

Table 17: Toy example of uncertainty applying the methodology of Ackerman,
Blevins & Malouf (2009)
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Lexeme prs.act.ind prs.act.inf Alternation Class of prs.
1sg form form act.ind.1sg

laudo lawdo: lawda:re a1 : Xo: ∼ Xa:re {a1, a3}
moneo moneo: mone:re a2 : Xeo: ∼ Xe:re {a1, a2, a3}
curro kurro: kurrere a3 : Xo: ∼ Xere {a1, a3}
venio wenio: weni:re a4 : Xio: ∼ Xi:re {a1, a3, a4, a5}
capio kapio: kapere a5 : Xio: ∼ Xere {a1, a3, a4, a5}
commeo kommeo: kommea:re a1 : Xo: ∼ Xa:re {a1, a2, a3}
glacio glakio: glakia:re a1 : Xo: ∼ Xa:re {a1, a3, a4, a5}
immeio imme:io: imme:iere a3 : Xo: ∼ Xere {a1, a3, a4, a5}

Table 18: Toy example for conditional entropy computations following the
methodology of Bonami & Boyé (2014)
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Predictors Accuracy

shape+last_morph 0.968
shape+family+suffix 0.968
shape+family 0.962
shape+suffix 0.875
shape 0.868

Table 19: Word-based classifiers: average results
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Figure 1: Accuracy of the ‘vanilla’ classifiers: prediction of alternation between
two cells on the basis of the shape of the predictor cell. Darker color corresponds
to lower accuracy.
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Figure 2: Comparisons of the accuracy of classifier types.
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