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ABSTRACT

We show that accretion discs, both in the subcritical and supercritical accretion rate regime,
may exhibit significant amplitude luminosity oscillations. The luminosity time behaviour has
been obtained by performing a set of time-dependent two-dimensional smoothed particle
hydrodynamics simulations of accretion discs with different values of « and accretion rate.
In this study, to avoid any influence of the initial disc configuration, we produced the discs
injecting matter from an outer edge far from the central object. The period of oscillations is
2-50 s for the two cases, and the variation amplitude of the disc luminosity is 103-10%° erg s~.
An explanation of this luminosity behaviour is proposed in terms of limit cycle instability; the
disc oscillates between a radiation pressure dominated configuration (with a high luminosity
value) and a gas pressure dominated one (with a low luminosity value). The origin of this
instability is the difference between the heat produced by viscosity and the energy emitted as
radiation from the disc surface (the well-known thermal instability mechanism). We support
this hypothesis showing that the limit cycle behaviour produces a sequence of collapsing and
refilling states of the innermost disc region.
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1 INTRODUCTION

This paper continues our studies on the occurrence of the Shakura
and Sunyaev instability (Shakura & Sunyaev 1976) in the «a-discs
when the radiation pressure dominates, i.e. in the so-called A zone.

The problem of the existence and outcome of the Shakura—
Sunyaev instability is important in accretion disc physics because it
affects the models and their time behaviour.

In general, the outcome of the Shakura—Sunyaev instability is
guessed to be the formation of a hot cloud around the internal disc
region, in which Comptonization could happen (Shapiro, Lightman
& Eardley 1976).

A critical point of this scenario is the typical time-scale required
by the disc to leave the collapsed ‘dead’ state. Time-dependent an-
alytical models of the disc evolution in this post collapsed phase
are very difficult. Numerical simulations are therefore important
and essential tools to obtain some indication of the outcome of this
evolution.

Recently some authors have investigated this problem through
the numerical approach. Szuszkiewicz & Miller (1997) found that
a slim accretion disc model with low viscosity (¢ = 0.001) and a
luminosity higher than 0.08Lg shows a thermal instability which
gives rise to a shock-like structure near to the sonic point, leading to
the disc disruption. They found no limit-cycle behaviour, probably,
according to their own conclusions, because of the not strong enough
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advection. The same Szuszkiewicz & Miller (1998) also performed
numerical simulations of accretion disc models with high viscos-
ity (@ = 0.1) and obtained a limit-cycle behaviour. They simulated
the disc evolution for several cycles and, for M = 0.06Mg and a
central object of 10 solar masses, found a period of the cycle of
about 780 s. In both papers they reported the results concerning a
vertically integrated disc model, with no consideration of acceler-
ation in the vertical direction. The same authors (Szuszkiewicz &
Miller 2001) performed finally a numerical study of an accretion
disc model at high viscosity («= 0.1) with a vertically integrated
treatment of acceleration in the vertical direction and a diffusive
form for the viscosity instead of the aP prescription used in their
previous works. Also, with this more refined model they found a
limit-cycle behaviour.

Nayakshin, Rappaport & Melia (2000) used a limit-cycle model
to explain the luminosity variability of the microquasar GRS
1915+105. Their model is different from that used by Szuszkiewicz
and Miller. The essential difference regards the viscosity prescrip-
tion. Szuszkiewicz and Miller used the standard Shakura—Sunyaev
one or the more refined (but fundamentally equivalent) diffusive
formulation. In their one-dimensional (1D) simulations the discs
oscillate between two stable states, one at high luminosity and the
other with a much lower emission. These two states are the stan-
dard gas-pressure dominated and the radiation pressure dominated
states (note that this last state is stable in the slim accretion disc
model). If the accretion rate difference between the high and low
states is very large, as in GRS 1915+105, the high state should last
a very short time. However, in reality GRS 19154105 has a high
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state lasting for a long time, even more than the low state. There-
fore, the limit-cycle model in slim accretion discs cannot explain the
time behaviour of this source. So Nayakshin et al. used a particular
viscosity law which produces a high stable state of larger duration.
With this model, they explained the gross observational features of
GRS 1915+105.

Janiuk, Czerny & Siemiginowska (2002) also tried to describe
the behaviour of GRS 19154105 in terms of a limit-cycle model.
They adopted the standard «-viscosity prescription, but included in
the model the effect of a corona surrounding the disc and a vertical
outflow. With half of the energy dissipated in the disc, they obtained
outbursts whose amplitude and duration are consistent with the GRS
19154-105 data.

Teresi, Molteni & Toscano (2004) have clearly shown that, at
intermediate accretion rates, accretion discs with A zone suffer a
collapse but after a rather long time they show a flaring activity with
an intervening refilling phase of the A zone.

We point out that our simulations differ from those of
Szuszkiewicz and Miller because we produce real two-dimensional
(2D) discs with true vertical motion. No ‘ad hoc’ prescription is
required to include physical vertical effects. The new degree of
freedom given by the Z motion has many consequences, which we
discuss in Section 4.

Furthermore, we point out that all previous simulations start from
a full disc existing at time ¢ = 0. A typical drawback of simulations
involving large disc sectors is the uncertainty in the initial model
structure. Indeed, the analytical models lack a reliable vertical struc-
ture (Bisnovatyi-Kogan & Blinnikov 1977; Hubeny 1990). The disc
luminosity and other disc parameters can oscillate for a long time
before reaching a steady configuration and it can be difficult to
discern between real instability oscillations and transient spurious
oscillations, that could last a long time.

The simulations we show here differ from our previous simu-
lations and from those of many other authors because the disc is
generated ‘ab initio’. We inject matter at a large distance from
the central object. The injected gas has low temperature and
Keplerian angular momentum. Its evolution is due to the action
of the viscous stress, whose « value is given. In this way, the disc
evolves smoothly through a series of equilibrium states, avoiding
the problem of the transient spurious oscillations and the influence
of the initial configuration on the final result. It is clear that also
for these simulations a long integration time (of the order of the
viscous drift time) is required. The numerical smoothed particle hy-
drodynamics (SPH) technique allows us to integrate up to such long
times. Let us note that, in general, a Lagrangian code, as SPH is,
is better suited to capture convective motions than Eulerian codes.
With the same spatial accuracy (cell size equal to particle size) the
SPH particle motion is tracked with great accuracy, i.e. the par-
ticle size may be large but its trajectory can be still determined
‘exactly’.

Our results suggest that the Shakura—Sunyaev model can be used
to explain the luminosity variability shown by many sources. The
aim of this work, however, is not to find an explanation of the be-
haviour of some sources, but simply to see what happens to the
standard disc structure during its time evolution.

The paper is structured as follows. In Section 2 we review the
physical model; in Section 3 we describe the adopted numerical
method; in Section 4 we report on the simulated cases and the ob-
tained results, presenting and commenting on some figures; in Sec-
tion 5 we discuss the physical aspects of the simulations results; and
in Section 6 we reveal the conclusions and astrophysical implica-
tions of our work.

2 PHYSICAL MODEL

The time-dependent equations describing the physics of accretion
discs are well known. We used their Lagrangian form in a cylindrical
reference system and in the approximation of local thermal equilib-
rium (LTE) between gas and radiation (Mihalas & Klein 1982). They
include mass conservation
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the energy equation
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[where o;;, o is the viscosity stress tensor and g is the body force
per unit mass (acceleration)], and the angular momentum equation
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Here, Q2 is the local angular velocity, D/Dt is the comoving deriva-
tive, E 4 is the radiation energy per unit volume, f is the radiation
force per unit volume given by
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F is the radiation flux given by
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k and o1 are the free—free absorption and Thomson scattering co-
efficients given by

k=cpT 7 em? g ®)

(Kramers’ formula, valid because our temperatures are well beyond
10* K) with ¢; = 2.26 x 10%*, and

o = 0.4 (cm? g ), ©

A is the angular momentum per unit mass, and £ = € + (E ,q4/p) is
the total internal energy per unit mass, including gas and radiation
terms.

The components of o that we have considered in our calculations
(because they are the ones that play an important role in accretion
discs) are the r—¢ component, given by

02

Oy = vprg, (10)
and the ¢—z component, given by

o(2r)
Op: = VP 32 (1 1)

v = avyH is the kinematic viscosity, « is the viscosity parameter
of the Shakura—Sunyaev model, v, is the local sound speed, H is
the disc vertical thickness and the other terms have the usual gas
dynamic meaning.
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The gravitational field produced by the black hole is given by
the well-known pseudo-Newtonian formula by Paczynski & Wiita
(1980)

GM R

Erv = TS 5 v
e (R—Rg)R

12)

where R is the position vector of the point in which the field is

evaluated, with a modulus given by R = +/r?2+z2, R, is the

Schwarzschild gravitational radius of the black hole given by
2GM

Rg = 2 (13)

and M is the black hole mass.
We adopt the LTE approximation for the radiation transfer treat-
ment. However this assumption does not affect our conclusions.

3 NUMERICAL METHOD

We set up a new version of the SPH code in cylindrical coordinates,
for axisymmetric problems. We note that SPH is a Lagrangian inter-
polating method. Recently, it has been shown that it is equivalent to
finite elements with sparse grid nodes moving along the fluid flow
lines (Dilts 1996). For a detailed account of the SPH algorithm, see
Monaghan (1985). For cylindrical coordinate implementation, see
Molteni et al. (1998) and Chakrabarti & Molteni (1993). Our code
includes viscosity and radiation treatment.

The basic point for our cylindrical geometry approach is simply
to assume a usual kernel function but depending directly on the
radial (r) and vertical (z) variables, and therefore retaining the usual
normalization factor and width. Now pseudo-particles are small tori
of mass dmy, = 27, dry dzy. In this way we may use the same
Cartesian grid in the (7, z) domain and the same procedure to search
the near neighbours of each particle. Therefore, applying the usual
procedure for the evaluation of any smooth function in the point
(ri, z;) we have

fai) = /f(r’)Wh(ri —r’)M /
v 21! p(r’)
- m
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where r = (1, zx). So, for the density we have the simple expression
that identically satisfies the continuity equation in the cylindrical
form:

N
m;
p(ri)ZZﬁWij. (15)
=t 7

Rewriting the fundamental equations in the formulation more suit-
able for the SPH evaluation (Monaghan 1985), and applying the
previous criteria, we have the following expressions. For the radial
(r) momentum, we obtain

N
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where I1 is the artificial viscosity pressure.
The vertical (z) momentum satisfies
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For the energy equation we based our implementation on the
following procedure. Let us call U = (E .q/p) + € + (1/2)v?, P™
= P g + P g, and note that F = —(1/p)V(P g + P y) is the total
force per unit mass due to gas and radiation, then the first three terms
of the energy formula can be trivially put into the SPH formalism
according to standard prescriptions (Monaghan 1992). So we obtain

N
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where vy = v; — . Using the same method of SPH evalua-
tion for the Vv term of the continuity equation, the fourth term
[(1/p)V(vo)]; can be written as

e
—Vw-o)
P

where we have symmetrized the density term, and where S =v - o,
Sik = S; — Sy; with this procedure the SPH energy equation con-
serves exactly the total energy.

The total thermal internal energy (E,q4/p) + € is recovered by
subtraction of the kinetic energy and then the ratio between E 4/ p
and € is given requiring the LTE condition.

In cylindrical coordinates, the particles masses m; must be re-
placed by m;/r; and a further r, term appears in the terms coming
out of the divergence expressions. So, we have for example

N P_tol Ptm
ka ( L > Uik ViWig
P P

=1 4

N
me P_lol Plol
=3 (vt
e \ P Pr

k=1

N

=y M S VW (19)
- T AL Wikt ViWik
i = (it ed2)

where V' = (v, — 140, )F + (v., — v.,), and 7 and £ are the
radial and Z versors.

To derive all previous expressions we neglect the contributions
to the integrals from the boundary of the integration domain. The
artificial viscosity pressure IT;; is formulated as

aflici; + B
m,, = PP (20)
Pij
with the averaged quantities
_ ¢ +¢j pi +pj
Cij = 3 Pij = 3 s
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o and B are the artificial viscosity coefficients used to damp out
oscillations in shock transitions, and ¢ here denotes the sound speed.

Because our aim is to simulate accretion discs, a correct treatment
of the tangential velocity and its diffusion due to the viscosity is
essential. We integrate explicitly the viscosity diffusion term; the
cylindrical SPH version of the diffusion term of equation (5) is
given following the criteria by Brookshaw (1994)

N
20 Q-9 R,
- | = E (== Di/'_zj - ViWij, 2D
ot rj 0i0; " R? ’
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where

3 3
T +Mjrj
= T3

N R,‘j = (I',' —I‘j, Zj —Zj). (22)

Ti

The formulae for cylindrical geometry are similar to the Cartesian
formulae and the most relevant changes are as follows: (i) the mass
of a particle appears divided by its distance from the z-axis; (ii) the
mutual velocity difference v; — v; between two particles must be
replaced by the more sophisticated term (r;v; — rjv;)/r;.

The force F,; differs from F,, while F,;, = F, for particles at
the same radial coordinate. This difference in the force is due to the
geometry. Angular momentum is exactly conserved. The statement
dmy = 2mo,ry dry dzy is needed only for the derivation of the for-
mulae and the particles in the simulations may have the same mass
or not; obviously the density is no longer directly proportional to the
number of particles per unit area as for the case of particles having
the same mass.

To integrate the energy equation we adopted the splitting proce-
dure. In the LTE condition, the radiation energy density changes
according to the well-known diffusion equation given by

aErad
ot

— dvF =V - VE. (23)
3pKior

where ko = k + o1.
In cylindrical coordinates r, z

0FE.q ¢ O r  0E.q c 0 r 0E.q
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where c is the light speed.

The SPH version of the radiation transfer term is given following
the criteria by Brookshaw (1994). The cylindrical coordinate version
is given by

N
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where for clarity we did not put the subscript ‘rad’ in E ., and where
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This formula can be obtained using the same procedure explained
by Brookshaw, but taking into account that, in cylindrical coordi-
nates, the particles masses are defined as ny = 27 r ArpAzy,
which explains the further division by r; in the term m;/r;.

We used a variable / procedure (Nelson & Papaloizou 1994). In
our procedure, in order to have a not too small particle size (and
therefore not too great CPU integration times), we put a minimum
on the /1 values; / is chosen as the maximum between the value given
by the variable / procedure itself and one-tenth of the disc vertical
half thickness. So we have nearly 10 particles along the disc half
thickness even in the collapsed region.

The boundary conditions of the simulations are not fixed, although
we produce an inflow at a certain radius, generating new particles
with fixed density and temperature every time a circular zone around
the injector position becomes empty. As the SPH particles move
around, the simulation region follows the form assumed by the disc
and the values of the physical variables at the boundary of the disc
are the values that characterize the boundary particles at a certain
time.

The spatial extension of the initial configuration is decided by
establishing a radial range of physical interest and a vertical exten-
sion given by the disc thickness of the Shakura—Sunyaev model.
The values are given in the next section.

For radiation, the boundary conditions we used are based on
the assumption of the black-body emission and particularly on the
Brookshaw approximation (Brookshaw 1994). At every time-step
boundary particles are identified by geometrical criteria (the par-
ticle having the maximum absolute value of z in a vertical strip
of radial width given by % is a boundary particle). The boundary
particle loses its thermal energy according to the formula given by
Brookshaw (which is an approximation of the diffusion equation
at the single particle level), which states the particle cooling rate
proportional to (QT)/h?, where Q = (4acT?)/(3pk io1)-

In all our simulations, the boundary particles never reach an op-
tical thickness less than 10.

4 SIMULATIONS PERFORMED

We performed several simulations and those commented on here
had the following parameter values:

(i) @ = 0.1, M = 0.15, domain R; — R, = 3-100, 1 = 0.25;
(i) « = 0.1, M = 2, domain R| — R, = 3-200, i = 0.5.

Here, M is in units of Mg and My, is the critical accretion rate. For
all cases, the central black hole mass is M = 10 M. The initial
spatial resolution we adopt is 4.

The reference units we use are R, for length values, R, /¢ for time
values and Leor = 0.06M 2, the theoretical luminosity for an ac-
cretion disc around a non-rotating black hole, for the luminosity val-
ues. Incase 1 Lypeor = 1.54 x 103 erg s™'; in case 2 L jpeor = 2.05 x
10*° erg s='. We have chosen these units because the simulation
results obtained with certain values of the parameters M, M and «,
if given in terms of adimensional units, can be easily generalized to
other systems.

The radial domain of each simulation has been chosen with the
aim of including in the simulation a sufficiently wide portion of the
radiation dominated zone, the so-called A zone (in case 1 the entire A
zone is included in the simulation). The / values reported above are
the initial values. They have been chosen in order to have a good
spatial resolution at the injection radius. The variable / procedure
guarantees, then, an equally good resolution in the inner disc regions.

For case 1 we stress that our results have been obtained simulating
a full disc including A, radiation dominated, and B, gas pressure
dominated, zones. The presence of the B zone, which is theoretically
stable and which we see stable in our simulations, guarantees in
general the numerical accuracy of our study and allows us to clearly
identify the A zone as responsible for the oscillations.

In this section we want to show the changes that occur in the
main properties and physical quantities of the disc due to the insta-
bility and the consequent limit-cycle behaviour. When the instability
arises, the disc undergoes a collapse phase, with a strong lowering
of its vertical thickness. Fig. 1 makes evident the effect of this phe-
nomenon, showing, for case 1, the disc configuration reached at the
end of the collapse phase, characterized by a very small Z height in
the innermost region (- < 13R ). Note that the Z scale is graphically
amplified in the figure.

In this state the mass accretion rate is no longer uniform through-
out the whole disc. In fact, in the innermost, collapsed disc zone
M has a value lower than that before the collapse, whereas at the
outer boundary of this zone it assumes the value of the outer, not
collapsed region, i.e. the unperturbed value. So mass is forced to

© 2004 RAS, MNRAS
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140

radius

Figure 1. The r—z profile of the disc of case 1 in its low state is shown at the time r = 0.52155 x 107 Rg/c. Every SPH particle is represented by a small
cross. On the x-axis the 7 values in units of R, are represented. On the y-axis the z values in units of Ry are represented.
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Figure 2. The r—z profile of the same disc case 1 in its high state at the time 1 = 0.52233 x 107 Rg/c is shown. The solid line represents the equivalent

Shakura—Sunyaev model.

enter the collapsed zone at a rate larger than that at which mass
falls into the black hole. Because of this accretion rate difference,
the collapsed disc zone is refilled and consequently reaches a con-
figuration of much larger vertical thickness (comparable to that of
the unperturbed state). In Fig. 2 we show the r—z profile of this
new structure, together with the boundaries of the corresponding
Shakura—Sunyaev disc, determined by calculating the disc vertical
thickness (at all the r values inside the simulation radial range) from
the Shakura—Sunyaev 1D model with the same accretion rate and «.
This comparison of the 2D simulated model and the 1D theoretical
model is shown in order to make evident the agreement we obtained

© 2004 RAS, MNRAS

between the results of the simulations and the canonical disc model.
We discuss this point further in Section 5.

Moreover, the difference between the two states (collapsed and
refilled) is not only in the value of the disc vertical thickness. In
the unstable disc region, the temperature of the collapsed state is
lower than that of the refilled configuration. As a consequence of
this, the ratio between radiation and gas pressure is changed from
one state to the other; although in the unstable region the disc always
remains radiation pressure dominated, during the collapsed state the
ratio P q/ P g is much lower (close to 1) than in the refilled disc.
In Fig. 3 we show the comparison between the radial profiles of
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Figure 3. The ratio P aq/ P gas is shown at the times £ = 0.52155 x 107 and + = 0.52233 x 107. On the x-axis the r values in units of R are represented. The
configuration at the earlier time exhibits, in the collapsed zone, a much smaller ratio P rad/ P gas than the configuration at the later time.
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Figure 4. The temperature radial profile is shown at the times 7 = 0.52155 x 107 and 7 = 0.52233 x 107. On the x-axis the r values in units of R, are
represented. On the y-axis the temperature values in Kelvin are represented. The configuration at the earlier time exhibits, in the collapsed zone, a much smaller
temperature than the configuration at the later time. The solid line represents the temperature radial profile for the equivalent Shakura—Sunyaev model.

the ratio P ,q/ P gas in the two states, which makes evident the great
lowering of this ratio in the transition to the collapsed state within
the unstable disc region. Also, in Fig. 4 a similar comparison for
the temperature profiles is shown, making clear that the unstable
region is cooler in the collapsed state than in the refilled one. Fig. 4
also shows the temperature radial profile (in the disc mid-plane) of
the corresponding Shakura—Sunyaev model. Here also we show the
good agreement of our simulations with the canonical disc model.
In these figures, and in all the figures of this paper in which
physical quantities are plotted versus r, we show the values regarding

all the SPH particles. To each particle (of radial coordinate, say, r)
corresponds in the figure the point (r, Q), where Q is the value of
the physical quantity that we are plotting calculated in the particle
position.

The temperature difference also produces different luminosities
associated with the two configurations. So the disc luminosity os-
cillates between the two states and we can observe the limit-cycle
behaviour typical of the thermal instability. In Fig. 5 we show the
time variation of the disc luminosity, from which the oscillatory be-
haviour is clear. In this figure only a time window of the luminosity

© 2004 RAS, MNRAS
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Figure 5. The time behaviour of the disc luminosity is shown. On the x-axis
the time values in units of R ¢ /c are represented. On the y-axis the luminosity
values in units of Lpeor = 0.06M 2 = 1.54 x 1038 erg s are represented.

variation regarding the whole history of the disc is represented. The
time units are, as said, R, /c. To obtain the time values in seconds it
is sufficient to multiply the values in the figure by 10~ (the value
of R,/c in seconds for a black hole of 10 solar masses).

‘What can be noticed, in particular, from this figure is the shape of
the time variation curve. A single oscillation starts with the disc lu-
minosity L which increases very steeply. Then, after having reached
a maximum, L decreases more slowly (with an exponential-like be-
haviour) until a value close to the initial value is reached.

We also evaluated the gas velocity field, finding a significant
difference between the radial speeds (V) in the two states; in the
unstable region, the refilled disc has a higher radial speed (with a
large spread) than the collapsed one. This is what we can expect
considering that the refilled disc is more luminous (because it is
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hotter) and therefore the accretion rate of its inner region is larger
with respect to the collapsed disc. A larger accretion rate can be the
effect of a larger radial speed. Fig. 6 shows the radial profiles of V.
in the two states.

From this figure, what we have said above is evident and it is also
evident that in the refilled state the radial speed is often positive,
besides very high. If a large radial speed is present in both inflow
and outflow directions, as clearly shown in the figure, we can argue
that there is a gas circulation and not only a large net accretion
rate.

We highlight that this result excludes the possibility that, in two
dimensions, a Shakura—Sunyaev disc can show a regular radial flow.
This simplified 1D picture is destroyed by the presence of convec-
tive and circulatory motions in the r—z plane. These motions can be
considered as a new turbulence, different from the one that gives
rise to the -viscosity. The equations of the disc dynamics contain a
viscosity term (the a-term) that is physically considered the result of
a supposed turbulent motion, but a disc simulated according to these
equations develops another turbulent motion (that can be supposed
to give rise to an additional viscosity). Our results about circulation
and convection and our hypothesis that these 2D motions can be at
the origin of an additional viscosity agree with the analytical study
by Kippenhahn & Thomas (1982) on convective and circulatory
flows in thin radiative accretion discs. The large radial speed has
also to be considered the reason for which the thermal instability
causes the disc collapse and not its expansion. The local perturbative
approach in itself allows us to conclude that a small temperature de-
viation from the equilibrium state, an increase as well as a decrease,
grows exponentially in time. Therefore, the result should be, with
the same probability, an expansion or a collapse. What we observe,
instead, is that collapse is strongly preferred; in each cycle, initially
the inner zone reduces largely its vertical thickness, then it swells
reaching a thickness value not much larger than the equilibrium one.
Our hypothesis is that what is lacking in the local perturbative ap-
proach is the radial drift of matter, and therefore energy, due to the
advective motion. This radial flow, carrying away thermal energy
from a disc region at a certain r before the expansion instability has

0.01 T T

0.005

Vr
o
T

-0.005

Low sltate +
High state  x

-0.01 L L

25 30 35

radius

Figure 6. The gas radial speed is shown versus r in the two states (high and low states) of the disc. On the x-axis the r values in units of R are represented.

On the y-axis the radial speed values in units of ¢ are represented.
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Figure 7. The r—z profile of the disc of case 2 in its low state is shown at the time = 0.1016946 x 107 R ¢/c. Every SPH particle is represented by a small
cross. On the x-axis the r values in units of R are represented. On the y-axis the z values in units of R are represented.

developed at that radius, inhibits the local thermal energy growth
and therefore the disc expansion.

For case 2 we show the r—z profiles of the disc particles in the
two states in Figs 7 and 8. In particular, in Fig. 8 we also show
the boundaries of the corresponding Shakura—Sunyaev disc, from
which the reader will be able to see the good agreement, in the
vertical thickness, between our simulation and the canonical disc
model.

The reader will notice that the whole disc is geometrically thinner
in one state than in the other. The unstable region is no longer a small
zone close to the black hole, as in case 1, but extends throughout the
entire simulation radial range. This is due to the higher (supercrit-

ical) accretion rate, which makes the radiation pressure dominated
zone much wider than in case 1. The extension of the unstable region
is also apparent from the comparison between the radial profiles of
the ratio Praq/ P 45 in the two states, shown in Fig. 9, and from the
similar comparison for the temperature profiles, shown in Fig. 10,
where the temperature radial profile (in the disc mid-plane) of the
corresponding Shakura—Sunyaev model is also included (in order to
show also here the good degree of agreement between simulations
and 1D models).

In fact, in both figures the two profiles associated with the two
states are significantly different in the whole disc; approximately up
to 200R , where the disc mass is injected, the geometrically thinner

20 |

' Injectors +
High state
Shakura-Sunyaev model ]

0 50 100

150 200 250

radius

Figure 8. The r—z profile of the disc of case 2 in its high state is shown at the time = 0.1167006 x 107 R ¢/c. The solid line represents the equivalent

Shakura—Sunyaev model.
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Figure 9. The ratio P 1ad/ P gas is shown at the times ¢ = 0.1016946 x 107 and r = 0.1167006 x 107. On the x-axis the r values in units of R are represented.
The configuration at the earlier time exhibits a smaller ratio P aq/ P gas than the configuration at the later time.

1e+008 T

1e+007

Temperature

1e+006

Shakura-Slunyaev model
High state ~ +
Low state  *

100 150 200
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Figure 10. The temperature radial profile is shown at the times # = 0.1016946 x 107 and t = 0.1167006 x 107. On the x-axis the r values in units of Ry
are represented. On the y-axis the temperature values in Kelvin are represented. The configuration at the earlier time exhibits a smaller temperature than the
configuration at the later time. The solid line represents the temperature radial profile for the equivalent Shakura—Sunyaev model.

configuration is cooler and less radiation pressure dominated than
the other one (the disc remains, however, radiation pressure dom-
inated). So what we have said about case 1 is also valid in case 2.
We can conclude that there is a limit-cycle oscillation between two
different disc states: one thinner, cooler and therefore less luminous
and the other thicker, hotter and therefore more luminous. The lu-
minosity oscillation is shown in Fig. 11. In this figure the luminosity
time behaviour is represented during the entire formation and evo-
lution of the disc from the time r = 0, when particles begin to be
injected in a totally empty space.

© 2004 RAS, MNRAS

The rather different shape of the time variation curve with respect
to the analogous curve for case 1 is evident from this figure. Here the
luminosity L increases approximately as steeply as it then decreases.
So there is no exponential-like behaviour as there is in case 1. We
guess that this difference in the luminosity behaviour is due to the
much larger extension of the unstable zone in case 2. In fact, the
cooling of a given disc portion is probably governed by a law closer
to the exponential one if the energy density of the considered disc
region is fundamentally uniform throughout the region itself. If we
indicate with E(r, t) the local energy density at the radius » and the



10

V. Teresi, D. Molteni and E. Toscano

35

25

Luminosity
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Figure 11. The time behaviour of the disc luminosity is shown. On the
x-axis the time values in units of Ry/c are represented. On the y-axis the
luminosity values in units of Liyeor = 0.06Mc? = 2.05 x 10%° erg s™! are
represented.

time ¢ in the disc, the cooling law at the position r is dE(r, t)/dt =
—kE(r, t), which has for solution the exponential form for E(r, t).

It is obvious that this argument holds for the total energy of an en-
tire disc region only if the variable E(r, ) to consider in the equation
above is the same for the whole disc region, i.e. the energy density
E(r, 1) is uniform in the considered region.

It is easy to notice that the oscillation shape in case 2 is more
similar to the light curves obtained in 1D simulations (see, for ex-
ample, Nayakshin et al. 2000; Szuszkiewicz & Miller 2001; Watarai
& Mineshige 2003) than the luminosity behaviour of case 1. Our
hypothesis to explain this fact is that in case 2 the unstable zone is
much wider. So the mass to be unloaded by the disc to pass to the
collapsed state is larger. Because of this, the refilled state duration

is greater and the oscillation shape shows a luminosity maximum
characterized by a width approximately equal to the minimum dura-
tion. In fact, we have in case 2 two states with luminosities different
by a factor of 7 whose durations are about 25 s each.

In case 1, instead, when the luminosity maximum is reached the
light curve immediately starts its descending (exponential) phase.
The disc holds for a very short time the refilled state, probably be-
cause the disc soon gets rid of the small amount of matter contained
in the small unstable zone.

Finally, we have studied the radial behaviour of the Mach number
M =V,/v.

We present the results of this analysis in Figs 12 and 13, regarding
the collapsed and the refilled states, respectively. For clarity, the
figures show only the innermost disc region. It is clear from these
figures that the disc has a sonic point, positioned nearly at r = 10R
in the collapsed state and (very approximately) at ¥ = 15R, in the
refilled state. From the external boundary to the sonic point the
radial flow is subsonic, whereas from the sonic point to the internal
boundary we have a supersonic flow. Although here our data are
strongly scattered, we can say that our 2D simulated models reveal
a transonic region at radii larger than in 1D calculations. For a
comparison with 1D models on this aspect of the disc dynamics,
we can see, for example, Szuszkiewicz & Miller (1998), where the
sonic point is given around r = 3R,.

5 DISCUSSION
In this section we discuss three items:

(1) confirmation by a true 2D approach of the limit-cycle be-
haviour produced by the thermal instability;

(ii) differences between the results obtained by the two ap-
proaches, 1D and 2D;

(ii1) theoretical considerations about the main features of the lu-
minosity time behaviour, i.e. oscillations amplitude, typical times.

(1) As we said in the first section, the limit-cycle behaviour due to
the Shakura—Sunyaev instability has already been shown as result of
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Figure 12. The radial profile of the Mach number M =V, /v, for the disc of case 2 in its collapsed state. Every SPH particle is represented by a small cross.
On the x-axis the r values in units of R are represented. On the y-axis the Mach number values are represented.
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Figure 13. The radial profile of the Mach number M = V,./v, for the disc of case 2 in its refilled state. Every SPH particle is represented by a small cross. On
the x-axis the r values in units of R are represented. On the y-axis the Mach number values are represented.

the main ones. Also, convective motions are supposed to reduce the
thermal instability (Shakura, Sunyaev & Zilitinkevich 1978). Just in
the presence of a significant convective flow, that our 2D simulations
reveal, we confirm the existence of the thermal instability.

(i1) In Figs 14 and 15 we show the gas velocity field in a given
disc region for the two disc states. The considered case is case 2.

1D time-dependent simulations (Szuszkiewicz & Miller 1997, 1998,
2001; Janiuk et al. 2002). In this paper, we confirm the existence of
the limit-cycle behaviour using a 2D approach, obviously closer to
the physical reality of accretion discs. Moreover, the 2D approach
allows us to reveal aspects of the accretion flow that cannot be
simulated by the 1D methodology. Convection and circulation are
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Figure 14. The gas velocity field in the radial range between 33R, and 53R, is shown for case 2. The disc state is the high state. On the x-axis the 7 values in
units of Ry are represented. On the y-axis the z values in the same units are represented. The arrows represent the velocity vectors, with their lengths proportional

to the speed values.
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Velocity field of the particles in a portion of the disc
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Figure 15. The gas velocity field in the radial range between 33R, and 53R is shown for case 2. The disc state is the low state. On the x-axis the r values in
units of R are represented. On the y-axis the z values in the same units are represented. The arrows represent the velocity vectors, with their lengths proportional

to the speed values.

These figures make clear the different features of the two states
(high and low) as regards the convective motions in the disc. From
Fig. 14 we can argue for the relevant presence of convective and
circulatory motions in the high state, whereas from Fig. 15 it is
evident that there is the poor convection in the low state.

These phenomena are important because they affect the time val-
ues that characterize the luminosity behaviour. We note that the light
curve we obtain is different from the curves usually obtained by 1D
simulations. The luminosity behaviour we find is approximately
periodic, as in 1D simulations, but, in case 1, we obtain recurrent
bursts of time duration not much smaller than the cycle time (of
about 2 s), whereas in 1D simulations the bursts duration is very
short in comparison with the cycle time.

Moreover, convection and circulation also affect the unstable zone
extension; this zone is not the full A zone, extending up to 30R,,
but only a portion of it (up to 13R ), because the convective motion
stabilizes a large fraction of the radiation pressure dominated region.

In case 2, the low and high states have about the same duration
(one half of the cycle time, which is, on average, 50 s). In 1D sim-
ulations, instead, the high state has an extremely short duration.

Also, we have compared the disc structures we obtained from
our simulations with the corresponding configurations calculated
from the 1D Shakura—Sunyaev model. The agreement between the
results of the two approaches (the 2D simulated model and the 1D
theoretical model) is in general good (see Figs 2 and 4 for case 1 and
Figs 8 and 10 for case 2), taking into account that we have a time-
varying disc structure. The only significant differences are as regards
the innermost disc regions. For case 1, between 10 and 20R,, the
thickness calculated from the canonical model is about two times
that of the simulated disc, and also the theoretical 1D temperature is
larger than the simulated one (by about 30 per cent). For case 2, from
3to 15R,, the thickness calculated from the canonical model is about

two to three times that of the simulated disc, while the theoretical
1D temperature is larger than the simulated one by about 30-35
per cent. So we confirm the result of Hur¢ & Galliano (2001), who
compared vertically averaged (i.e. 1D) models of accretion discs
with the corresponding vertically explicit (i.e. 2D) configurations
and found that the 1D description of the accretion discs structure is
very close to the 2D one. The generally good agreement between
the disc structures we simulated and the Shakura—Sunyaev model
allows us to conclude that the different features between the thermal
instability we found in 2D calculations and the limit-cycle behaviour
obtained by the 1D calculations are not due to differences in the used
disc configurations.

(i11) There are two time-scales that affect the time features of the
limit-cycle phenomenon: the thermal time-scale, which determines
the development rate of the thermal instability, and the viscous time,
which is connected to the A zone refilling after the collapse due to
the instability. Here we discuss the role of these time-scales for
case 1. In this disc the collapsing zone extends nearly from 3R, to
13R,. We give the values of the thermal and viscous time-scales at
three points in this zone. These time-scales are quantities calculated
from the theoretical formulae using the values of the disc physical
variables resulting from the simulation. The expression we use for
the viscous time-scale is i = 72/v and for the thermal time-scale
(Shakura & Sunyaev 1976)

1 AB)
a2 6(58, —3)
where A(B,) =8 + 518, —3B%and B, = P ,q/P".

27

liherm =

Because the viscous time depends on the disc thickness, it as-
sumes different values in the low (collapsed) state and the high
(refilled) state. So we will distinguish its values in the two states
using the labels ‘LS’ (low state) and ‘HS’ (high state); see Table 1.
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Table 1.

r tvisc (LS) tvisc (HS) 1 therm

3R, 108.9 s 7.00 s 484 x 1073 s
7R, 2717 s 6.79 s 2218 x 1072 s
13Rg 25545 s 63.86's 6.046 x 1072 s

It is easy to see that the theoretical viscous time-scales are too
large compared to the ‘experimental’ luminosity cycle time, whereas
the thermal time-scales are too small.

We propose the following explanations. When the disc is in the
low state, the accretion rate in the collapsed zone is small, but, at
the outer boundary of this region, the disc is not collapsed and has
a higher accretion rate. Because of this fact, the accretion flow at
the outer boundary of the collapsed zone ‘forces’ matter to enter
the region at a rate larger than the rate due to the viscous time-scale
computed inside the region itself. So the refilling process is acceler-
ated and its time-scale reduced with respect to the viscous time. A
rough estimate of this effect can be given by the value of the viscous
time-scale of the disc just outside the collapsed zone. Moreover,
the calculation of this viscous time-scale has to take account of the
‘real’ viscosity present in the disc; the gas 2D motions (convection
and circulation) give rise to a turbulent flow and consequently to an
additional viscosity, of the order of magnitude H vy, (Where vy
is the speed of the turbulent flow), which has to be added to the
Shakura—Sunyaev one.

To understand this procedure it must be remembered that, sup-
posing a viscosity due to a turbulence (the Shakura—Sunyaev o-
viscosity), we have not obtained a regular flow with the turbulence
‘hidden’ in the «a-viscosity term. The flow produces another turbu-
lence, not included in the a-viscosity term. Therefore, to express
the total kinematic viscosity, we have to sum the term given by the
speed of this new turbulence to the standard «-term. In formulae,
we have a total kinematic viscosity given by

v =avsH + Huvyp. (28)

With this expression for the viscosity, the viscous time-scale 7 is
is given by

’,2 I"2

—_—= 29)
v avsH + Hugp

yise =

An approximate estimate for v, can be obtained by adding the
gas radial and vertical speeds. These formulae give for 7 the value
of 12 s. Finally, it has to be considered that the transition from the
low to the high state is also accelerated by the process of the radial
diffusion of radiation, whose typical time-scale is At = (3 tAl)/c,
where A/ and 7 are the length and the optical depth, respectively, of
the region through which the radiation diffuses. Taking account of
all these effects, the characteristic time of the transition LS—HS is
lowered from 12 s to about 5 s, a value not far from the luminosity
cycle time we obtain in case 1 (2 s).

As regards the inverse process, i.e. the transition from the high to
the low state due to the thermal instability, we form the hypothesis
that the instability development time, which is essentially the ther-
mal time-scale, is increased by convection (Shakura et al. 1978).
Convection is naturally simulated by our 2D code, whereas the 1D
codes, obviously, cannot track the convective motions of the fluid
masses and therefore do not include convection. This could be the
reason why, in 1D simulations, the high state duration is very short;
the thermal time-scale is not increased by convection and therefore

© 2004 RAS, MNRAS
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the instability develops very rapidly, causing the collapse of the high
state into the low state in a very short time.

To support this hypothesis we refer to Fig. 6 for the radial speed
in the two states, low and high. This clearly shows the extremely low
radial speed of the collapsed zone together with the close ‘active’
zone exhibiting larger radial speeds. An oscillatory radial behaviour
of V, is also evident.

It is interesting that Szuszkiewicz & Miller (2001) also found
similar radial speed profiles, with significant oscillations in the be-
haviour versus 7. They claim that these oscillations are a numerical
effect and, as a proof of this, show that if an artificial diffusion is
introduced, the oscillations disappear. We think, instead, that the
radial speed oscillations are a real physical phenomenon, connected
to the gas circulation in the disc, and that an artificial diffusion can
obviously smooth away the oscillatory behaviour, but this is only
an artificial result due to a non-physical ingredient.

Finally, we want to highlight the differences between our re-
sults and those of Szuszkiewicz & Miller (2001) about the hot gas
bulge generated by the thermal instability. In Szuszkiewicz & Miller
(2001) this bulge is just the medium by which the instability prop-
agates through the disc. When the instability arises, a small region
near the black hole becomes thicker and hotter. Its thickness and
temperature become larger and larger while the radial extension
also increases. The hot gas bulge that is formed through this process
reaches a radial extension of 90R ,, and then it begins to decrease in
the region near the black hole. The cooling wave that accompanies
this process propagates gradually towards the internal boundary,
until the whole gas bulge has returned to the disc equilibrium val-
ues of thickness and temperature. In our simulations the situation is
different. The instability starts with the inner region collapse (there-
fore with the gas cooling) and not with the thickness and temperature
increasing (the inverse processes). Both the collapse and the sub-
sequent refilling are approximately simultaneous over the whole
of the unstable region; no heating and cooling waves propagate
through the disc. When the unstable region is refilled, something
similar to the hot bulge of Szuszkiewicz & Miller (2001) is formed.
The involved region swells, but much less than in the simulation
of Szuszkiewicz & Miller (2001). It reaches a vertical thickness not
much larger than the equilibrium value and, as said, does not expand
radially.

6 CONCLUSIONS

We put forward evidence with true 2D simulations that the limit-
cycle behaviour produced by the Shakura—Sunyaev instability is
present in accretion discs having a radiation pressure dominated
zone (A zone). The time-scale of the instability and the shape of
the light curve depend on the accretion rate. Lower accretion rates
produce shorter time-scales of the oscillations.

The 2D real motions play an important role in calculating the
appropriate values of the oscillation frequencies. We obtain, for the
subcritical regime (case 1), a frequency v of about 0.5 Hz and, in
the supercritical case (case 2), v & 0.02 Hz. In general, the 2D time-
scales are shorter (and the frequencies higher) than the 1D ones. We
attribute this result to the shorter viscous time-scale characteristic
of the zone outside the collapsed region and to the role of the large
convection present in the high state.

These results may be relevant for the explanation of quasi-
periodic oscillation (QPO) emission in black hole candidates. More
refined models are necessary for a detailed interpretation of QPO
observational data, which, however, is not the purpose of this
paper. Our aim is not to find an explanation of the behaviour of
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some sources, but simply to see what happens to the standard disc
structure during its time evolution.
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required e.g ¥

Insert ‘inferior’ character (As above) k over character e.g. &

Insert full stop (As above) (o}

Insert comma (As above) ’

Insert single quotation marks| (As above) ¥ and/or 7

Insert double quotation (As above) ~‘;« and/or ‘?
marks

Insert hyphen (As above) @

Start new paragraph £ £

No new paragraph — —

Transpose —J —r

Close up linking Z letters _Z

Insert space between letters | 4 between letters affected ##

Insert space between words A between words affected 4

Reduce space between letters | T~ between letters affected T

Reduce space between words | T between words affected T






