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Detection of meaningful locations from passive mobile positioning
data using location profiling

Abstract:
Mobile positioning data is a promising source for investigating people’s activity patterns.
People regularly visit locations that have different functions to them. Locations with
similar activity patterns can be distinguished from the data based on people’s calling
activities. The problem with assigning meaning to these locations in the data is limited
information about the person and access to ground truth data. The thesis proposes a
method to profile locations and assign meanings to differently behaving location groups.
In the course of the work, various features are added to the location points by means of
which they are classified. Additionally, an expert’s opinion was considered to provide
input for the classes.
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Oluliste asukohapunktide leidmine passiivsetest mobiiliandmetest ka-
sutades asukohapunkti profileerimist
Lühikokkuvõte:
Mobiilpositsioneerimisandmed on paljulubav andmeallikas inimeste aktiivsusmustrite
uurimiseks. Inimesed külastavad regulaarselt asukohti, mis täidavad nende elus kindlat
funktsiooni. Andmete põhjal on võimalik sarnase aktiivsusmustriga asukohti klassifit-
seerida. Probleemiks asukohtade funktsiooni määramisel on limiteeritud informatsioon
kasutajate kohta ja õigete asukohaklasside siltide puudumine. Antud töös esitatakse
asukohtade profileerimise meetodit, mis leiab asukohad, kus inimeste käitumismuster
on sarnane. Töö käigus lisatakse asukohapunktidele erinevaid tunnuseid, mille abil neid
klassifitseeritakse. Lisaks andmetele kasutatakse asukohtade funktsioonide määramisel
ekspertide teadmisi.

Võtmesõnad: mobiilpositsioneerimine, ankurpunktide mudel, peakomponentanalüüs,
klasteranalüüs

CERCS: P160 Statistika, operatsioonianalüüs, programmeerimine, finants- ja kind-
lustusmatemaatika; S230 Sotsiaalne geograafia
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Introduction
New innovative data sources have been introduced to people with the rapid speed of
evolving technology. Moreover, national statistical offices have investigated such data
sources to add new products to the statistical portfolio and increase the timeliness and
accuracy of the gathered statistics while reducing cost and respondent burden. One of
such new data sources is mobile positioning data (MPD), which is already used by several
governments, such as Estonia and Indonesia, to produce official statistics. For example,
MPD is used by Estonian Bank to produce outbound and inbound tourism statistics
[Pan22], and in Indonesia, it is used to produce statistical indicators for cross-border
tourism [LRS+18].

Mobile positioning data is a collection of location points that enables to estimate of
peoples’ presence at a location at any given time. Multiple domains can benefit from
such knowledge, such as population statistics, mobility studies and the tourism sector.
However, using MPD in any field of study requires the algorithmic extraction of the
information from the initial dataset.

One of the fundamental algorithms, the anchor model, deals with detecting important
locations – places that people visit regularly and play a role in their day-to-day lives.
Anchor models primarily focus on home and sometimes also work detection, leaving
out other types of locations. This is mainly because extracting the semantics of such
locations is not a straightforward task - MPD only records peoples’ presence in time and
space, and any additional information needs to be mined from the data.

The paper aims to mine the MPD and perform quantitative analysis to detect and
assign semantics for meaningful locations by creating interpretable and reproducible
clustering of meaningful locations using the approach of profiling. Profiling a location
is a way to assign certain distinguishable qualities to the location. So far, meaningful
locations have not been detected and classified through profiling. Furthermore, past
studies have mainly focused on identifying homes and workplaces, such as in [ASJ+10].
However, the methodology introduced in this paper allows creating of various profiles
and classifying locations into these profiles. This approach allows the researcher to
specify the type of visitation pattern of a location they wish to explore further.

The first section describes mobile positioning data. A brief overview is given on
the types, accessibility and significance of the research. The second section is about
the methodology that was used to classify meaningful locations and differences from
traditional approaches. The third section thoroughly describes the data and its preparation.
It additionally discusses implementing the described method, validation and results on
another dataset where the ground truth is known.
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1 Mobile positioning data
The data that is used in this thesis is mobile positioning data in Estonia. Hereinafter a
short form MPD is used for this kind of data. MPD can be considered big data- the whole
data set has hundreds of thousands of users and, therefore, billions of data records.

The mobile positioning data can be challenging to access. Since the field has active
competition between operators, the operators conceal their data to avoid leakage of
business secrets. Leaks can damage the company’s image in public and lose the trust of
its clients. Therefore companies have strict regulations on sharing the data [AAR+08].

In addition to operators’ regulations, the individuals’ mobile positioning data is
protected by law. There are two main principles for using MPD: identifiable MPD can be
processed if the subscriber has given consent or the law has ordered to perform an official
task. Secondly, fully anonymous MPD can be processed and used without restrictions.
This requires subscribers to be non-identifiable directly or indirectly [Com14].

This thesis develops the methodology based on the fully anonymous mobile posi-
tioning data. All records have anonymised identification codes that cannot be linked to
a specific person. Therefore, when analysing the data results, the accuracy cannot be
verified because there is no information about the subscriber.

1.1 Types of MPD
Mobile positioning data can be collected with two main methods: active and passive
positioning. Active positioning is done by making a specific targeted request to locate the
mobile device [Tir14, 5]. A special environment and a permit from the user are required
to position the device [AAR+08, 470]. Consequently, enough data for analysis would
be extremely expensive to collect, and the data investigated in this thesis is collected by
passive positioning.

Passive positioning relies on the fact that historical data of people’s call activities are
stored in databases by mobile network operators (MNO). Call activity events are called
Call Detail Records (CDR). CDR can be an incoming or outgoing call, a short message
service (SMS) or a multimedia message service (MMS). [Tir14] In the data used in this
thesis, there is no distinction if the activity was originally a call, SMS or MMS. Any
activity of sort is called a call activity event.

Some operators provide data detail records (DDR) additionally. In that case, the data
set also contains records for every incoming or outgoing web request, i.e. internet traffic
between the mobile device, and the network [Tir14, 8]. CDR usually has the following
attributes: a timestamp, caller ID, recipient ID, cellular tower code and duration. A
cellular tower code is a unique code for each tower used to locate it precisely. Still,
the attributes vary by country and MNO [BBG+18, 15], but in order to use MPD for
statistical production, at least caller ID, timestamp and location information is required.
In this thesis, only timestamp, caller ID and cellular tower code are to be used.
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1.1.1 Temporal aspects of MPD

Mobile positioning data is not balanced, the density of the records is influenced by
individuals’ habits. Therefore, the quality of the data depends on the frequency of
phone users’ call activities [BBG+18]. There are several solutions for dealing with
this aspect. For example, individuals and locations with extremely low activity can be
removed. However, this should be done with caution not to remove too much information.
Moreover, the low density of data can be algorithmically improved, for example, using
interpolation techniques.

Figure 1. Diurnal distribution of records generated by one subscriber: IPDR (upper) vs CDR
(lower). Source: Positium.

The figure 1 illustrates the difference between CDR and IPDR data. IPDR is more
evenly distributed during the day because, at night, passive data usage is still generating
data. Passive data usage denotes activities that happen in the background and do not
require the phone user to be actively engaged with the phone– mobile phone apps refresh
themselves automatically (e.g. downloading new emails). On the contrary, CDR captures
active engagement from the user. Hence the data is concentrated in the daytime time
interval. Therefore, the density of data highly depends on the person’s habits as well as
whether the operator provides internet usage data.

1.1.2 Spatial aspects of MPD

To record a call activity event, an activity must be made from a mobile phone. Then the
antenna ID, to which the mobile device was connected during the initiation of the call,
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is saved. Therefore a record of the call activity event consists of the user initiating the
activity, event time, and the antenna ID [AAR+08].

Figure 2. Illustration of antennae coverage areas in relation to a cell signal.

A tower usually has multiple antennae attached to it, which all have their coverage
areas; see figure 2. In the records, the identification of the antenna that caught the signal
is recorded with its coordinates [AAR+08]. Knowing the antennae’s coordinates, the
calling records can be generalised to a coverage area accuracy. It means that the mobile
device’s actual location is not known – it can be anywhere inside the antenna coverage
area.

When identifying meaningful locations, overlapping tower reception areas should be
taken into consideration. Usually, the mobile device switches to the closest antenna or
the one with stronger radio coverage. It might happen that the network is crowded, and
the device switches to another neighbouring antenna [AAR+08]. All the neighbouring
coverage areas must be considered to obtain all information and get the precise location.
Positium has developed a method to calculate theoretical coverage areas and overlaps
between them. This thesis relies on Positium’s method in the aspect of overlapping
coverage areas.
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Therefore another generalisation in this thesis is made for identifying important
places. The cell towers are grouped based on their overlapping reception area, and MPD
records have the spatial accuracy of the overlapping area union.

In remote areas, the cell towers are distributed sparsely because the area is less
inhabited, and therefore the network load is low. The accuracy of mobile positioning
can vary from 1.5 to 20 km in rural areas. This can lead to large errors in meaningful
location detection. However, in urban areas, the cell towers are more densely distributed
- in larger Estonia’s cities, the accuracy of positioning can be 100 - 1000 meters, and in
suburban areas, 450 m to 2 km [AAR+08].

1.2 Anchor model
To better understand the work, it is essential to clarify the key elements of Positium’s
current anchor model. The anchor model is part of Positium’s core methodology that
identifies meaningful locations (anchor points) based on MPD using a specific chain of
rules. The current model identifies home and work locations. All other detected locations
are labelled as "other regularly visited places". Anchor points are calculated with the
accuracy of a month. The research done in this thesis provides additional semantics to the
anchor model, allowing to better classify "other regularly visited places" and providing
input to enhance the detection of meaningful locations.

The first step of the model is considering the theoretical calculated coverage areas.
For each person, the antennae that have overlapping coverage are grouped. This includes
multiple antennae that are attached to one tower. It can be assumed that the overlapping
antennae serve the same location.

The next step of the model is determining if a location point is regular or random. A
point is regular if a respondent has made calls on at least two separate days in the month.
Next, for each person, the number of calls is calculated. If the person were active on less
than seven days in the month, they would not participate in further analysis. Additionally,
people with over 5000 calls a month are removed because they are potentially not regular
users. This step is done during the importing of the data for the anchor model.

The locations for each person that have the highest number of call days (three highest-
ranking locations) are allocated for home and work-time anchor point detection. Other
regular points are considered "other regular anchor points". Additional semantics are not
analysed through the "other regular anchor points" in the current model.

([ASJ+10])
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2 Methodology
The next chapter describes the location classification problem more in-depth and the
methodology used to solve it. An overview of traditional approaches is given in addition
to proposed modifications. The methodology concentrates on the principal component
analysis and classification methods.

2.1 Principal component analysis
Principal component analysis (PCA) is a technique of multivariate data analysis. The
main idea is to transform multiple possibly correlated variables into a smaller subset of
variables with retaining the most variation in the data set. The new variables are called
principal components [MST+17]. Such variables are essentially linear combinations
of the columns of a matrix under consideration [JC16]. The steps of finding suitable
coefficients of the combinations are discussed in the following chapter.

The first step of the analysis, as in all methods, is to process and clean the data. It is
important that all variables describe the measured object. Identification of an object or a
group must not be included in computing the principal components. Additionally, all the
variables need to be analysed. Let the data be a matrix X with dimensions n× p and ~X
it’s mean values’ vector.

In the data, there might be variables of different measurement units, or it is not
clear whether they have different scales. It might be needed to standardise the variables.
Standardisation means both centring and dividing each variable by its standard deviation.
It must be noted that centring the data is a common approach to defining the PCs. If
there occurs a difference between the scales of some variables, then they are also divided
by the standard deviation [JC16]. The new values zij replace the original data values:

zij =
xij − xj
sj

, (1)

where xj j = 1 . . . p is the mean value of column vector ~Xj and sj j = 1 . . . p

is the standard deviation of column vector ~Xj of the matrix X . In further actions the
standardised data matrix Z is used in place of the original data matrix X .

Next step is to calculate the covariance matrix of Z [MST+17]. It can be noted, that
with two standardised random variables A,B:

cor(A,B) =
cov(A,B)√

var(A)
√

var(B)
=⇒

=⇒ cov(A,B) = cor(A,B)
√

var(A)
√

var(B) = cor(A,B).
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The last equation holds because after standardisation, the variable’s variance, there-
fore standard deviation, is 1. This also supports the fact that PCA on standardised data is
called a correlation matrix PCA [JC16]. Let’s denote R as a correlation matrix of Z.

Next step is to find eigenvalues and eigenvectors of the matrix R [MST+17]. Denote
λ = (λ1, . . . , λp) as the eigenvalues in descending order and A as an eigenvector matrix,
where columns ~a1 . . . ~ap are the corresponding eigenvectors of R.

The eigenvectors are the coefficients of linear combinations of Z that determine
the principal components. The jth PC score of a row Z = z is PCjz = aTj z =
(aj1 . . . ajp) · (z1 . . . zp)T [JWHT13]. Therefore it is a linear combination, where each
variable of the row Z = z is multiplied by certain element from the eigenvector aj .

Based on the properties of matrix calculation, the result can be generalised to a
calculation of the jth PC score of all rows. This follows as: PCj = Z · aj . The result
PCj is a n× 1 matrix, where each row is a jth PC score of each row of Z.

Consequently, all the principal components’ scores make a n×p matrix PC := Z ·A,
where each column is called a principal component.

2.1.1 Reversing components

The principal components are linear combinations and cannot be interpreted in the
original data scales. For visual aid in certain situations, it is essential to compare obtained
components to original data. This subsection shows how the components are reverted to
original data scales.

Firstly, the number of components k used must be chosen. It is the dimension into
which the data is desired to be converted. It is important to note that if k = p, then all
components are used in reversion and the original data set is reconstructed precisely.
However, the purpose of PCA is to reduce dimensionality. Therefore it is meaningful to
choose k < p in a way that the k components describe the data set well enough.

Furthermore, using matrices’ properties and multiplying the equation by AT from
the right, the following result can be obtained:

PC = Z · A =⇒ PC · AT = Z · A · AT = Ẑ =⇒ Ẑ = P̂C · ÂT ,

where P̂C is an n× k matrix with a chosen number of k components. Analogously
Â is n× k, therefore being a matrix of k eigenvectors as columns. It is important to note
that if the chosen number of components k is equal to the number of columns p, then
AAT = Ip, by the property of eigenvectors. Therefore the ZAAT = ZIp = Z = Ẑ and
the original data set is precisely reverted. However, if k < p, then the reverted matrix Ẑ
is approximate to the original Z. The fewer components k used, the more approximate
Ẑ is.

Furthermore, to achieve the original scales, the reverse of standardisation must be
additionally performed. Firstly, all values must be multiplied by the standard deviation
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of the original variable. Secondly, the mean of the original variable must be added to
obtain the original scale. The reverted x̂ij are obtained by reversing the standardisation
formula 1:

x̂ij = ẑij · sj + xj. (2)

2.1.2 Standardisation

Showing that standardisation is necessary for the data in this thesis. Let’s denote B a
subset of the original data set.

Table 1. Subset B

(a) Original scales.

M
on

da
y

W
or

kh
ou

rs

N W
ee

ks
_o

f_
al

l

1 0.143 1.0 7 0.8
2 0.115 0.485 165 1.0
3 0.263 0 19 0.8
4 0.161 0.465 409 1
5 0.125 0.375 8 0.8

(b) Standardised scales.

M
on

da
y

W
or

kh
ou

rs

N W
ee

ks
_o

f_
al

l

1 −0.313 1.497 −0.659 −0.73
2 −0.779 0.056 0.249 1.095
3 1.708 −1.301 −0.590 −0.730
4 −0.002 −0.001 1.652 1.095
5 −0.614 −0.251 −0.653 −0.730

Denoting the covariance matrix cov(B) = S. It appears as:

S =


0.004 −0.014 −1.549 −0.002
−0.014 0.127 −0.662 0.001
−1.549 −0.662 30261.8 16.54
−0.002 0.001 16.54 0.012

 , Ssc =


1.000 −0.645 −0.150 −0.357
−0.645 1.000 −0.011 0.025
−0.150 −0.011 1.000 0.868
−0.357 0.025 0.868 1.000


It is evident that the big variance in variable N affects covariance matrix S. The

variance of N is over 30,000, whereas most of the other values are under 1. PCA, by
nature, is very dependent on the covariance matrix since the eigenvectors of the matrix
are the loadings of the principal components.
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Calculate the eigenvectors and denote the matrix of eigenvectors A:

A =


0.000 −0.109 −0.566 0.817
0.000 0.994 −0.072 0.083
−1.000 0.000 0.000 0.000
−0.001 0.012 0.821 0.571

 , Asc =


0.460 −0.522 0.648 0.310
−0.287 0.673 0.654 0.193
−0.566 −0.416 0.360 −0.614
−0.621 −0.319 −0.151 0.700


The loadings matrix shows that the original third column N overtakes the first

component completely, as the third element in the first row is -1.0 and others 0 or near 0.
As stated in the previous subsection, an original data set can be reconstructed using the
principal components. Showing what happens when using k = 1 principal components to
reconstruct the data set with original scales and standardised scales. Selected components
k = 1 is relevant in this thesis, which is the reason for not selecting more.

Table 2. Reconstructed subset B

(a) Original scales.

M
on

da
y

W
or

kh
ou

rs

N W
ee

ks
_o

f_
al

l

1 0.003 0.010 7.004 0.022
2 0.078 0.237 165.002 0.509
3 0.009 0.027 19.002 0.059
4 0.193 0.588 409.999 1.261
5 0.004 0.012 8.003 0.025

(b) Standardised scales.

M
on

da
y

W
or

kh
ou

rs

N W
ee

ks
_o

f_
al

l

1 0.168 0.439 96.652 0.863
2 0.129 0.588 239.388 0.961
3 0.215 0.265 −70.164 0.748
4 0.117 0.631 280.791 0.990
5 0.178 0.402 61.333 0.838

As expected, it appears from table 2a, that the reconstruction is not very accurate.
However, the first principal component without standardising claimed to describe nearly
100% of the total variation. The column N is reconstructed almost ideally, but other
columns do not correspond to the original data. The values are, in most cases, too small,
which was expected due to the first eigenvector.

Meanwhile, the PCA on standardised data claimed to explain 52% of total variation
with the first component. It appears from table 2b that variables ’Monday’, ’Workhours’,
’Weeks_of_all’ have been reconstructed fairly similar to the original values. However,
the variable ’N’ does not correspond to the original values. The values still exhibit a
similar pattern. For example, the first and fifth values are still the smallest in the column;
the second and fourth rows have the highest value of all, as in the original data.
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2.2 Classifying method
One aspect of MPD is not knowing the ground truth. There are the calling activities
without any information about the person. It is not known where the person’s actual
home or workplace is, how they spend their free time or their work type. Therefore, to
distinguish meaningful locations, similarly behaving locations must be clustered while
maintaining the meaning of each cluster.

Traditional classification algorithms need the correct class to train the classification
process. However, the methods to mine information from MPD must be conducted so
that there is no need for true classes. This thesis uses the help of an expert in the field
to classify objects. The expert describes an input for the classification in place of the
ground truth. However, the expert’s assessment needs adjusting to the data set. This
thesis proposes a method based on elements of cluster analysis to adjust the expert’s
constructed input.

2.2.1 Base algorithm

The methodology of grouping objects under consideration into types of meaningful
locations is based on the idea of the k-medoids algorithm. The algorithm is introduced
in more detail in this chapter. Hereinafter the changes in some metrics are outlined and
described.

K-medoids is a spatial clustering method. The process is to group objects into
clusters, so the clusters’ objects are highly similar to one another but dissimilar to other
clusters’ objects. The number of desired final clusters k is set before the beginning of the
algorithm [SP17].

Moreover, it is an iterative method. Firstly, random k objects are selected as initial
medoids. Each point is then clustered with its closest medoid with any distance metric.
Since it is an iterative method, the method iterates through all clusters and tries to
replace each medoid with a more suitable one. During each iteration, the most centrally
located object is used as a new cluster centre. The algorithm is terminated if no better
replacement is available for each medoid. [HKT01].

K-means is a similar method to k-medoid. The difference is that k-means clusters’
centres are calculated means, not actual data objects. The centres are called centroids.
Secondly, in k-means, generally, Euclidean distance is used, whereas, in k-medoid, any
dissimilarity measure can be used [Ize13]. Therefore medoid is a cluster centre that is an
actual object, and a centroid is a calculated centre.

The proposed method in this thesis uses components from both k-means and k-
medoid methods. Firstly, the expert’s constructed objects are the initial centroids. There
are several reasons for this. Firstly, experts in the field are familiar with the nature of
the data and are aware of the human geography processes. Secondly, this makes the
method reproducible. In the future new centroids can be added to acquire more detailed
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information. Concerning reproducibility, this also ensures labelled interpretable clusters
each time. Using random initial medoids might lead to similar results, but the groups
cannot be automatically labelled and are in a different order.

2.2.2 Distance measure

As stated in a previous chapter, MPD data is not balanced. The density of data varies
plenty by individual and cell. Therefore, the distance measure should consider measuring
a similar shape of behaviour instead of emphasising a small Euclidean distance.

A tool to measure the proximity of one item to another is called a dissimilarity.
Dissimilarities usually satisfy three properties. Proof of the properties of the chosen
measure is shown below. When additionally the triangle inequality holds, the dissimilarity
measure is also a metric [Ize13].

The aim is to measure similarities between objects that can be far apart but behave
similarly. In other words, their features are highly correlated, but the observed values
might be far apart in terms of Euclidean distance. Therefore the thesis proposes a
correlation-based dissimilarity measure that ensures the right properties. It focuses on
the activity pattern of the observations rather than the magnitudes [JWHT13].

Given a series of n measurements of the pair (Xi, Yi) indexed by i = 1 . . . n, the
sample correlation coefficient, is defined by a formula [Ros10]

ρi,j = cor(Xi, Yi) =

∑n
i=1(xi − x)(yi − y)
(n− 1)sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
. (3)

Generally, it is said that the pair is highly correlated when the absolute value of ρi,j
is close to 1 [Ros10]. Moreover, the pair is positively correlated when ρi,j > 0 and
negatively when ρi,j < 0. Thus in this thesis, a measure 1− ρi,j is taken as a measure of
dissimilarity to find objects that are close to each other. The dissimilarity measure has
been used for similar purposes in other papers as well, such as in [Ize13].

Next, for defitinion purposes it can be checked, whether the dissimilarity measure is
a metric. Let X = Rn = {x : x = (x1, . . . , xn), ξi ∈ R}. Defining a distance between
elements x = (x1, . . . , xn) ∈ X and y = (y1, . . . , yn) ∈ X as

d(x, y) = 1− ρx,y = 1−
∑n

i=1(ξi − x)(νi − y)
sxsy

. (4)

Proof of three properties on the chosen measure.

First axiom: d(x, x) = 0:

d(x, x) = 1− ρx,x = 1− 1 = 0.

14



Second axiom: d(x, y) ≥ 0:

d(x, y) = 1− ρx,y ≥ 0⇔ 1 ≥ ρx,y.

inequality holds because the correlation between any variables is always between
[−1, 1]. Therefore, shifting the interval, measure d(x, y) = 1− ρx,y falls into an interval
[0, 2], which is always greater or equal than 0.

Third axiom: d(x, y) = d(y, x):

d(x, y) = 1− ρx,y = 1−
∑n

i=1(ξi − x)(νi − y)
sxsy

= 1−
∑n

i=1(νi − y)(ξi − x)
sysx

= 1− ρy,x = d(y, x).

Consequently, d is a dissimilarity measure satisfying the three axioms. The measure
is a metric when it satisfies the triangle inequality. Showing that, in this case, the triangle
inequality does not hold.

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y):

d(x, z) + d(z, y) = 1−ρx,z + 1− ρz,y = 2− ρx,z − ρz,y��≥d(x, y).

The last inequality does not always hold. Consider two independent random variables
X1, X2 with equal variances var(X1) = var(X2). Define new variables Y1 = X1,
Y2 = X2, Y3 = X1 +X2. Now notice, that cor(Y1, Y2) =

cov(Y1,Y2)√
var(Y1)var(Y2)

= 0 and

cor(Y1, Y3) =
cov(Y1, Y3)√
var(Y1)var(Y3)

=
cov(X1, X1 +X2)√
var(X1)var(X1 +X2)

=

=
cov(X1, X1) + cov(X1, X2)√
var(X1)[var(X1) + var(X2)]

=
cov(X1, X1)√

var(X1)var(X1) + var(X1)var(X2)
=

=
var(X1)√
2[var(X1)]2

=
1√
2
≈ 0.71

.
Therefore the correlation-based distance between Y1 and Y2 is d(Y1, Y2) = 1− 0 = 1.

Between variables Y1 and Y3 is d(Y1, Y3) = 1− 0.71 = 0.29, analogously d(Y2, Y3) =
1 − 0.71 = 0.29. Therefore 1 = d(Y1, Y2)��≤d(Y1, Y3) + d(Y3, Y2) = 2 · 0.29 = 0.58.
Consequently d is not a metric.

The suitability of the correlation-based distance is illustrated with an following
example. The same example describes why the traditional Euclidean distance does not
always measure the desired aspect in this case. Let’s consider the activity patterns of
three locations.
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In the figure 3 there are three different locations that have measured activity levels
in 4 variables V 1, . . . V 4. From the figure, location 1 has zero activity in variable V 1, a
peak in V 2, a decrease to V 3 and another peak in V 4. Location 2 shows a similar pattern
with low activity in variables V 1 and V 3 but higher values in V 2 and V 4. The third
location with blue peaked in variable V 1 and decreased activity in values V 2 to V 4.

Figure 3. Example profiles
b

Location 1 Location 2 Location 3
Location 1 0 0.09 1.71
Location 2 0.09 0 1.59
Location 3 1.59 1.71 0

Table 3. Correlation distances.

Location 1 Location 2 Location 3
Location 1 0 10.85 5.05
Location 2 10.85 0 12.91
Location 3 5.05 12.91 0

Table 4. Euclidean distances.

It is evident that location 1 and location 2 have similar activity patterns; their profiles
are parallel in the plot. However, the Euclidean distance between them is 10.85 (table 4),
which is twice as big as the Euclidean distance between location 1 and location 3. The
distance between location 1 and location 3 is 5.05, the smallest distance between any of
the 3 location points. Therefore, according to Euclidean distance in this case, location 1
and location 2 are further apart than location 1 and location 3.

Since the idea of the method proposed in the thesis is to measure similar activity
patterns, the correlation-based measure is more suitable. Recall that correlation distance
near 0 shows very high similarity, and near 2 shows a high dissimilarity. From table 3
the correlation-based distance between locations 1 and 2 is 0.09, which indicates that the
locations behave very similarly, even though location 2 has been more active. However,
the correlation-based distance between locations 1 and 3 is 1.59, which shows very high
dissimilarity.

The example can be generalised to multiple location points with numerous attributes
describing the activity pattern. Some locations might be more frequently visited, but
the activity level will not affect classification results with this method. Therefore, when
distinguishing similarly behaving location points, it is more meaningful to measure the
similarity of the patterns with a correlation-based measure.

2.2.3 PC1 as a centroid

K-medoids algorithm chooses a new centre in each iteration by measuring the distance
between each data point and choosing the point most in the centre to be the next medoid,
as stated previously. An alternative way of choosing the centroid is proposed as follows.
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K-means uses the calculated centre of the data as a centroid. The centroid is calcu-
lated, so the mean distance between data points and the centroid is minimised. In the
case of Euclidean distance, the arithmetic mean minimises the mean distance. Arithmetic
mean might not be optimal for calculating the centroid when using a different distance
measure. When using correlation-based distance, the first principal component can
be used as the centroid instead of the arithmetic mean. The first principal component
maximises the mean covariation of the component to each variable. When the data
is standardised, the first principal component maximises the mean correlation to each
variable. In this thesis, the data matrix must be transposed because the aim is to maximise
the correlation between the principal components and location profiles, not variables.
Therefore, each location is considered as a variable and each variable as a data object for
the purposes of PCA in this thesis.

In this thesis, the PCA is performed on each subset. Hence, after dividing the data
points into initial classes, the principal components are calculated for each cluster of
points. The first component for each class is chosen as the new centroid (anchor profile)
of the cluster. Therefore each centroid describes the k-th class of points as a linear
combination of the points included. With the PC1 as a centroid, new distances are
calculated from each new centroid to each data point. The points are re-divided into
classes by the closeness to each centroid as in the k-medoids method. The action is
repeated for desired number of iterations, for example until consecutive centroids do not
differ from each other.
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3 Practical part
The purpose of the practical part is to describe implementing the discussed method for
meaningful location classification. Firstly, the data is shown, how the sample is taken,
and aggregations are made. Next, the creation and modification of anchor profiles are
described in detail. Along with that, how to use the profiles to find similarly behaving
locations. Lastly, there is a validation of the method and conclusions.

3.1 Assumptions and subsets
MPD is considered big data and working with all the data for method development is
computationally not reasonable. Therefore a random sample of ten thousand subscribers
was made to investigate the patterns in the data. Additionally, some assumptions must be
made due to human mobility.

The anchor model detects meaningful locations within the time of a month and again
for each month. In this thesis, the meaningful locations are also looked at in one month
period to avoid possible relocation. Therefore the sample of the selected subscriber’s
one-month data is taken for investigation. The chosen month is January of 2019.

The accuracy of the data records is defined by the extent of the antenna coverage area.
Therefore the antennae id-s are grouped in regards to the output of the anchor model,
which of them have overlapping reception areas. This is done during data processing
prior anchor model as described in chapter 1.2. Therefore this work does not concern
single antennae but works with the set of neighbouring antennae. Each antenna group,
now called a location, can be described by the call activities undertaken using antennas
in this location.

Moreover, a constraint is made. Some subscribers have too little activity to investigate
since a subset of one month was taken. Therefore, the final subset contains subscribers
that have been active in at least five different locations in January of 2019.

In the final data set, there are 39,539 unique subscriber and cell id pairs and a total of
3,177 unique subscribers in January 2019, as seen in the table 8. It would suggest that,
on average, each subscriber has 6-7 cells they constantly use in a month. From the plot
12, most people have 5-12 unique cells used in the time period. There are 18 people out
of 3,177 who have calling activities through more than 40 locations.

From the plot 11 it appears that in January of 2019, mostly each person makes a
calling activity through one cell 3-4 times. However, most records per unique user and
cell combinations are between 3 and 20. There are also people who have made hundreds
of calling activities in the same certain areas.

In conclusion, firstly, a sample of 10,00 random people was compiled, with restric-
tions to all data records being from one month, January 2019. Secondly, the locations of
each row are grouped into groups of neighbouring areas. Lastly, because of the lack of
balance in the data, the individuals counted more than five different cells were extracted
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to perform analysis. Consequently, in the ideal scenario, all different anchor profiles can
be assigned to each individual.

The final processed data has 2,453,765 rows, where each row is one specific calling
activity. There is an ID of the entry, the ID of the subscriber, the ID of the cell and
lastly, an exact timestamp of the activity as seen in table 7. As mentioned above, the time
interval was from January 1st to January 31st in 2019.

3.2 Preliminary work
The next step was to create multiple new variables to describe the behaviour of each
person’s every location in the time period. This thesis does not consider the spatial
behaviour of the cells, apart from the grouping of the overlapping areas of cells. Therefore,
new variables are solely created based on the timestamp attribute each record has. The
new variables were created according to different units of time, such as time intervals and
weekdays. Additionally, all entries were grouped by unique user and cell combinations
which were aggregated into new attributes.

The first group consists of the most general new attributes- ’days of all’ and ’weeks
of all’. ’Days of all’ considers the percentage of all days in January 2019 the location
was used to make calls. Based on the table 8, person A used cell two about 16.13% of
the days in January, which makes five unique days. On the other hand, the individual has
a calling activity on 80% of all weeks of January. Consequently, the cell is used most
probably once a week, and with great probability, this is a constantly visited location, for
example, a store, free-time activity, family etc.

The second group consists of attributes more precise. The variables describe the
distribution of calling activities by each weekday of the month. All the variables from
’mon_of_all’, which describes the percentage of calls in the week falling onto a Monday,
to ’sun_of_all’, which describes the percentage of calls in the week falling onto a Sunday,
sum up to 1. Based on table 9 for the previous example, the person used the cell mostly
on Fridays, a few times at the start of the week and not once at the weekend.

It was considered to create variables for each weekday in a way that they describe
the usage percentage of the specific weekday. For example, a value for Monday of
0.8 would mean that in January 2019, the person used the cell on 80% of all Mondays.
However, with the consideration of an expert’s opinion, it was decided that this poses
certain problems and, in some cases, loss of information. Consequently, the analysis
remained with the distribution across all weekdays.

The third group is the most precise group of new variables. They describe the
distribution of calling activities at 4-hour intervals. The variables from ’00_04’, which
describes the percentage of calls in the day falling into the specific time period, to ’20_24’
similarly sum up to 1. Based on table 10 and the same example, the person clearly uses
the cell mostly in the afternoon and daytime.
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The fourth group consists of three variable pairs. The first pair is the distribution of
calling activities between working days and the weekend. The two variables sum up to 1
and describe the proportions of the calling activities between weekdays and weekends.
This proportion overlaps with the weekday distribution variables but gives a general
direction. For example, if the exact distribution of weekdays is not known, but it is
known that the variable should be close to zero at the weekends. Based on the table 11,
the same person mentioned before has conducted all the calling activities on working
days.

The second pair describes the distribution of calling activities for each person’s every
cell between working and non-working hours. In this thesis, the time interval 08:30-17:30
is considered to be working hours. The interval distinguishes the people who work during
business hours based on the time usage survey data from Statistics Estonia [Est10].

The last pair consists of daytime and nighttime distribution of calling activities.
Nighttime is defined to be 23:00-07:00 in accordance with the expert’s opinion. A high
nighttime value describes a location with a large proportion of calls made in the nighttime.
Together with other variables, it could describe a location where the person spends their
nights or can call a primary home in terms of meaningful locations. However, this thesis
uses CDR data which might affect the results. Since people are supposed to sleep in their
primary homes, they do not use their mobiles at the nighttime. Therefore, for validation
purposes, DDR data could deliver more accurate results in home detection.

3.3 Anchor profiles
The main idea is to create anchor profiles that behave in a certain way. The profiles
are created by experts and are used as the initial centroid points. Next, the profiles are
compared to the data, and the closest data points to each cell are filtered to create subsets.
Therefore each subset contains points that behave in a desired way or similarly. Each
subset is further processed with PCA and fine-tuned according to data.

There are initially five different anchor profiles: Work-time, Nighttime work, Home,
Secondary home, and Evening free time (table 12, figure 4). Work-time anchor profile
corresponds to a traditional Monday to Friday business hours location. Nighttime work
is an odd hours location, with activity mostly at night. Home is a location where the
person usually spends the night and often visits. A secondary home is a location for
weekend activities. This might be a summer house, family, or a constantly visited hotel.
Evening free time is a general location with the most activity after business hours. This
might be a constantly visited store, sporting place, friends, family, or restaurant.

By the table 12, primary home cells are used on the majority of days of the month,
73% of the days, and every week. Weekday distribution is uniform because there should
not be a clear distinction between activities on different weekdays in activity at home.
All other variables have values analogously under the assumption that a person sleeps at
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Figure 4. Anchor profiles constructed by an expert.

night and that there should be no significant distinction between some hours or days for
recognising home.

Evening free time, regular work and nighttime work all have almost no activity at the
weekends. Regular work should have a relatively uniform activity distribution throughout
working days; nighttime work and evening free time might vary. Firstly, the free time
activities probably fall into a couple of specific days, e.g.Tuesdays and Thursdays, and
nighttime workers work on a schedule. Secondary home, on the contrary, has the most
activity on the weekends and the day before it.

Four-hour distribution for regular work is focused on the business hours 08:00-16:00
with permission of a small deviation around the business hours. Evening free time
activity has most of the activity after business hours during 16:00-20:00 because it is
considered mainly an after-work activity location. The secondary home has an overall
fairly uniform distribution of calling activities with increased activity in the evening. The
nighttime working location has activity mostly at nighttime 00:00-08:00 and most calls
in non-business hours and predefined nighttime.

3.3.1 Initial anchor classes

The anchor profiles based on experts’ opinions are specific descriptions of a location’s
behaviour. Some individuals are less active at locations, and some are more active. Their
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activity is different, but the overall behaviour might be similar. This subsection describes
the classification of locations that behave similarly to an expert’s defined profile.

For every anchor profile, the most similarly behaving cells can be found using the
distance measure d(x, y) = 1− ρx,y. Firstly, a distance matrix D is calculated, where the
columns correspond to each anchor profile’s distance from each location point. Next, for
each anchor profile, a subset of cells is chosen to be determined as the type of the profile.

The method to choose a threshold for a subset is proposed as half of the minimum
distance to another centroid, using the predefined distance d again. In short, a distance
matrix Dprofiles is calculated where elements are distances between the anchor profiles.
For each anchor profile, the shortest distance to another is chosen and halved. Therefore,
when performing initial subsetting, there are no overlapping clusters. When two centroids
are close to each other, the radii, from which to subset cells, are small and analogously
large when the centroid is further from others.

Figure 5. Initial work-time cells.

Describing the initial grouping step results in the example of the work-time anchor
points. The yellow line on the figure 5 is an experts’ conducted profile corresponding to
values of the fourth row in table 12. According to the distance measure, the grey lines are
all the locations that exhibited a similar activity pattern to the work-time anchor profile.

The threshold by which the locations were separated was 0.09. Consequently, if a
location’s activity pattern has a distance from the work-time anchor profile less than 0.09,
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it is classified as a work-time location. Other groups’ thresholds can be found in the
Appendix table 14.

It is evident, that the most similar shape occurs in the last six variables (’work-
day’,’weekend’,’workhours’,’outside_workhours’, ’daytime’, ’nighttime’). The result
is as expected because these are very distinctive variables to a work-time location. The
cell should only be used on working days, work hours, and during the daytime. Other
variables of the six should be close to zero. As anticipated with a correlation-based
measure, the first two variables (’days_of_all’, ’days_of_all’) have caught active and less
active individuals’ locations. For example, cells that have been used almost on all days
in the month and some only on eight days. Moreover, there is a distinctive peak during
the daytime between 8:00-16:00 and a drop on Saturday and Sunday.

3.4 First principal component
The principal component analysis was used to improve the fit of anchor profiles to the
data. The idea is to improve the profiles that experts had constructed. Describing the
method in the next subsection in the example of work-time anchor points. Other anchor
profiles are adjusted analogously.

Usually, with PCA, it is under interest which variables contribute to which principal
components and how much. Each component is a linear combination of the variables.
Generally, a PCA with a maximum of 21 components could be created to describe this
data table. In this thesis, the concentration is on the first component. Using only the first
component, all data points can be reconstructed. The advantage of the first component is
its size- it is one-dimensional.

In this thesis, to find the first principal component, this data has to be transposed.
The reason is that we are interested in creating a new anchor profile that projects best
the data set under observation. Therefore the PCA on the transposed data set creates a
linear combination of all the cells that were firstly filtered to be similar to the expert’s
work-time anchor profile. Moreover, this creates a weighted universal profile of all the
locations in the subset. Therefore the work-time anchor profile is shifted by all cells in
the subset. Some cells contribute more and some less to the new adjusted work-time
profile.

The first component, from table 13, explains nearly 91% of the total variance. This is
a high percentage and ensures that it is meaningful to use the first component to describe
this subset. Therefore, the first component can be used as an adjusted work-time anchor
profile. However, the values are not in the original scales anymore, but when calculating
the correlation-based distance, it does not affect the resulting distance.

Consequently, a new distance matrix D2 is calculated where the columns correspond
to each modified anchor profile’s distance from each location point from the data. Analo-
gously new thresholds are calculated to select a new set of work-time locations as well
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as each other location types. This iterative profile adjusting is done until the consecutive
profiles do not differ significantly.

Distances between the new adjusted profiles for each profile are also calculated.
When the distance between two consecutive modified profiles is less than ε, the iteration
is stopped. In this thesis, the cue for an ending is ε < 0.005. The cue was chosen by
analysing the distances between each of the profiles. Additionally, visual aid was taken
into consideration.

3.4.1 Reversing the component

The original data set consisted of values in the interval [0,1], but the components range
from [-112, 51]. From the perspective of classifying objects, the range is not important
because, as stated, the shape of the profile is under investigation rather than the range
of values. Nevertheless, for comparing the updated shapes, it is important that they can
be visualised on the same scale. This subsection describes reversing the components to
interpretable original scales and expresses the changes in the example of the work-time
anchor profile.

Figure 6. Changes in the work-time anchor profile.

The process of reverting the principal components was described in section 2.1.1. It
must be noted that when reverting the components, the dimensions stay the same as the
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original data set. Therefore for visual aid, one row must be chosen. For the comparison
of the profile changes, the location that mostly contributed to the PC1 is drawn.

From the figure 6 it is seen that interestingly after the first iteration, the profile is less
strict with working days and hours. However, the second and third iterations move back
closer to the expert’s constructed profile. On the weekdays, the new anchor profile has a
softer decrease from Thursday to Saturday and a small percentage of activeness on the
weekends. Secondly, the work hours are more flexible. The percentage of calls during
work hours can be less and higher outside working hours.

Moreover, the second and third iteration anchor profiles overlap because the purple
line for the second iteration is overlined with yellow, a third iteration anchor profile. This
is an indicator that the iterating should stop.

3.5 Validating the method
In the current work, it is difficult to establish ground truth for validation purposes, as is
often the case with big data sources where individuals in the data set remain anonymous.
This means that it is not possible to check whether the anchor classification resulted in
the semantics that the user themselves would assign to the location. One way to provide
validation to the chosen methodology would be to use the help of an expert. There is an
additional data set of a conducted survey, where the respondents’ exact home locations
are known. Therefore a second validation is performed on a data set with ground truth.

3.5.1 Expert assessment

After each iteration, a subset of new work-time anchor points is created. Moreover, the
locations that did not make it to the following subset and locations that were added to the
next subset were distinguished. Eventually, a data matrix is created, where each row is a
cell that was removed when making a more accurate subset of work-time anchor points.
Analogously a data matrix with locations that were added within the next iteration is
created.

Therefore the labels of the locations changed during the iterations. It is under
interest whether the changes were in the right direction. The method is considered
adequate when locations that behave less like a work-time point are left out of the group,
simultaneously adding locations that behave similarly to the work-time profile to the
group. The subsection aims to ascertain whether the changes improved the quality of the
work-time anchors’ group.

A random sample of n = 20 cells was picked from both data sets to perform a
sign-test. Therefore, 20 pairs were created, where one was the cell that was previously
something else but added to work-time anchor points, and the second was a location that
was initially a work-time point but removed from the subset. The expert was instructed
to decide which profile of the pair is most likely a work-time anchor point. If the expert
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chooses the location that was added to work-time points, the switch is considered a
success.

The thesis proposes a way to validate results using a sign-test. The test is conducted
in order to distinguish the consensus between the output and opinion of an expert.
The hypothesis pair to test is the following:
H0: The probability of change in the right direction is 0.5.
H1: The method changes the labels systematically towards the right direction (or towards
the wrong direction).

Figure 7. Sign-test arrangement.

In the figure 7, the two profiles have been given a random colour to avoid each group
having a constant colour. The expert inspected figure 7 and concluded for every pair
of i = 1 . . . 20, which of the two is a work-time anchor point. Next, the results were
compared to the methods’ output values. When the expert and method were in agreement,
it was marked as "+", otherwise "-". The resulting vector of agreement consisted of 18
"+" -s and 2 "-"-s. Therefore, the expert agreed with 18 cells out of 20 that were added to
the group during any iteration.

There is a 1
2

chance that the expert chooses the same work-time anchor as the method
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for all i. Consequently, binomial distribution B(20, 1
2
) was used to test the hypothesis.

An R function ’binom.test()’ was used with number of successes x = 18 and number of
trials n = 20 to get a ground for the decision.

Based on the resulting p-value 0.0004 of the test, the null hypothesis is rejected.
It can be concluded that the changes in locations between the groups were adequate.
Therefore, the method was able to distinguish between work-time points and other types
of points.

3.5.2 External data set

In addition to validating the methods consensus with the expert, a validation was con-
ducted on another data set. The test data set consisted of 151 people with known real
home locations and, in total, 764 location points. The data set was conducted with the
consent of the 151 people who disclosed their home location in regards to a study [SL18].
The time frame used for validation is March 2017.

Figure 8. Real home locations and anchor profiles.

The plot 8 shows the behaviour of known real homes of the data set with grey; the
yellow line shows the expert’s constructed profile, and the red line shows the updated
profile. It can be seen that the locations behave variously. The home locations are mostly
moderately active, with points at both extremes. During the weekday, the distribution

27



of activity is seemingly random. There might be slightly less activity on Mondays and
higher activity towards the end of the week. Additionally, there are groups of locations
that have zero activity on a random weekday.

Almost all real home locations have nearly no activity during night hours, 20:00-
04:00, with increased activity from morning to evening. Mostly the locations are more
actively visited during working days, daytime and outside working hours. It is evident
that the real home locations differ from the two profiles. For example, the expert assumes
low activity on the weekends, while in reality, the activity is nearly zero in many cases.
However, the expert described higher activity in the morning-noon, but the corrected
profile has shifted the peak into the evening. In the figure 8, it is evident that the home
profiles do have higher activity in the evening rather than in the morning.

There are a total of 151 home locations out of all 764. This means that with an
approximate probability of 0.2, the correct home location is chosen when picking a
random location. When classifying locations with their closest anchor profile, a total
of 78 locations were classified as home location points. Of the 78 locations, 38 were
classified correctly, giving a probability of 0.49 for correct classification.

Using the final fine-tuned anchor profile and a predefined threshold, out of 764
location points, 34 were selected to be homes. Out of the 34 locations, 23 locations were
actually according to real homes. This leaves 11 to be wrongly classified. The accuracy
of 67% is adequate considering the inconsistent behaviour of the real home locations.

It is more meaningful to classify fewer locations as homes if it is known that the
probability of correctly classifying is high. Therefore in this thesis, the locations are
left rather unclassified than grouped to a wrong class. Some locations might have
similar activity patterns to the home anchor profile but are left unclassified because the
classification rule was too strict.

Additionally, the idea of the method is to search for similarly behaving location
points with the given initial shape. The location that the individuals have reported to be
their homes might not behave how the expert describes them to behave. Meaning that
multiple different profiles can potentially describe a home location. In home detection,
adjusting the expert’s constructed home profile did not improve the results. Furthermore,
the home anchor profile that this thesis focused on is based on the primary location for
spending the night.

There is an additional problem that might have occurred during the classification.
The threshold to classify locations to home anchor group might have been too low. The
threshold was calculated for the large data set and might be too restrictive for testing.
Therefore a ROC curve can be drawn to assess how the sensitivity increases.

Figure 9 shows two ROC curves in comparison. The red curve describes how the
created anchor profile’s sensitivity increases with specificity. Moreover, PCA was also
conducted on the reported real home locations. The first component of the PCA was
used as renewed home anchor profile. Next, distances from each data point in the set
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Figure 9. ROC curves of different methods

were calculated from the new profile. The black curve shows the diagnostic ability of the
new profile based on the distances.

It can be seen that the profile based on real homes has better diagnostic ability than
the profile created on unclassified data with the expert’s opinion. With the increase in
specificity, the real home profile has higher sensitivity at each point. The area under the
curve for the real home profile is 0.87 with a 95% confidence interval of 0.83-0.91. The
area under the curve for the constructed profile is 0.79 with a 95% confidence interval of
0.75-0.83. Therefore the constructed profile is rather good but not as good as the profile
from real data with training labels.

3.6 Results
The thesis created a method for classifying the locations of subscribers with profiling.
Five profiles were constructed by experts and adjusted to find similar locations from the
data set. The profiles consisted of 21 different time-based variables that described the
behaviour of a location type. These profiles were used as an input for the classification.

The method is promising on the data it was developed on. For each person, the
location points were aggregated and assigned a behavioural pattern based on the activity
at that location. Based on the pattern and predefined anchor profiles, groups of similar
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locations were distinguished. Figure 10 shows the final work-time anchor class. The
class has remained similar in shape to the expert’s constructed profile. However, the
updated class is smaller and has less variance.

Figure 10. Final work-time anchor class.

Other 4 location type groups are given in the Appendix, figures 13-16. In each of the
figures, grey lines are the detected locations, yellow is the expert’s constructed profile,
and the red line marks the adjusted profile. The primary home location profile was
adjusted to be more evening concentrated. The method did change a lot with secondary
home anchor points (figure 14). The emphasis on the weekdays falls strongly into
Saturday. Interestingly the night time-interval 20:00-24:00 and working day variables
have opposite directions. The adjusted profile has lower evening activity and higher
workday activity than the expert’s profile.

The nighttime work type location group (figure 15) also changed the shape of the
pattern. The weekday and time interval distributions have smoothed out without no
longer differentiating the essential properties of a nighttime working place. Additionally,
the daytime proportion has significantly increased, concluding that there might have been
no nighttime anchor points in the data set. Alternatively, the nighttime locations behave
differently in some variables than the expert described and hence were not detected.

Evening free time location points (figure 16) have been detected seemingly better.
The weekday distribution has also smoothed out, but the distinction of 16:00-20:00 has
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remained in the adjusted profile. Moreover, the specific variables, such as high workday
and low work hours variables, have stayed similar to experts.

A test was conducted with the help of an expert to test the method’s ability to classify
similarly behaving locations. The expert needed to distinguish between a work-time and
a non-work-time location profile. The test was successful, as the expert detected 18 work-
time locations that the method also classified as work-time locations. Therefore, with the
help of the expert, the method was considered to find similarly behaving locations.

Interestingly, contrary to promising results from the sign-test, the external data set
did not give the expected results. There can be multiple reasons behind this. Firstly, it
is possible that the method was adjusted to the original data and is not suitable for use
on other data sets. The method might have picked up very specific cases that were not
suitable for generalisation. It is also possible that the variables to profile the locations
were insufficient.

Another possible reason for this contradiction is the reliability of the test data. It is
not known how the question about the real home was asked from the respondents. There
might be nuances that can affect the answer. For example, when asking where a person’s
home is, their understanding of "home" might be different. It might not be the primary
location they sleep at night, but a place that is home in their hearts. For example, students
in Tartu, who live in a dormitory, tend to mark their home as their parent’s home. This
leads to errors in conclusions because their actual activity lies in a different location.
According to detecting meaningful locations, their parent’s home is considered their
secondary home location.

One possibility is to include a more extended period of data in the future to overcome
the problem. Even though the meaningful locations are calculated with monthly accuracy,
location classifications can be improved in retrospect. For example, if one month’s
location is left unclassified, but in the next month, it is in a specific class, it indicates that
it could have been in the same class previously. However, this needs a more complex
analysis out of this thesis scope.
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Conclusion
The method of classifying similarly behaving locations from MPD was discussed in the
thesis. Each subscriber’s visited locations were described by different variables to profile
the activity pattern in the location. An expert constructed the desired profiles to classify
locations by the variables. The expert’s anchor profiles were adjusted with the method
described in this thesis without knowing the ground truth. Additionally, a profile was
created when the ground truth was known.

Multiple aspects should be considered while concluding the method. Clearly, there
exist limitations to the method. Even if there is an expert’s constructed profile for a very
specific location type, it necessarily does not mean that the type can be found in the data.
The method still allows to classify of the locations according to the predefined profiles,
which can give extra semantics to the location – e.g. location is predominantly daytime
or weekend location. This way, profiling has allowed to bring in new possibilities to
characterise locations that were previously just marked as regularly visited locations.

In the future, the profiling variables could be closely examined. There might be
additional variables to add behavioural value to the location points. In addition to the
expert’s opinion on the attributes, the necessity of each variable should be established.
Additionally to time-based variables, spatial-temporal variables could be considered in
the profiling.

Moreover, there are multiple methods for choosing a suitable threshold for subsetting
the profile types. In this thesis, the smallest distance to another centre divided by two
was chosen. In the future, the threshold could depend on the proportion of the type of
locations in the population. Therefore, when the expert is constructing initial anchor
profiles, additionally, the expected proportion of subscribers having the type of location
should be considered.

All in all, the method fulfilled its purpose of finding groups of location points that
have similar activity patterns as the given input. The classification of similar locations
provides additional semantics to the "Other regularly visited places" class in the anchor
model.
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Appendix

I. Overview of data

Table 5. Raw data example of 10,000 people sample, 2019 January.

pos_id ms_id pos_time cell_id
1 90463376 A 2019-01-01 09:54:44 196
2 89664350 A 2019-01-01 10:51:43 196
. . . . . . . . . . . . . . .
4, 140, 665 283180429 ABC 2019-01-31 11:52:35 6634

Table 6. Raw data example 10,000 people sample, 2019 January and more active individuals.

pos_id ms_id pos_time cell_id
1 23240032 B 2019-01-01 14:13:59 2297
2 20592097 B 2019-01-01 13:59:37 3440
. . . . . . . . . . . . . . .
2, 453, 765 928452621 BCD 2019-01-31 12:29:49 16629

Table 7. Validation test data set.

pos_id ms_id pos_time cell_id home_cell
1 8239 C 2017-03-01 10:08:39 2348 2201
2 8240 C 2017-03-01 16:52:28 2201 2201
. . . . . . . . . . . . . . . . . .
15, 421 74118 CDE 2017-03-01 12:59:20 3763 9514
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II. Data aggregation

Table 8. Grouping data by the percentage of days and weeks.

ms_id cell_id days_of_all weeks_of_all
1 A 2 0.16129032 0.8
2 A 402 0.96774194 1
. . . . . . . . . . . . . . .
39, 539 ABC 16174 0.1290323 0.6

Table 9. Grouping data by the percentage of weekdays.
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1 A 2 0.143 0.285 0.143 0.0 0.429 0.0 0.0
2 A 402 0.115 0.169 0.188 0.139 0.188 0.055 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39, 539 ABC 16174 0.125 0.0 0.5 0.375 0.0 0.0 0.0

Table 10. Grouping data by the percentage of 4-hour time intervals.
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39, 539 ABC 16174 0.0 0.0 0.25 0.75 0.0 0.0

36



Table 11. Grouping data by other variable pairs.
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III. Model outputs

Table 13. PCA summary of work-time cells.

PC1 PC2 PC3 PC4 . . . PC20 PC21
Std. deviation 20.6297 3.9796 2.5632 2.14715 . . . 2.096e− 15 1.358e− 15
Prop. of variance 0.9076 0.03378 0.01401 0.00983 . . . 0.0 0.0
Cum. proportion 0.9076 0.94140 0.95541 0.96524 . . . 1.0 1.0

Table 14. Class radii.

Initial 1st iteration 2nd iteration
Home 0.090 0.077 0.048
Secondary home 0.194 0.162 0.145
Evening free time 0.116 0.077 0.065
Regular work 0.090 0.085 0.087
Nighttime work 0.191 0.109 0.048
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IV. Plots

Figure 11. Histogram of records per unique user-cell combinations in 2019 January.

Figure 12. Histogram of unique cells per user in 2019 January.
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Figure 13. Final home anchor points.

Figure 14. Final secondary home anchor points.
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Figure 15. Final night time work anchor points.

Figure 16. Final evening free time anchor points.
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