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In vitro and in silico epitope-paratope mapping

Abstract:

The predictability of antibody-antigen binding is a prerequisite for understanding how epitope

mutations lead to immune escape through antigenic drift and for improved in silico vaccine

design. The permissible sequence variation in an epitope, which could still be recognised by a

defined paratope, is limited by the need to conserve specificity and affinity of the interaction. This

imposes constraints on the structural and physicochemical properties of the epitope sequence

landscape.

In this work, we investigate the performance of commonly used deep learning-based protein

sequence representation models in grouping related epitope sequences together. We establish a

comparative baseline through pairwise sequence alignment and demonstrate that the performance

of existing methods falls short of this baseline, with all methods suffering from sequence length

induced bias. This highlights the need for further task-specific method development and model

fine-tuning, focusing specifically on short peptide representation learning, to achieve viable

performance for research applications. Additionally, we develop and implement a refined

biopanning methodology which relies on next-generation sequencing to acquire a large-scale

mimotope dataset against three monoclonal antibodies. We demonstrate the importance of

standardisation and specific controls in acquiring unbiased high-quality results, and describe a

previously unknown peptide motif recognised by an anti-influenza A monoclonal antibody.

This work lays the foundations for further high-throughput data acquisition and computational

method development for addressing the challenge of predicting epitope-paratope interaction

specificity.

Keywords:

Protein Representations, Deep Learning, Phage Display, Peptides and Proteins, Next-Generation

Sequencing

CERCS: P310 Proteins, enzymology; P176 Artificial Intelligence; B110 Bioinformatics, medical

informatics, biomathematics, biometrics
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Epitoop-paratoop seondumiste kaardistamine in vitro ja in silico metoodika-

tel

Lühikokkuvõte:

Antikeha-antigeen seondumiste omaduste mõistmine on eeltingimus ennustamaks valguepitoo-

pide mutatsioonide põhjustatud immuunsignaalide nõrgenemist ning tõhustamaks vaktsiinide

arendamist arvutipõhiste meetoditega. Valguepitoopide järjestuste varieeruvus on aga piiratud

neid seonduvate paratoopide seondumisvõimest, mistõttu tuleb epitoobil seondumisvõime hoid-

miseks säilitada oma spetsiifilisus ja affiinsus paratoobi suhtes. Seega on epitoopide järjestuste

muutuvus steeriliste ja füsiokeemiliste omaduste tõttu piiratud.

Käesoleva lõputöö raames uurisime me sagedasti kasutatavate süvaõppepõhiste meetodite toimi-

vust valgujärjestuste kujutamismudelite epitoobijärjestuste rühmitamisel. Varasemalt avalikusta-

tud epitoobijärjestuste andmestike paarikaupa joondamise kaudu lõime me referentsi, mille abil

me demonstreerisime, kuidas olemasolevate metoodikate võimekus ei küündi eksperimentaal-

sete andmete puhul võrreldava tasemeni, kannatades valgujärjestuste pikkusest tingitud nihke

all. Need tulemused rõhutavad edasiste ülesandepõhiste meetodite arendamise ning mudelite

peenhäälestuse vajalikkust. Saavutamaks teaduslikes rakendustes vajalik jõudlus, tuleks edas-

pidi süviti keskenduda lühikeste peptiidide esituse õppimisele. Ühtlasi töötasime me välja ja

rakendasime biopaneerimise metoodikat, mis tugineb järgmise põlvkonna DNA sekveneerimisel,

luues seeläbi kolme erineva monoklonaalse antikehaga reageeriva suuremahulise mimotoobiand-

mekogu. Meie lähenemine näitlikustas proovide standardiseerimise ja spetsiifiliste kontrollide

olemasolu tähtsust erapooletute kvaliteetsete tulemuste saavutamisel. Biopaneerimise tulemuste

põhjal kirjeldame ka uut valgumotiivi, mis seondub A-tüüpi gripiviiruse-vastase monoklonaalse

antikehaga.

See töö paneb aluse edasistele suure läbilaskevõimega andmete kogumisele ja arvutusmeetodite

arendamisele, ennustamaks tõhusamini valguepitoopide ja -paratoopide seondumisi.

Võtmesõnad:

valkude esituse õpe, süvaõpe, faagi kuvamine, peptiidid ja valgud, järgmise põlvkonna sekvenee-

rimine

CERCS: P310 Proteiinid, ensümoloogia; P176 Tehisintellekt; B110 Bioinformaatika, meditsii-

niinformaatika, biomatemaatika, biomeetrika
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TERMS, ABBREVIATIONS AND NOTATIONS

BDB - Biopanning Data Bank

BSA - Bovine Serum Albumin

DNA - Deoxyribonucleic Acid

dsDNA - Double Stranded Deoxyribonucleic Acid

ELISA - Enzyme-linked Immunoassay

IPTG - Isopropyl β-D-1-thiogalactopyranoside

KNN - k-Nearest Neighbours

LB - Luria Broth

mAbs - Monoclonal Antibodies

MLM - Masked Language Modelling

MOI - Multiplicity Of Infection

MSA - Multiple Sequence Alignment

NEB - New England Biolabs

NLP - Natural Language Processing

OD600 - Optical Density at wavelength of 600 nm

PCA - Principal Component Analysis

PCR - Polymerase Chain Reaction

RNA - Ribonucleic Acid

ssDNA - Single Stranded Deoxyribonucleic Acid

ssRNA - Single Stranded Ribonucleic Acid

TBS - Tris-Buffered Saline

TBST - Mixture of Tris-Buffered Saline and Tween-20

Tet - Tetracycline

t-SNE - t-Distributed Stochastic Neighbor Embedding

UMAP - Uniform Manifold Approximation and Projection

UV - Ultraviolet

X-gal - 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside
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INTRODUCTION

Antibodies are a group of highly specific naturally occurring proteins that help the organism

fight against foreign pathogens by binding their proteins - antigens. Binding between antigen

and antibody is mediated by structural and physiochemical properties occurring at the respective

interfaces of paratope and epitope. High-throughput experimental characterisation of the antigen

epitope sequence diversity still bound by the antibody can be studied by shotgun mutagenesis

(Davidson and Doranz, 2014). However, such a method is constrained by a laborious and

time-consuming experimental process that allows studying only a tiny fraction of all epitope

mutational possibilities. Therefore, another approach is to use highly diverse peptide libraries

that mimic the epitope. Phage display technology allows for screening large diversity of random

peptides against antibody and enrich a set of binding peptides that together form a mimoset

bound by the antibody. Commonly used Sanger sequencing in the phage display experiments

limits the amount of binding sequences obtained from the assay. Therefore, the public mimoset

libraries currently contain only 20-100 peptide sequences per target thus failing to capture the full

sequence diversity of binding peptides (He et al., 2015). Our work will combine the sequencing

capacity of NGS with high diversity peptide phage display biopanning to obtain large-scale

mimotope data against several monoclonal antibodies at once. A handful of previous studies

have combined NGS with phage display panning against monoclonal antibodies (Tarnovitski

et al., 2006; Hurwitz et al., 2017) but have not addressed the issue of amplification bias; our

work will include additional control techniques and establish an experimental pipeline to obtain

unbiased large-scale data of antibody binding peptides.

Separating binding and non-binding proteins in silico currently is a developing field aimed at

assisting time-consuming experimental methods by identifying potential peptides that exhibit the

desired function. Deep learning sequence representation methods have shown promise in protein-

protein interaction prediction (Kimothi et al., 2019). These methods represent protein sequence

as a numerical vector that contains some level of information characterising its biological and

structural properties (Heinzinger et al., 2019). However, such representation methods have

not yet been applied in the context of epitope-paratope mapping. Our work will implement

various protein sequence representation methods and evaluate their performance on both publicly

available and the experimental data generated in this work.
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1 Literature Overview

1.1 Phage Display

1.1.1 Overview of the Technique

Phage display is an in vitro technique first described in 1985 (Smith, 1985). This method

physically links genotype and phenotype by fusing phage coat protein with foreign protein. As a

result the foreign protein is displayed on the surface of the modified phage particle, while genetic

information is retained in the phage genome. The method allows displaying custom protein

structures on phage surfaces, which can be enriched by affinity selection against the target.

Figure 1. Phage display library construction. Pool of randomized protein DNA is fused with
phage coat protein within a phage vector. The phage vector is transfected into the host and
propagated in media. Phages are captured from the cell culture media. The constructed phage
display library expresses the fused protein on the phage surface.

The phage display library is constructed by utilising recombinant DNA technology. Synthetic

DNA fragments encoding either for antibody, protein or peptide are fused together with the

phage coat protein within a phage vector (see Figure 1). Created phage vector is then delivered

into E.Coli for propagation of the phage library (Lowman, 2013). Phage libraries are usually

constructed by fusing sets of many randomized protein variants, effectively creating pool of

phages where each phage displays only one random protein variant (Nakashima et al., 2000).

8



The technique has found applications in various research fields. For example, phage display has

been used in vaccine development where antigen is expressed on the phage surface allowing to

generate immune response in host for disease prevention or treatment (Chen et al., 2017). Other

examples include phage display driven antibody discovery by enriching viral protein binding

antibodies from randomized antibody-phage library pool using affinity selection (Oloketuyi

et al., 2021; Barreto et al., 2019), antibody epitope mapping by displaying randomized peptides

and enriching binders through affinity selection (Yang et al., 2022; Zhong et al., 2011; Palacios-

Rodríguez et al., 2011). This work will focus on using peptide phage display for affinity selection

against monoclonal antibodies (mAbs), which will serve as enrichment targets.

1.1.2 M13 Bacteriophage

Bacteriophages or phages are viruses that are capable of infecting and replicating only inside

bacteria. They consist of viral coat surrounding the genetic material (DNA or RNA) that partially

or fully encodes for its replication machinery and viral proteins. The viral coat contains structural

proteins that protect the genetic material and functional proteins that participate in the host

recognition and infection (White and Orlova, 2019).

Infection of the bacteria by phage is mediated by highly specific interactions between the

host membrane proteins and the phage coat proteins. The range of hosts that can be infected

by phage is determined by types of receptors located on the phage coat surface. Filamentous

bacteriophages contain a tail composed of proteins that allows it to recognize and infect the

host. Bacteriophages propagate by delivering viral genetic material into the host, where they

can utilize the host’s replication machinery and nutrients to self-propagate its genetic material

and viral proteins. Synthesized structural proteins form a capsid and viral genetic material is

packed inside. In general, phages can be classified based on their life cycle: lytic, lysogenic

and non-lytic phages (Makky et al., 2021). Lytic phages, immediately after infecting the host

start propagating its viral genetic material and expressing viral proteins. Newly synthesized

molecules are assembled into phage virions, host is lysed and virions are released. Lysogenic

phages enter dormant phase after host infection, during dormant phase they either integrate into
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the host genome or remain as in plasmid form, lysogenic phase can last several hundreds of

generations. During replication of the host viral genome gets carried over to the host progenies.

When conditions are met lysogenic phages can enter in lytic cycle and aggresively propagate

(Clokie et al., 2011). Non-lytic phages do not lead to cell death, after infection of the host they

propagate, assemble and leak out of the host without heavily disrupting its membrane, hosts rate

of growth is reduced (Moineau, 2013; Karimi et al., 2016).

M13 is a non-lytic rod shaped filamentous bacteriophage that infects gram-negative bacte-

rial strains which display F-pili - flexible filaments on the cell surface. The M13 capsid is

composed of around 2700 pVIII structural major coat proteins encircling the viral ssDNA. One

end of the capsid contains five copies of pVII and pIX minor coat proteins, while the other end

contains five copies of pIII and pVI minor coat proteins (Henry and Pratt, 1969; Simons et al.,

1981) (see Figure 2). For the phage display applications all M13 structural proteins can be fused

with a protein of interest (Sidhu et al., 2000; Fuh and Sidhu, 2000; Gao et al., 1999; Jespers et al.,

1995). However, the pIII is the most commonly used one, since it can tolerate larger fusions and

performs better in the affinity selection experiments (Iannolo et al., 1995; Loset et al., 2011).

The pIII coat protein also mediates M13 infection, thus any fusion with pIII coat protein impacts

phage capability to infect the host. This effect can introduce repertoire bias, especially when

performing phage display assays with several rounds of affinity selection and phage propagation

in bacteria (Juds et al., 2020; Matochko et al., 2012; Brammer et al., 2008). The synthetic phage

genome often contains LacZα selection marker that can be used for blue-white colony screening.

The replication cycle of M13 bacteriophage begins with pIII coat protein of the phage attaching

to the F-pili of E. Coli. Upon establishing contact with the viral pIII protein, the pilus retracts

into the membrane where pIII then interacts with bacterial TolAQR complex. As a result of the

interaction, the phage capsid destabilizes and pVIII coat proteins start dissociating into host’s

inner membrane, thus transferring packed phage ssDNA inside the host. Once inside the host,

the phage genome is converted into the dsDNA by the machinery of the host (Olsen et al., 1972).

New viral proteins and ssDNA copies of phage genome are synthesized, which in turn are utilized

for further viral genome amplification. Synthesized viral pV protein acts as a negative feedback
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Figure 2. Schematic representation of components forming the M13 bacteriophage. The
phage ssDNA is encapsulated by capsid formed from minor and major coat proteins.

signal and starts inhibiting viral ssDNA conversion to dsDNA by binding it. pV transports viral

ssDNA to the host membrane, where assembly of the phage capsid takes place. Coat proteins pIX

and pVII attach on one end of ssDNA, and as the ssDNA moves across membrane coat protein

pVIII substitutes pV, fully encapsulating the viral DNA. The process terminates by attachment of

pIII and pVI coat proteins, releasing phage particle (Bennett et al., 2011). The M13 replication

cycle is illustrated in Figure 3.
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Figure 3. Schematic representation of M13 bacteriophage life cycle. 1) pIII phage coat
protein attaches to F- pili displayed by the E.Coli. The pili retracts and pIII interacts with
TolAQR membrane complex, destabilizing the phage capsid and releasing phage genome into
the host. 2) Single stranded phage genome is converted into replicative form double stranded
DNA. 3) Viral proteins get transcribed and synthesized by the host machinery. 4) From dsDNA,
ssDNA phage genome gets synthesized, synthesized ssDNA can then again be turned into the
dsDNA variant. 5) When pV protein is synthesized in high concentrations it inhibits dsDNA
synthesis by packing around ssDNA and transporting it to the cell membrane. 6) As ssDNA
moves through the pore formed by pIV protein, pVII and pIX proteins attach, pV gets displaced
by pVIII attachment, at the end of ssDNA pIII and pVI proteins attach releasing phage from the
cell.
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1.1.3 Phage Display Biopanning

Biopanning is an affinity selection technique that selects biomolecules that exhibit affinity

towards a given target. In context of the phage display, this technique aims to enrich phage or

subset of phages displaying some biomolecule that binds most tightly to the target. Biopanning

with phage display is often followed by sequencing step to determine the sequence of the

displayed high-affinity biomolecule.

Figure 4. Schematic representation of phage display biopanning cycle. 1) Phages displaying
protein with affinity toward the target bind. 2) Non-binding phages are washed. 3) Binding
phages are eluted and 4) quantified by titering. 5) Phage eluate is amplified. 6) Pool of amplified
phage is quantified by titering and 7) sequenced.

In the literature several in vitro phage display biopanning protocols exist. Most of the biopanning

protocols can be divided into two classes based on phase at which the phage binds the target.

Solution based phage-target binding protocols bind target with phage in solution, where target-

phage complex is captured using beads that bind target affinity tag. Beads with bound target-

phage complex are then recovered using magnets or centrifugation. In case of solid phase binding

protocols, the target is first immobilized on the surface of polystyrene plate via non-specific

interactions, or by biotinylating target and binding to streptavidin coated plate (McConnell et al.,

1999; Koide et al., 2009). Immobilized target is incubated with solution of phage display library.
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This project focused on solid phase phage-target binding technique.

Biopanning can be divided into four stages (see Figure 4): phage binding, washing, phage elution

and phage amplification. During phage binding stage the immobilized target is incubated with

phage display library, and the phages displaying peptides with affinity toward the target will bind

the immobilized target. Binding stage is then followed by washing stage where weakly binding

and non-binding phages are washed off by low concentrations of detergent, typically Tween–20.

Remaining binding phage is then eluted using one or some combination of following methods:

heavily adjusting pH of the environment, sonicating, adding reducing agents or proteases. Before

amplification stage, phage elution is often quantified by phage titering. Eluted phage is then

amplified using bacterial host, typically E. Coli (Willats, 2002). The amplified phage pool

consists of phages displaying biomolecules that bind to target. This amplified pool of phages is

then used as a starting phage library for the next panning round. Typically, 2-4 sequential rounds

of biopanning are performed to enrich binding phages through directed evolution. After multiple

selection rounds the amplified phage pools are sequenced to retrieve sequence of enriched protein

or can be further studied by ELISA (Palacios-Rodríguez et al., 2011).
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1.2 Protein sequence representations

Computational sequence representation methods aim to capture biologically relevant information

from the protein sequence and represent it numerically. Early implementations of such tech-

niques have focused on explicitly characterising the protein sequence by pre-defined residue

properties (Guo et al., 2008; Shen et al., 2007). However, these methods are limited by the

pre-defined features and do not capture the complexity of biological information encoded in the

sequence. Therefore, deep learning methods that focus on sequence representation have emerged

(Heinzinger et al., 2019; Alley et al., 2019; Asgari and Mofrad, 2015). Such methods train in a

self-supervised manner on large protein datasets and learn complex features. The strength of

self-supervised methods trained on sequence data is that they are not limited by the pre-defined

constraints or lack of structural/labeled data.

Work of Heinzinger et al. (2019) has shown that deep learning based protein representations can

carry information about protein family, localization and structure. Additionally, such representa-

tions can carry information relevant for predicting interaction between two proteins (Kimothi

et al., 2019) or sequence mutation impact on function (Alley et al., 2019). There is no consensus

in the literature regarding which deep learning representation method performs the best on certain

task. In our work we apply several deep learning sequence representation algorithms to obtain

representations from short-peptide sequences. And evaluate the ability of such methods to group

specific target binding peptides in multi-dimensional latent space.
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1.3 Dimensionality reduction

Dimensionality reduction algorithms aim to transform data from a high-dimensional space to a

low-dimensional space while preserving as much of the relevant structure in the data as possible.

Such algorithms are used for visualization of the high-dimensional data or for reducing number

of features in order to save computing resources. Principal Component Analysis (PCA) algorithm

is one of the most well-known of such algorithms (F.R.S., 1901). PCA works by geometrically

projecting high-dimensional data onto lower dimensions called principal components (PCs).

First PC is selected in a way that maximizes the variance across projected data points. Remaining

PCs are selected in the same way with the additional constraint that they should be uncorrelated

with previous PCs. However, PCA is effective only on data containing linearly correlated

information and is sensitive to scale of units, thus requiring data scaling (Lever et al., 2017).

Other dimensional reduction techniques, such as t-SNE and UMAP have addressed limitations

of the PCA (van der Maaten and Hinton, 2008; McInnes et al., 2018).

t-SNE aims to preserve local and to some extent also global structure of the data. In brief,

t-SNE starts with randomly scattering data points in low-dimensional space. It then starts an

iterative process of reorienting data points, such that points that are close neighbours in the high-

dimensional space would also be close in the low-dimensional space. One shortcoming of this

method is that it does not capture global structure of the data accurately due to it being randomly

initialized, i.e. it does not capture whenever two distant groups of points in low-dimensional

space are also distant in high-dimensional space. t-SNE has been used with promising results

in visualizing single cell transcriptomic data (Kim et al., 2020) and protein representations

(Heinzinger et al., 2019).
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1.4 Hierarchical clustering

Clustering algorithms are unsupervised algorithms that aim to discover patterns in the data

and form clusters of data points in the feature space. Hierarchical clustering algorithm creates

clusters with hierarchical property. Two types of such algorithms exist: agglomerative clustering

and divisive clustering. This work will focus on using the agglomerative hierarchical clustering.

The agglomerative hierarchical clustering works by first defining each data point to be in its own

cluster. Then, by using some distance function, the algorithm finds for each cluster the nearest

cluster and merges them together into one. It keeps merging the closest clusters until all clusters

have been merged into one. As a result the algorithm has generated a hierarchical representation

of data points, which often is shown in the form of a dendrogram (James et al., 2013). Usually

the Euclidean distance is used to measure the distance between the points in the neighbouring

clusters, while the linkage function defines the closest cluster using the distance metric. Several

linkage functions exist. Single-linkage function finds the closest cluster by the shortest distance

between the two closest points that reside in the two separate clusters. The complete-linkage

function, however, finds the closest cluster by the shortest distance between the two furthest

points that reside in the two separate clusters. Complete-linkage is the most commonly used,

since it generally yields balanced results (James et al., 2013). In the field of biology, hierarchical

clustering algorithms are often used to study and depict evolutionary relationships between

species, proteins or viruses (Serrano-Solís and José, 2013).

1.5 k-Nearest Neighbours

k-Nearest Neighbours (KNN) is a supervised machine learning algorithm that uses the nearest

set of existing labeled data to assign label to the unlabeled data, see Figure 5. The algorithm

works in two stages - the first determines the closest k neighbours and the second determines

label from the closest neighbours. During first stage it calculates the distance from unlabeled

data point to all other labeled data points and picks k closest data points according to the distance

function. During second stage it uses majority voting or weighted voting among the picked data

points to assign label (Cunningham and Delany, 2020) based on neighbour labels. The most

popular distance metrics used are Euclidean and Manhattan distances (Szabo, 2015).

Number of k determines how many neighbours will be used to determine the label. Using
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very low k values can result in model over-fitting or on the contrary using too large k values in

under-fitting. Over-fitting results from the model trusting labeled data completely, thus noise

existing in the data would negatively impact predictions. On the other hand, under-fitting results

from model being too invariant towards labeled data, resulting in poor boundary definition as

depicted in Figure 5.

Figure 5. Visualization of KNN algorithm. A) Distances to all labeled data points (labeled by
color) from unlabeled data point are calculated. Closest k neighbours (in this case 3) are selected
and by majority vote they assign a label. B) Shows the case of over-fitting with k = 1. Cluster
of the red points contains blue boundary zone due to noisy blue data point. The background
color boundary depicts the label that would be assigned to unlabeled data point. C) Shows the
case of under-fitting with k = 7. Majority of the red point cluster resides in the blue boundary
zone because algorithm is not sensitive enough to create red zone boundary encircling red point
cluster due to large k value.
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1.6 Biopanning Data Bank

Biopanning Data Bank (BDB) is an expert curated database that aims to store peptide phage

display experimental results from published articles. As of the latest release (December 30, 2020),

BDB has accumulated 3562 biopanning datasets from 1697 published articles. In total it contains

33097 peptide sequences stored from 2156 targets. Most of the sequences in biopanning datasets

are obtained by Sanger sequencing resulting on average in 20-100 total peptides listed per target.

Considering that the majority of phage display libraries are with approximate complexity of 109,

and eluate complexities from affinity selection can still be in ranges of hundreds of thousands,

Sanger sequencing method covers only a fraction of binding peptide sequence diversity space

(He et al., 2015, 2018). The databank provides following information for the most of the stored

datasets: starting complexity of phage library used, number of affinity selection round the

dataset is obtained from, description of phage library used, sequencing method used, reference

to research article. Example of the dataset entry in the BDB is given in Table 1.

Table 1. Example of few database entries from BDB collection.

Target
name

Peptide se-
quences

Number
of unique
sequences

Panning
round

Library
name

Library
complexity

Sequencing
method

Article
reference

Anti-
Ogawa
O-antigen
monoclonal
antibody
S-20-4

SHKLHVK
SHRLPLK
SHRLPAK
SHRLPVK

4 3/4 Ph.D.-7 109 Sanger 17881351

Gitoxin
RDFYYN
GERFFN
SKRYIN

3 6/6
X6
phage
display

107 Sanger 7499368
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2 THE AIMS OF THE THESIS

Several machine learning methods exist in the literature for extracting protein sequence repre-

sentations; however, no data is available about their performance in meaningfully representing

short peptide sequences. Therefore, this work aims to investigate the capabilities of the current

deep-learning-based protein representation techniques in the context of mapping epitope to the

paratope.

Current experimental methodologies that aim to retrieve monoclonal antibody-binding short

protein sequences are limited by their design, capturing only a fraction of binding sequences.

Therefore, the second aim of this work is to establish a standardised experimental procedure

for acquiring reliable large-scale data that captures the sequence diversity recognized by the

paratope.
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3 EXPERIMENTAL PART

3.1 MATERIALS AND METHODS

3.1.1 Bacterial strain maintenance

Unthawed glycerol stock of supplied E.Coli ER2738 bacterial strain was scraped with sterile

pipette tip and streaked onto a LB+Tet (20 µg/ml) agar plates. The plate was wrapped in parafilm

and incubated at 37◦C for 14 hours. Plate was stored at 4◦C in dark and used as a bacterial colony

source. Single colony was picked from the plate and inoculated in 250 mL sterile Erlenmeyer

flask containing 20 mL of LB+Tet (20 µg/ml) media. Cell culture was incubated at 37◦C in

rotary shaker set at 250 rpm until OD600 reached approximately 0.5. Bacterial glycerol stocks

were prepared by dispensing 500 µl of bacterial culture into cryotubes containing 500 µl of 1:1

glycerol MilliQ water solution. Cryotubes were frozen in a freezing container and stored at

-80◦C.

3.1.2 Phage amplification

To amplify Naive phage library, 100 mL of LB+Tet (20 µg/ml) media was inoculated with

ER2738 colony from LB+Tet (20 µg/ml) plate in a 250 mL Erlenmeyer flask and incubated in

rotary shaker set at 37◦C and 250 rpm until OD600 reached approximately 0.05. 1 µl of Naive

phage library was diluted 1000 times, from diluton 1 µl containing 107 phage particles was used

to infect bacterial culture at MOI of approximately 0.1. The bacterial culture was incubated for 5

hours in rotary shaker set at 250 rpm and 37◦C.

To amplify the phage eluate from biopanning rounds, 20 mL of LB+Tet (20 µg/ml) media

was inoculated with ER2738 colony from LB+Tet (20 µg/ml) plate in a 250 mL Erlenmeyer

flask and incubated in rotary shaker set at 37◦C and 250 rpm until OD600 reached approximately

0.01 to 0.05. When culture reached the desired OD, eluted phage was added and incubated for 5

hours in rotary shaker set at 37◦C and 250 rpm.

To purify amplified phage, grown cell culture with phage was transferred to 50 mL Falcon

tube and centrifuged for 30 minutes at 5000 g and 4◦C, supernatant was transferred to a fresh
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tube and re-centrifuged. The 80% of upper supernatant volume was then transfered to a fresh Fal-

con tube to which 20% PEG/2.5 M NaCl solution was added in amount of 1/6th of the supernatant

volume. Phages were precipitated overnight at 4◦C. Tube with phage precipitate was centrifuged

at 5000 g for 30 minutes at 4◦C, supernatant was discarded. Precipitated phage pellet was

resuspended in 1 mL of TBS(50 mM Tris–HCl, 150 mM, pH 7.5). Supernatant was transfered to

a microcentrifuge and centrifuged at 14’000 rpm for 5 minutes at 4◦C to pellet residual cells.

Supernatant was transferred to a fresh microcentrifuge tube and phage was re-precipitated by

adding 170 µl of 20% PEG/2.5 M NaCl and incubating on ice for 2 hours. Tube with phage

precipitate was microcentrifuged at 14’000 rpm for 10 minutes at 4◦C, supernatant was discarded,

pellet was resuspended in 200 µl of TBS and transferred to fresh microcentrifuge tube. Finally,

tube was centrifuged at 14’000 rpm for 1 minute, supernatant was transferred to a fresh LoBind

microcentrifuge tube and stored at 4◦C.

3.1.3 Phage titering

For determining approximate number of phages in a sample, 10 mL of LB+Tet (20 µg/ml) media

was inoculated with ER2738 colony from LB+Tet (20 µg/ml) plate in a 250 mL Erlenmeyer

flask and incubated in rotary shaker at 37◦C and 250 rpm until OD600 reached approximately 0.5.

Serial dilutions of phage sample with 100 µl of total volume were prepared in following ranges

with 10-fold increments: 10 to 106-fold dilutions for eluted phage samples, 108 to 1012-fold

dilutions for amplified phage samples. 200 µl of bacterial culture grown to desired OD600 was

dispensed into microcentrifuge tubes (per each dilution), and 10 µl of corresponding phage

dilution was added, vortexed, and incubated at room temperature for 5 minutes allowing phage to

infect bacteria. Contents of microcentrifuge tube were then pipetted to culture tubes containing

3 mL of warm (55◦C) Top agar, vortexed thoroughly, and immediately poured onto pre-warmed

LB/IPTG/X-gal agar plates, plate was tilted and rotated to spread the Top agar evenly. Plates were

cooled for 5 minutes in a laminar flow cabinet, then incubated inverted overnight at 37◦C. Plates

containing approximately 100 plaques were used to count number of blue plaques. Counted

plaques were multiplied by total dilution factor to derive phage titer in plaque forming units (pfu)

per 1 µl.
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3.1.4 Surface panning procedure

To enrich peptides binding to selection of monoclonal antibodies, Ph.D.–12 Phage Display pep-

tide library (NEB #E8110S, lot #10111203) was used. To increase stringency of peptide selection,

three consecutive panning rounds were performed with increased Tween–20 concentration in

wash buffer and decreased monoclonal antibody concentration added in coating solution for each

subsequent panning round. 150 µl of 0.1 M NaHCO3 coating solution containing 100 µg/ml of

antibody was added to the well of the 96–well Nunc MaxiSorp plate (ThermoFisher #442404).

Three wells were prepared containing following monoclonal antibodies: Anti–p53 antibody PAB

240 (Abcam #ab26), Anti–SARS–CoV–2 Spike Glycoprotein S1 antibody CR3022 (Abcam

#ab273073) and Anti–Influenza A H1N1 hemagglutinin antibody C102 (Abcam #ab128412).

Additionally, two control wells were filled with 150 µl of 0.1M NaHCO3. Plate was left sealed

at 4◦C overnight on see-saw rocker set at 7 tilts a minute. Next day, plate was firmly slapped

onto a paper towel to remove coating solution. Each well was then filled with 250 µl of blocking

solution (0.1 M NaHCO3 + 5 mg/mL BSA) and incubated for 2 hours at 4◦C. After incubation,

blocking solution was removed by firmly slapping the plate onto a paper towel and washed 6

times with TBST (TBS + 0.1% Tween–20). 100 µl of TBST containing 1011 of phage particles

were pipetted onto each well coated with antibody and on one control well coated with BSA,

the second control well was instead filled only with TBST and served as control for phage

cross-contamination. Plate was left at room temperature on rocker set at 250 rpm for 1 hour,

then washed for 10 times with TBST removing unbound phages. Bound phages were eluted by

adding to each well 100 µl of elution buffer (0.2 M Glycine–HCl, pH 2.2), gently rocking for 5

minutes, then collected in separate LoBind tubes containing 15 µl of neutralizing buffer (1 M

Tris-HCl, pH 9.1). 1 µl of sample from each well was used for determining eluate phage titer.

Eluates from wells where phage libraries were added were further amplified in bacteria.

Subsequent two panning rounds were performed using respective amplified phage libraries from

previous round and panned against the same target. Tween–20 concentration in TBST was raised

to 0.3% and 0.5% while antibody concentration in coating solution was decreased to 66 µg/mL

and 33 µg/mL respectively.
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3.1.5 NGS library preparation

Following phage samples were selected for the sequencing: Naive phage library, Naive amplified

phage library, amplified antibody binding phages from each panning round, and amplified phages

panned against BSA coated control after each panning round. 10 µl of each phage sample

was diluted with 50 µl of lysis buffer from the kit, and phage ssDNA was extracted using

QIAprep Spin Miniprep Kit (Qiagen, #27104) following the QIAprep M13 kit protocol. Eluted

ssDNA concentration was determined using ThermoFisher 2000 NanoDrop spectrophotometer.

ssDNA region encoding for phage displayed peptide was amplified by 3-step 25 cycle PCR

using NEBNext® Ultra™ II Q5® high-fidelity polymerase Master Mix (NEB #M0544S), Table 2

summarizes PCR run conditions. Forward and reverse primers used in the PCR were designed

using amplicon phasing method (Wu et al., 2015) by including non-complementary spacers

with length of 1 to 3 bases and the Illumina adapter overhang sequences. Added spacers shifted

amplicon sequences resulting in higher base read diversity in each sequencing cycle. Base

diversity allowed sequencing machine to better distinguish separate sequence clusters on the

sequencing chip, therefore, allowing to achieve higher quality in sequencing run. Figure 6

summarizes the PCR primer design for low-diversity amplicon libraries. Table 3 summarizes

primer sequences used for each sample. 1 µl of the PCR product was used for 2% agarose gel

electrophoresis, gel was post-stained with GelRed® (Biotium, #41003-T) and band sizes were

confirmed by UV imaging.

Table 2. PCR run conditions for generating target region amplicons with Illumina adapters.

Step Temp. Time
Initial denaturation 98◦C 60s
Denaturation 98◦C 10s
Annealing 64◦C 30s 25x
Extension 72◦C 20s
Final extension 72◦C 60s
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Figure 6. Summary of targeted PCR design. A) Targeted PCR using phage ssDNA as a
template, Illumina specific overhangs and spacer nucleotides are added. B) Product of the PCR
reaction with different primer pairs, resulting in forward and reverse target sequence shift due to
added spacers. C) Example of first 5 Illumina sequencing cycles on non-phased low-diversity
sample. Clusters on a chip are hard to seperate. Bases are color-coded. D) Example of first 5
Illumina sequencing cycles on phased low-diversity sample. Clusters on a chip are easier to
seperate, resulting in a higher read quality and in a higher amount of total reads from sequencing
run. Bases are color-coded.
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Table 3. PCR primer pair distribution across samples.

Sample name Forward primer Reverse primer
Naive non-amplified Fw1-pair1st Rw1-pair1st
Naive amplified Fw1-pair2nd Rw1-pair2nd
CR3022 Panning 1 Fw1-pair3rd Rw1-pair3rd
H1N1 Panning 1 Fw1-pair3rd Rw1-pair3rd
PAB240 Panning 1 Fw1-pair3rd Rw1-pair3rd
Control (BSA) Panning 1 Fw1-pair3rd Rw1-pair3rd
CR3022 Panning 2 Fw1-pair4th Rw1-pair4th
H1N1 Panning 2 Fw1-pair4th Rw1-pair4th
PAB240 Panning 2 Fw1-pair4th Rw1-pair4th
Control (BSA) Panning 2 Fw1-pair4th Rw1-pair4th
CR3022 Panning 3 Fw1-pair4th Rw1-pair4th
H1N1 Panning 3 Fw1-pair4th Rw1-pair4th
PAB240 Panning 3 Fw1-pair4th Rw1-pair4th
Control (BSA) Panning 3 Fw1-pair4th Rw1-pair4th

3.1.6 NGS

Pre-processing of the PCR sample and sequencing was carried out by DNA Sequencing facility

in the Department of Biochemistry, University of Cambridge, on Illumina MiSeq platform using

75 bp paired-end sequencing. Sample library preparation and sequencing was done according to

Illumina 16s metagenomic library preparation guide (Illumina, San Diego, USA). Briefly, the

PCR product was first cleaned up using AMPure XP beads in 1:1 bead sample ratio. Then indices

for multiplexing and Illumina sequencing adapters were attached by Index PCR using Nextera

XT Index kit (Illumina, San Diego, USA). The PCR product was cleaned up using AMPure

XP beads in 1:1 bead sample ratio and validated using Agilent 2100 Bioanalyzer instrument.

Then normalized by diluting samples to equimolar concentrations. The samples were pooled

together, denatured and loaded onto a sequencing chip. 35% of PhiX spike-in was added, and

total cluster density was set at 948 K/mm2 to increase sequencing quality of the low-diversity

amplicon libraries. The PhiX reads were removed by Illumina software, remaining reads were

de-multiplexed into separate .fastq files per sample. Forward and reverse reads were stitched

prioritising higher quality base read in MiSeq Reporter software v2.6.2.3.

3.1.7 Sequencing data processing

For extracting displayed peptide sequence raw reads were pre-processed in Python. FASTQ

files containing DNA read sequences were first filtered using regex pattern searching method
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(Aho, 1991). Regex expression searched for two 6bp constant regions that are flanking 36bp

DNA sequence encoding for phage displayed peptide. Upon expression match DNA read was

truncated to only contain DNA regions encoding for the displayed peptide. Fragments were

filtered to be 36bp long and to not contain any stop codons. According to the phage library

supplier codon pattern in the fragment should be NNK (N - A, C, T, G; K - G or T), fragments

without NNK pattern were discarded. Fragments were quality filtered removing fragments with

any bases having phred score below 30. DNA fragments were then translated to the 12-mer

peptide sequence using Biopython (Cock et al., 2009) package with NCBI codon table 11.

Protein sequences in mAb target samples were compared with sequences in all three control

samples panned against BSA, and matching sequences were discarded from mAb target sample.

Additionally, peptides that were present across samples panned against different mAb targets

were also removed to further reduce number of non-specific peptide sequences.

3.1.8 Sequencing data normalization

Sample normalization was carried out using Naive amplified NGS sequencing data sample as a

reference. It was done according to the Equation (1).

nsample normalized =
nsample·reftotal
nref ·sampletotal

(1)

Where nsample is the copy number of a sequence in a sample, nref is the copy number of the

same sequence in the reference (Naive amplified). reftotal and sampletotal is the total number

of sequences (including clones) in reference and sample respectively. nsample normalized is the

resulting sequence expressed in normalized abundance quantities. Normalization step requires

that sequence occurs at least once in both the reference and the sample sequencing results. To

avoid loss of large quantities of possibly relevant sample sequences due to limited sequencing

depth of the high diversity Naive amplified library, pseudo value of 1 was used for nref if exact

reference sequence could not be matched with sample sequence.
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3.1.9 Hierarchical clustering

Global alignment of protein sequences was carried out using Needleman-Wunsch algorithm

without penalizing terminal gaps, allowing the alignment of different length sequences. The

pairwise alignment score was calculated for each peptide pair using Scikit-Bio (Scikit-Bio, 2020)

Python package. Hierarchical clustering was done using complete linkage method together with

Euclidean distance using SciPy Python package (Jones et al., 2001).

3.1.10 Motif discovery

To identify motifs from sequencing data MEME motif discovery algorithm was used (Bailey

et al., 2009). Algorithm was applied to .fasta files containing peptide sequences. Following run

conditions were used: motif occurrence - zero or one motif per sequence, minimum width of

motif - 3 residues, minimum number of sequences containing the motif - 7. Top 100 normalized

sequences from samples panned against mAbs and BSA were used to extract motif logos and

occurrence counts for each of the motif found.

3.1.11 Generating sequence representations

Pre-trained self-supervised deep-learning models were used to generate protein sequence repre-

sentations. Various self-supervised models from the field of natural language processing (NLP)

and the field of protein structure prediction were chosen based on the availability of open-sourced

model implementations. Protein sequence was fed into the model and generated representation

was stored in a dataframe using custom Python script.

NLP skip-gram based BioVec model that has been pre-trained on Swiss-Prot protein database

was used to generate 100-dimensional protein sequence representations (Bairoch and Apweiler,

2000; Asgari and Mofrad, 2015). The model was implemented using code from public repository

(Kyu Ko, 2016). An alternative implementation of this model was also used (Changgeon Lee,

2017). Within the framework of this project this model variant is referred to as ProtVec.

Masked language modelling (MLM) based SeqVec model that has been pre-trained on UniRef50

protein database was used to generate 1024-dimensional representations (Suzek et al., 2007;

Heinzinger et al., 2019). Publicly available implementation was used (Dallago et al., 2021).

Another MLM based UniRep model trained on UniRef50 database was used to generate 1900-
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dimensional representations (Suzek et al., 2007; Alley et al., 2019). UniRep pre-trains by iterating

over the protein sequence and predicting the next residue. To see if any performance gains can

be achieved by different representation generation possibilities, three types of representations

were generated. h_ avg that averages all hidden state values from the model as it infers each

sequence residue, h_ final that takes hidden state value after whole sequence has been parsed

and c_ final that takes final cell state value. Implementation from public repository was used

(Surge Biswas, 2019).

Structure prediction based RGN model trained on ProteinNet dataset was used to generate 800-

dimensional representations (AlQuraishi, 2019b,a). Model pre-trains by sequentially encoding

each residue bidirectionally and then generating a protein 3D structure that is compared to an

existing structure. Four possible representations from model were extracted per each input

sequence. RGN_ f1, RGN_ f2 that are representations from two forward hidden layers and

RGN_ r1, RGN_ r2 that are representations from two reverse layers. Implementation from

publicly available code repository was used (AlQuraishi, 2018).

BERT is an MLM based model pre-trained on merged UniRef and BFD protein datasets (Suzek

et al., 2007; Jumper et al., 2021; Elnaggar et al., 2020). 1024-dimensional representations were

extracted by using public implementation of the model (Dallago et al., 2021).

PLUS is another MLM based model that has been pre-trained on Pfam dataset (Finn et al., 2015;

Min et al., 2019). 1024-dimensional representation were extracted by using public implementa-

tion of the model (Dallago et al., 2021).

3.1.12 k-Nearest Neighbours

KNN classification method was used to generate Naive and alignment based performance

baselines. It was also used to evaluate relative performance of representation methods in

comparison with aforementioned baselines. Leave one out cross-validation technique was used

to record for each sequence the predicted and the actual target value (James et al., 2013). Then

the weighted average accuracy score was calculated by taking the average of the fraction of the

correctly predicted target values in each target value class. Algorithm was re-run with different

number of neighbours (k) to test its robustness. KNN was implemented and the results were

generated using Python Scikit-Learn machine learning package (Pedregosa et al., 2011).
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KNN alignment baseline was generated using Needleman-Wunsch sequence alignment algorithm

as a scoring function to determine the closest neighbours. To make prediction to which target the

sequence belonged to, the sequence was first aligned to every other sequence in the dataset then

alignment scores were ranked from the highest to the lowest. Top k scores based on the number

of neighbours were selected and prediction was made based on which targets the neighbours

belonged to. In case majority of the neighbours were from one target, the algorithm predicted

the target shared across majority of neighbours. In case no majority of neighbours were from

one target the algorithm choose at random the neighbour and used its assigned target for the

prediction.

Naive baseline was based on using neighbours that had random target associated with them. For

each prediction k random neighbours were generated, each neighbour had random target value

associated with them. The randomising function that assigned random target values followed

the same distribution as the distribution of the target values in the dataset, i.e. in case one target

was more prevalent in the dataset the randomising function assigned larger probability towards

selecting it. The prediction was made based on neighbour target values, similarly as in KNN

alignment baseline.

KNN applied on full and dimensionality reduced representations used Euclidean distance as

a scoring function to determine k closest neighbours. Top k neighbour targets were used to

determine the prediction in the same manner as mentioned previously.
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3.2 RESULTS

3.2.1 Dataset A

As a first step in this project a dataset was constructed, containing peptide sequences that bind

specific monoclonal antibody targets. Monoclonal antibodies were chosen due to their specific

target protein binding capabilities, thus any peptides bound in the following experiments would

mimic the epitope that can be recognized by the antibody. The BDB database was used as

the source for antibody-binding protein sequences, as it contains curated publicly available

experimental data from affinity selection assays. Dataset A was constructed by picking top 6

mAb targets according to number of unique peptide sequences binding them. In total, 418 unique

peptides were merged from 19 biopanning experiments. Summary of Dataset A is given in

Table 4. Peptide sequences from cyclic libraries were pre-processed removing flanking cysteine

residues. This was done to avoid any bias introduced in alignment scoring, where flanking

cysteine residues would be scored higher than the actual target binding peptide motif. Summary

of multi-sequence alignment (MSA) logos for each of the mimosets is given in the Appendix

Figure 18, detailed mimoset phage library description is given in Appendix Table 18, full target

names are given in Appendix Table 19.

Before evaluating protein representation techniques on the dataset, it was important to es-

tablish a simple and robust performance baseline that would score similarity between peptides

and group related peptides together. One way to establish such a baseline is to rely directly

on the peptide sequence. Therefore, pairwise alignment of peptide sequences was carried out

across the dataset. To group similar sequences together, hierarchical clustering was applied

to alignment scores. For developing this baseline, an assumption was made that the peptide

set which is binding a target would contain a strong sequence motif shared between binders.

Thus this baseline was expected to result in clusters that contain binding peptides only from

one target. From resulting dendrogram in Figure 7, cutoff value of six clusters was chosen

that minimized the number of clusters while maximising the number of sequences in cluster

belonging to one target. Distribution of peptides across clusters was analyzed in Table 5, a

detailed table containing each mimoset allocation to cluster can be viewed in Appendix 20. In

clusters 2 and 3 the results follow the baseline assumption, respective peptides from target 3 and
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Table 4. Description of mimosets in the Dataset A. Motifs are based on MSA logos from
Appendix Figure 18

Target Mimoset

Number
of
unique
peptides,
n

Panning Cycle Library type Peptide length Motif

1 1.1 2 4 Linear 14 [W/F]SDL
1 1.2 32 3 Linear 15 or 21 -
1 1.3 19 - Circular 12 WSD
1 1.4 3 3 Linear 12 -
1 1.5 2 3 Linear 22 -
1 1.6 8 - Circular 10 SDL
1 1.7 10 - Circular 14 WSDL
2 2.1 18 3 Linear 15 -
2 2.2 41 3 Circular 13 -
3 3.1 90 3 Linear 9 [W/F]RxRLL
4 4.1 9 3 Linear 16 G[W/F]A
4 4.2 6 - Linear 20 G[W/F]A
4 4.3 20 1 Linear 7 -
4 4.4 17 2 Linear 7 G[W/F]A
4 4.5 8 3 Linear 7 GxA
5 5.1 44 3 Linear 7 DKW
5 5.2 27 3 Circular 12 DKWA
6 6.1 28 4 Linear 10 SDLxKL
6 6.2 34 5 Linear 10 SDLxKL
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6 were clustered into separate clusters while also retaining at least 85% of their specific binding

peptides. Although cluster 1 contained peptides only from target 5, majority of target 5 peptides

were present in cluster 5 intermixing with target 4 binders. It was expected that peptides from

mimoset 1.1, 1.6 and 1.7 would be grouped together with peptides from mimoset 6.1 and 6.2 due

to shared SDL motif. However, upon examining cluster 3, only six of target 1 peptides with SDL

motif were present, while the remaining 17 peptides from target 1 with SDL motif were grouped

in cluster 6 together with only two peptides with SDL motif from target 6.

Table 5. Target peptide distribution (in fractions) across clusters in the Dataset A.

Cluster 1 2 3 4 5 6 Total peptides, n
Target
1 0.08 0.53 0.39 76
2 0.90 0.05 0.05 59
3 0.96 0.04 90
4 0.65 0.23 0.12 60
5 0.38 0.59 0.03 71
6 0.85 0.10 0.05 62

Figure 7. Hierarchical clustering dendrogram. Hierarchical clustering of peptides in Dataset
A based on sequence pairwise alignment score. The resulting dendrogram is split into six clusters
with chosen threshold. Vertical axis represents the distance between clusters, horizontal axis
specifies cluster name linked to the color code.

These results demonstrate that even with shared motifs peptides could be fractionated across

different clusters. Target peptide intermixing in one cluster and the spread of target specific

peptides across multiple clusters shows that hierarchical clustering based on sequence alignment

can at best map only lesser fraction of peptides to their binding targets in single cluster. We did

33



not find clustering threshold that could cluster together single target peptides without increasing

number of clusters significantly. Hierarchical clustering on pairwise alignment resulted in a

weak and non-robust baseline for grouping peptides binding the same target. Therefore, another

baseline using KNN algorithm was constructed. In doing so, the assumption that specific target

binding peptides should strictly share a degree of similarity between themselves was abandoned.

Instead a weaker assumption was made that within a set of binding peptides different sub-groups

of similar sequences exist, thus KNN metric would be more suitable at assigning these to a

specific target.

KNN baseline was constructed by substituting traditionally used Euclidean distance for calcu-

lating nearest neighbours with Needleman-Wunsch alignment score. This method allowed to

establish a prediction accuracy baseline that uses sequence alignment score. Performance of

the KNN algorithm was evaluated using leave one out cross-validation method and the method

robustness was tested using different number of neighbours. Weighted average accuracy for the

sequence similarity baseline ranged from 83% to 84% (see Table 6).

Table 6. Weighted average accuracy values for KNN algorithm with different number of
neighbours when predicting on Dataset A. KNN distance function was based on sequence
alignment scores. Accuracy values were calculated using leave one out cross-validation.

KNN number of neighbours, k
1 3 5 10 15

Alignment baseline 0.83 0.83 0.84 0.84 0.84

The promise of pre-trained protein sequence representation methods is their ability to generate

representations that capture biological properties of a protein from its sequence in a high-

dimensional vector. Such representations are difficult to interpret and to visualize due to their

high-dimensionality. To visualize the behaviour of computational representations and evaluate

their ability to group target specific peptides, t-SNE dimensionality reduction algorithm was

applied to generated representations. Peptide sequence representations were generated using

various publicly available pre-trained self-supervised models from the literature (Ibtehaz and Ki-

hara, 2021). Computed peptide representations were reduced to two dimensions for visualization.

Some of the visualizations are depicted in Figure 8, visualization of remaining representation

methods can be seen in Appendix Figure 19.

To quantify which representation method allows for better classification performance, KNN
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classification algorithm was applied to dimension reduced (two dimensions) and full dimension

protein sequence representations, and the distance between neighbours was calculated using

Euclidean distance. Additionally, a Naive KNN baseline was established by measuring the

KNN performance on the randomized data. Table 7 summarizes KNN performance on different

representations. From the results it could be seen that some fully dimensional representations on

average performed marginally better than reduced representations with some exceptions. All

representation methods resulted in better performance than the Naive baseline. It is interesting

to observe that large deep learning based models like SeqVec, BERT, PLUS, RGN, UniRep

generally performed worse or on par with comparably small and light BioVec representation

model. Performance values across different number of neighbours changed only slightly showing

robustness of the method. UniRep c_final and BioVec representations led to a marginally better

KNN performance than the alignment baseline.

Table 7. Weighted average accuracy values for KNN algorithm with different number of neigh-
bours when predicting on different types of representations. Accuracy values were calculated
using leave one out cross-validation. Representations were generated on Dataset A.

Full dimensionality Dimensionality reduced
KNN number of neighbours, k KNN number of neighbours, k

Representation 1 3 5 10 15 1 3 5 10 15
ProtVec 0.80 0.80 0.77 0.79 0.78 0.79 0.79 0.76 0.74 0.71
BioVec 0.85 0.82 0.83 0.82 0.83 0.84 0.85 0.85 0.84 0.85
UniRep c_final 0.87 0.85 0.86 0.84 0.83 0.88 0.84 0.84 0.84 0.81
UniRep h_final 0.68 0.63 0.65 0.64 0.66 0.67 0.66 0.62 0.60 0.56
UniRep h_avg 0.74 0.74 0.76 0.73 0.73 0.74 0.73 0.72 0.69 0.67
SeqVec 0.82 0.81 0.82 0.81 0.80 0.85 0.83 0.84 0.82 0.81
RGN_f1 0.80 0.82 0.82 0.80 0.79 0.83 0.82 0.81 0.78 0.74
RGN_f2 0.82 0.83 0.82 0.79 0.77 0.81 0.84 0.82 0.80 0.78
RGN_r1 0.70 0.73 0.75 0.71 0.73 0.76 0.72 0.70 0.68 0.67
RGN_r2 0.70 0.70 0.68 0.68 0.65 0.69 0.66 0.62 0.62 0.57
BERT 0.72 0.68 0.68 0.69 0.70 0.73 0.67 0.69 0.64 0.64
PLUS 0.59 0.61 0.64 0.61 0.59 0.61 0.58 0.56 0.52 0.52
Naive baseline 0.20 0.17 0.14 0.15 0.17 0.20 0.17 0.14 0.15 0.17

In order to investigate potential sources of bias and information leakage in the dataset, plots

of dimensionality reduced representations were assesed. Plotted BioVec dimension reduced

representations( see Figure 8) were studied in detail by examining peptide sequences in the

groups. It was observed that the cluster which consists of a mix of peptides from targets 4 and 5

was in fact composed of complete mimosets 4.3, 4.4, 4.5 and 5.1. There is little to no sequence
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Figure 8. Visualization of dimensionality reduced peptide representations. Representations
were generated from the Dataset A using following methods: A) ProtVec, B) UniRep c_final
layer, C) BioVec, D) RGN_f2 layer. Peptides are color coded based on the binding target.
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similarity shared between these mimosets; however, the peptide sequence length is identical

between them. This led to a hypothesis that sequence length plays a role in grouping peptides

together, which would constitute a bias in the dataset as it emphasises a feature which is not

based on shared sequence properties.

Interestingly, the well separated group formed from 3.1 mimoset sequences shared not only the

strong motif, but also constituted from peptides that had sequence length of 9 residues. No other

mimoset in the Dataset A contains peptides with such length, thus possibly, the unique length

may have contributed to such well-defined group. Target 6 group was formed from 6.1, 6.2 and

1.6 mimosets. All peptides in the group shared the SDL motif and the peptide length, however

the degree to which either peptide length or shared motif contributed to mimoset grouping is

unknown.
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3.2.2 Dataset B

Since in Dataset A it was observed that the length of peptides in a mimoset can impact generated

representations, the next step was to construct a new dataset which would contain standardised

data, i.e. peptide length, phage library type and diversity would be the equal across mimosets to

avoid possible external biases. Therefore, Dataset B was constructed by selecting mimosets that

have been derived from Ph.D-12 phage library. Top 6 mAb targets with most peptide sequences

were selected, in total 195 peptides were collected from 8 mimosets. Summary of Dataset B is

given in Table 8, logos and details of libraries are given in Appendix Figure 20 and Appendix

Table 22.

Table 8. Mimoset description across mAb targets in Dataset B. Motifs are based on MSA logos.

Target Mimoset

Number
of
unique
peptides,
n

Panning Cycle Library type Peptide length Motif

1 1 45 3 Linear 12 DKW
2 1 39 3 Linear 12 STSSxL
3 1 33 4 Linear 12 -
4 1 15 4 Linear 12 DxSTR
4 2 12 5 Linear 12 DxSTR
5 1 27 5 Linear 12 DxxP
6 1 19 3 Linear 12 -
6 2 5 4 Linear 12 PxxP

Similarly as on Dataset A, hierarchical clustering was also attempted on the Dataset B (see Figure

9). Cutoff value of 7 clusters was selected, minimising number of clusters while maximising

proportion of peptides from single target in a cluster. Peptide distribution across clusters was

analyzed in Table 9, and detailed peptide distribution per mimoset is given in Appendix Table

22. Peptides from targets 1, 2, 4 and 5 cluster well, i.e. target specific peptides are allocated in

separate clusters while also mainly being only from one target. Peptides from target 3 are spread

over several clusters. Analysing cluster 5 where target 3, 5 and 6 peptides are intermixing, it

was found that 3.1 mimoset sequences shared WW motif, while sequences from other mimosets

did not share explicit motifs. Similarly, cluster 4 contained mimoset sequences that did not

share common sequence motifs. Overall hierarchical clustering performance on the Dataset B
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was better than on the Dataset A. Dataset B contained 4 well-defined target specific peptide

clusters, where each contained more than 85% of target specific peptides; Dataset A had only

2 of such clusters. Improvement in clustering can be attributed to stronger motifs present in

target mimosets and possibly also to the standardised library used across panning experiments.

Presence of motifs in most of the mimosets translated also into higher KNN sequence alignment

baseline accuracy, ranging from 89% to 90% if compared to the Dataset A (see Table 10).

Figure 9. Hierarchical clustering dendrogram. Hierarchical clustering of peptides in Dataset
B based on sequence pairwise alignment score. The resulting dendrogram is split into seven
clusters. Vertical axis represents distance between clusters, horizontal axis represents assigned
cluster. Clusters are color-coded.

Table 9. Target binding peptide distribution in fractions across different clusters in Dataset B.

Cluster 1 2 3 4 5 6 7 Total peptides, n
Target
1 1.00 45
2 0.05 0.05 0.87 0.03 39
3 0.24 0.39 0.33 0.03 33
4 1.00 27
5 0.85 0.04 0.07 0.04 27
6 0.04 0.17 0.79 24

Computational representations of peptide sequences in Dataset B were generated. Representation

dimensions were reduced to two by t-SNE for visualization. Figure 10 contains selection of visu-

alized representations from various methods, additional visualization can be seen in Appendix
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Table 10. Weighted average accuracy values for KNN algorithm with different number of
neighbours when predicting on Dataset B. KNN distance function was based on sequence
alignment scores. Accuracy values were calculated using leave one out cross-validation.

KNN number of neighbours, k
1 3 5 10 15

Alignment baseline 0.89 0.89 0.90 0.89 0.89

21. Compared to the Dataset A, the groups are much more diluted and are overlapping with

each other, indicating that representations in high-dimensional space are not as well grouped

as in Dataset A. However, marginal grouping still can be observed especially for the peptide

mimosets that exhibit a motif - 1.1, 2.1, 5.1. Interestingly, Unirep c_final and RGN_f2 layer

representations can group target 3 peptides which do not exhibit a motif, indicating that these

representations can capture some common biological properties in that mimoset.

Figure 10. Visualization of dimensionality reduced peptide representations. Representations
were generated: A) ProtVec, B) UniRep c_final layer, C) BioVec, D) RGN_f2 layer. Peptides are
color coded based on the binding target.

KNN was applied to both full and dimension reduced sequence representations to evaluate the

classification performance (results are summarized in Table 11). Both full and dimension reduced
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Table 11. Weighted average accuracy values for KNN algorithm with different number of neigh-
bours when predicting on different types of representations. Accuracy values were calculated
using leave one out cross-validation. Representations were generated on Dataset B.

Full dimensionality Dimensionality reduced
KNN number of neighbours, k KNN number of neighbours, k

Representation 1 3 5 10 15 1 3 5 10 15
ProtVec 0.75 0.73 0.76 0.82 0.82 0.75 0.75 0.74 0.72 0.69
BioVec 0.73 0.80 0.71 0.79 0.78 0.75 0.71 0.74 0.73 0.69
UniRep c_final 0.84 0.82 0.82 0.83 0.80 0.82 0.80 0.79 0.72 0.71
UniRep h_final 0.65 0.63 0.62 0.61 0.59 0.65 0.61 0.63 0.62 0.62
UniRep h_avg 0.62 0.65 0.67 0.68 0.67 0.61 0.54 0.59 0.56 0.51
SeqVec 0.80 0.80 0.83 0.75 0.80 0.81 0.77 0.77 0.76 0.76
RGN_f1 0.71 0.76 0.80 0.80 0.78 0.74 0.75 0.76 0.74 0.71
RGN_f2 0.72 0.71 0.74 0.67 0.69 0.69 0.60 0.62 0.58 0.50
RGN_r1 0.58 0.64 0.60 0.68 0.70 0.58 0.58 0.52 0.54 0.48
RGN_r2 0.55 0.64 0.64 0.68 0.66 0.55 0.61 0.62 0.62 0.61
BERT 0.65 0.61 0.62 0.62 0.58 0.67 0.58 0.59 0.54 0.51
PLUS 0.40 0.48 0.42 0.44 0.40 0.38 0.40 0.45 0.38 0.36
Naive baseline 0.16 0.19 0.16 0.16 0.17 0.16 0.19 0.16 0.16 0.17

UniRep c_final and SeqVec representations perform on average better than other representation

methods. Yet none of the representation methods led to KNN performance above the established

alignment baseline performance. However, they lead to much better performance than the Naive

baseline. By further investigating the classification performance on different targets across

mimosets, it was found that target 6 peptides are the most difficult to classify accurately. Such

result correlates with generated t-SNE plots, where target 6 representations do not form distinct

groups. In contrast, target 1 and 2 were easier for KNN to classify, while classification of

peptides from target 3, 4, 5 mimoset heavily depended on how well the representation algorithm

could extract the relevant information.

By comparing KNN performance between Dataset A and Dataset B it could be seen that KNN

performance was marginally worse for the best performing UniRep representations. However,

other representation methods RGN, BERT, PLUS led to significantly worse KNN performance,

possibly due to their representations containing sequence length bias.
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3.2.3 Biopanning experiment

The amount of biopanning data deposited in the BDB is limited to very small mimosets, which

were obtained under varying experimental conditions and with a variety of phage libraries.

Recognising the need for more data obtained under standardised conditions in this area, we

designed a standardised and controlled data acquisition pipeline in order to obtain a large scale

dataset of peptide sequences that bind specific monoclonal antibodies (mAbs).

We selected three mAbs as panning targets, and we additionally included control target (BSA)

that would allow to filter non-specific binding peptides. To obtain peptides that are specific for

Anti–p53 antibody PAB 240 (PAB240), Anti–SARS–CoV–2 Spike glycoprotein S1 antibody

CR3022 (CR3022) and Anti–Influenza A H1N1 hemagglutinin antibody C102 (H1N1). 12-mer

peptide phage library was panned against the targets using surface panning procedure.

To validate whenever the binding phages were enriched by the assay, binding phage eluate

was titered after each panning round. Titering results revealed enrichment of binding phages

after each subsequent panning round, depicted in Table 12. The number of eluted phages panned

against mAbs increased more than 100-fold after the second panning and more than 1000-fold

after third panning round when compared to the first panning titers. Titering results demonstrate

that through affinity selection rounds the enrichment of phages binding to some component of

the assay took place, with later rounds of panning containing phages presumably displaying

peptides with higher affinity to the target. Higher enrichment in non-control experiments was

most likely due to enrichment of target specific peptides. The amount of enriched phages in

CR3022 mAb sample was very close to the number of phages enriched by the BSA control,

which may indicate that no phages specific to the target were enriched or that amount of binders

enriched were low.

Table 12. Phage eluate titering results.

mAb conc.
(µg/mL)

Tween-20
(%)

CR3022
(pfu/µl)

H1N1
(pfu/µl)

pAB240
(pfu/µl)

BSA
(pfu/µl)

Panning round 1 100 0.1 2.65x102 1.90x103 1.98x104 2.76x103

Panning round 2 66 0.3 4.45x104 5.20x105 1.85x107 1.42x104

Panning round 3 33 0.5 8.80x105 1.05x107 6.50x107 3.80x105
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Peptide sequences binding the monoclonal antibodies were obtained by targeted sequencing of

the phage genomes. In contrast to the the commonly used Sanger sequencing, NGS was used in

order to generate data in a higher magnitude. In total, 11.2 million sequences were obtained from

sequencing of 14 samples. After pre-processing steps, the total number of sequences that could

be analysed was reduced to 7 million (see Appendix Table 17 for detailed information about

sequence abundances in each pre-processing steps). The phage library used in the experiment

was listed by manufacturer to be of diversity 109, and we used approximately 109 phages from

Naive non-amplified library for sequencing, which if sequenced completely should yield approxi-

mately one clone per sequence. However, in this run sample sequencing depth was only 2.3x106,

resulting in expected abundance value per sequence in the sample to be 2.3 · 106/109 = 0.0023.

According to Poisson distribution this should result in sample containing 99.8% single clone

sequences, 0.1% of duplicates and 0.1% of three or more clones. However, sequencing results of

the Naive library did show that only 91.7% of sequences resulted in single clones, 7.3% were

duplicates and 1% had 3 or more occurrences in some cases reaching 44 clones (Figure 11).

Such abundance of clone sequences could indicate presence of parasitic sequences that skew

population distribution due to rapid amplification. To quantify the extent to which such skew

happens, 107 phages were amplified. Amplification with 109 phages was avoided to not introduce

any additional biases from infecting at high MOI. Sequencing Naive amplified phage library lead

to 2.0 ·106 reads. In case no amplification bias was present, result in sample should have followed

the same Poisson distribution and contain 82% single repeats and 8.8% 2-5 repeats. However,

only 18.4% of sequences resulted in the single peptide repeats, 2-5 times repeated sequences

occupied 30% of the sequence pool, while single peptide sequence GENLMSVGLLRT occupied

2.7% of the whole sequencing pool. Such skew in abundances towards some select pool of

peptides after bacterial amplification resulted in heavily unbalanced phage population. In case of

biopanning experiments that involve multiple rounds of selection and amplification, such quickly

amplifying parasitic sequences lead to resulting sample containing quickly-amplifying rather

than tightly-binding phage sequences.
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Figure 11. Stacked bar plot of peptide sequence abundances in Naive and Naive amplified
libraries. Vertical axis shows percentage of total sequences that are occupied by particular
clones, horizontal axis shows the amount of unique sequences that are present among the clones.
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In total, 12 samples were obtained from three-round affinity selection experiment against 3

mAbs and BSA control. Additional pre-processing steps were carried out for the monoclonal

antibody target samples, removing sequences that are present in BSA control sample and re-

moving sequences that are present in samples panned against other mAb targets. Stacked bar

plots for each sample were generated to analyse enrichment of sequences (Appendix Figures

22, 23, 24, 25). After each panning round the proportion of unique sequences decreased, while

the quantities for various clone sequences increased several fold, thus showing possible en-

richment towards some set of binders. In all three samples, the top enriched peptides after

second biopanning round could be observed as top peptides in the third round. Interestingly,

in PAB240 sample after third panning round the sequence TLHKVVLRSAIP occupied 41%

from total sequences, indicating very strong enrichment. However, this sequence was also

among top 20 sequences with the most clones in the Naive amplified library indicating that

enrichment could be linked to rate of amplification. Therefore, before conducting any additional

analysis on the most enriched sequences, it was important to mitigate potential amplification bias.

To mitigate the effect of quickly-amplifying sequences, sequencing data was normalized using

amplified Naive library sequencing data. The normalization penalized those sequences in the

sample that were over-abundant in the Naive amplified sample, as a result such quickly amplify-

ing sequences would not be present as top enriched ones. This allowed to rank sequences by

their normalized clone count and prioritize sequences that have been enriched by their binding

properties, rather than rate of amplification. Normalized stacked bar plots were generated to visu-

alize the distribution and the enrichment towards target binding sequences (Figures 12,13,14,15).

Analysis of the normalized data accentuated, how the enrichment of specific binders emerged

already in the second panning round. The data from the third panning round returned the same

top sequences, albeit in slightly different order. Comparing the top 100 enriched sequences

before and after normalization revealed that on average there were 10 sequences that also were

in top 100 enriched sequences in the Naive amplified sample. The normalization process heavily

penalized such sequences, removing them from top enriched sequences, and minimized the

amplification bias influence on potential binder selection.
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Figure 12. Stacked bar plot of pre-processed normalized sequencing data from CR3022
mAb sample. Y-axis shows the fraction from total nnorm that is occupied by the clones while
X-axis shows the amount of unique sequences among the clones. Table highlights most abundant
sequences and their fractions from total nnorm.
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Figure 13. Stacked bar plot of pre-processed normalized sequencing data from H1N1
mAb sample. Y-axis shows the fraction from total nnorm that is occupied by the clones while
X-axis shows the amount of unique sequences among the clones. Table highlights most abundant
sequences and their fractions from total nnorm.
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Figure 14. Stacked bar plot of pre-processed normalized sequencing data from PAB240
mAb sample. Y-axis shows the fraction from total nnorm that is occupied by the clones while
X-axis shows the amount of unique sequences among the clones. Table highlights most abundant
sequences and their fractions from total nnorm.
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Figure 15. Stacked bar plot of pre-processed normalized sequencing data from control
(BSA) sample. Y-axis shows the fraction from total nnorm that is occupied by the clones while
X-axis shows the amount of unique sequences among the clones. Table highlights most abundant
sequences and their fractions from total nnorm.
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In order to highlight any shared motifs for each mAb, the top 100 enriched normalized sequences

for each mAb target were used with MEME motif extraction algorithm. The MEME extracted

logos for mimosets that exhibited a motif are depicted in Figure 16. Normalized panning results

against PAB240 revealed strong motif RHS[V/M][V/L/I] already after the first round with 94

sequences out of 100 exhibiting this motif. In second and third panning 100 and 99 exhibiting this

motif, respectively. Motif SSLxx[M/L]Q was present in 59 and 39 H1N1 binding sequences from

panning round 2 and 3 respectively - first panning round did not return this motif. Interestingly,

no motif emerged from the samples panned against the CR3022 target, despite the enrichment of

certain set of peptides over each panning round.

Figure 16. MEME motif logos. A) PAB240 motif Logo generated on the normalized top 100
sequences from the first panning round. B) H1N1 motif Logo generated on the normalized top
100 sequences from the second panning round. Horizontal axis depict alignment position while
vertical axis show the information content in bits.

3.2.4 Representation performance on experimental data

The newly generated rich mimoset datasets that were obtained under standardised conditions and

vigorously pre-processed, were assessed using computational techniques as described in sections

3.2.1 and 3.2.2. We took top 50 enriched sequences from normalized mAbs samples from the third

panning and generated their full and dimensionality reduced sequence representations. Naive

and sequence alignment KNN baselines were generated and compared to KNN performance

on sequence representations. From results in Table 13 it can be seen the UniRep c_final

representations result in the best performance on average. Interestingly, the KNN performance

on UniRep is by approx. 10% lower than the alignment baseline, thus confirming the observation

that the performance of representation methods declines substantially when applied to a properly
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controlled dataset. The sequence alignment baseline in Table 14 was significantly lower than

in the Dataset B, indicating a much larger sequence diversity present in the experimentally

generated data.

Table 13. KNN weighted accuracy values on experimental data.

Full dimensionality Dimensionality reduced
KNN number of neighbours, k KNN number of neighbours, k
1 3 5 10 15 1 3 5 10 15

ProtVec 0.63 0.65 0.65 0.60 0.60 0.59 0.61 0.63 0.54 0.57
BioVec 0.59 0.62 0.54 0.59 0.53 0.59 0.61 0.63 0.54 0.57
UniRep c_final 0.68 0.70 0.73 0.68 0.67 0.68 0.66 0.65 0.67 0.62
UniRep h_final 0.54 0.49 0.52 0.57 0.54 0.51 0.51 0.43 0.42 0.41
UniRep h_avg 0.62 0.65 0.67 0.66 0.64 0.59 0.64 0.66 0.63 0.62
SeqVec 0.66 0.65 0.67 0.63 0.61 0.58 0.63 0.54 0.57 0.59
RGN_f1 0.59 0.63 0.63 0.65 0.65 0.59 0.61 0.63 0.61 0.61
RGN_f2 0.57 0.64 0.64 0.61 0.58 0.58 0.63 0.54 0.54 0.50
RGN_r1 0.62 0.66 0.61 0.65 0.69 0.63 0.59 0.64 0.56 0.53
RGN_r2 0.50 0.53 0.48 0.52 0.54 0.48 0.52 0.49 0.48 0.50
BERT 0.52 0.61 0.55 0.59 0.57 0.55 0.54 0.55 0.49 0.47
PLUS 0.45 0.47 0.40 0.43 0.39 0.46 0.38 0.42 0.47 0.47
Naive baseline 0.37 0.32 0.39 0.37 0.30 0.37 0.32 0.39 0.37 0.30

Table 14. KNN weighted accuracy values for sequence alignment baseline generated on experi-
mental data.

KNN number of neighbours, k
1 3 5 10 15

Alignment baseline 0.81 0.78 0.81 0.80 0.77
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Dimensionality reduced representations were plotted in Figure 17, other representation method

plots are available in Appendix 26. From plots it was observed that representations generated

on sequences with strong motif (PAB240) were forming a group (green dots). Representations

generated on samples with mostly diverse sequences not sharing strong motifs (CR3022 and

H1N1) resulted in either no distinct group formation or small sub-group formation. Analysing

formed subgroups in UniRep c_final representation plot it was found that the subgroup formed

by 13 CR3022 sequences shared WW residue pattern, which might be relevant for binding.

Similarly, the subgroup formed from 15 H1N1 peptide sequences shared SSL motif. The poor

formation of groups in t-SNE plots showed that from implemented representation techniques

none can reliably group target specific binders, even if such binders share a strong motif as it

was in case of PAB240.

Figure 17. Visualization of dimensionality reduced peptide representations. Representations
were generated: A) ProtVec, B) UniRep c_final layer, C) BioVec, D) RGN_f2 layer. Peptides are
color coded based on the binding target. Legend; 1 - CR3022, 2 - H1N1, 3- PAB240.
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3.3 DISCUSSION

Our initial assumption that target specific binding peptides share a strict motif was proven

wrong when we attempted to construct a sequence alignment baseline based on hierarchical

clustering. Intermixing of peptides targeting different mAbs in a cluster and separation of motif-

shared mimosets across different clusters indicated that strict clustering by sequence similarity

is non-viable. It might be the case that together clustered sequences would still bind the target,

however, data source did not contain such cross-targeting information and testing this possibility

by experimental means was out of scope for this work. Thus we decided to relax this assumption,

and instead of expecting to obtain single clusters that group the majority of peptides binding

a specific target together, we switched to using KNN as the method to group related peptides

together. The new assumption underlying this choice was that there might be multiple groups

of related sequences that are dissimilar group-to-group but which all bind to the same target

antibody.

Visualization of t-SNE dimensionality reduced protein representations on Dataset A revealed

that some representations suffer from bias induced by the peptide length in the mimoset. As

a result, the mimosets are not grouped by their biological properties relevant for binding but

rather by shared sequence length. Such bias exploitation may be why the KNN performance

on the BioVec and UniRep c_final representations marginally outperform the sequence align-

ment baseline KNN performance on the Dataset A. The degree to which sequence length bias

affects representations remains an open question. We minimized this bias by constructing a

standardised Dataset B. Re-evaluating the representations on the standardised dataset revealed

the KNN performance on some of the methods (BioVec, PLUS, RGN_r1, RGN_r2, UniRep

h_avg) deteriorated substantially, indicating their sensitivity towards sequence length. Also,

KNN performance on other representation methods deteriorated, albeit to a lesser extent.

We have found that commonly used deep learning based protein sequence representation meth-

ods, when applied to a standardised dataset of short-peptide sequences, are inferior to sequence

alignment baseline for mapping epitope landscape using the KNN algorithm. Although sequence

alignment baseline performance was negatively affected by the lack of shared motifs across se-
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quences in target-specific mimosets, the representational models still fell short on outperforming

it. Part of the issue might be that these models have been pre-trained on full-length protein se-

quences, thus resulting in suboptimal representations generated on short peptide sequences. The

second part of the issue might underlie the pre-training task that lacks incorporation of informa-

tion that is relevant to the binding - structural and physicochemical information. Although RGN

embeddings have been structurally pre-trained, they did not outperform the baseline. Our results

indicate that computational methods need additional fine-tuning oriented on short-peptides and

use pre-training task or a combination of tasks that incorporate information relevant to binding

paratope.

Future improvements of data-driven models in this field require the availability of large-scale

data, especially for deep learning based method training. To address the issue of mimotope data

scarcity, we developed and implemented the method for data acquisition using the peptide phage

display technique combined with the NGS.

Sequencing results of Naive phage libraries showed the magnitude of amplification bias existing

in our library; such bias has been previously described (Matochko et al., 2013). We mitigated the

effect using the normalization technique described by the work of Juds et al. (2020). Several

additional techniques have been described in the literature to minimize amplification bias further:

filtering data using public repositories of quickly-amplifying sequences (Pleiko et al., 2020),

amplifying phages in semi-solid media or in emulsion droplets (Pleiko et al., 2020; Derda et al.,

2010). Future implementations of the established pipeline might utilize some of the mentioned

additional techniques.

MEME motif analysis from normalized enriched peptide sequences against Anti-p53 PAB240

mAb revealed that it is possible to retrieve the consensus target binding motif already after the

first panning round. We believe that such result was possible mainly due to the strong enrichment

of this motif and the high abundance of refined sequence data provided by NGS. This motif has

already been discovered previously by phage display after three rounds of selection coupled

with Sanger sequencing (Stephen et al., 1995). The replicability of previously published results

confirm the robustness of the NGS-based approach and outline how NG-sequencing depth allows
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to unravel existing motifs among binding peptides already after the first panning round, while

typical phage display experiments coupled with Sanger sequencing require several rounds of

panning before motifs can be observed.

The motif search of Anti-influenza A H1N1 mAb mimotope revealed the presence of the previ-

ously unknown motif (SSLxx[M/L]Q) after the second and third panning. Previous study results

panning against this mAb did not result in retrieving any motif (Zhong et al., 2011), possibly due

to low sequencing depth from Sanger sequencing.

Motif retrieval from Anti-SARS-CoV-2 (CR3022) mAb mimotope was unsuccessful. We specu-

late that there might be two mechanisms or the interplay between them leading to this result. It

is possible that epitope repertoire recognized by CR3022 antibody is highly diverse in terms of

sequence; therefore, no common motif emerged in the top enriched normalized sequences. Such

mimosets without definitive motif have been described in the literature and were also present

in the datasets analyzed in this work (Zhong et al., 2011; Tarnovitski et al., 2006). Another

possibility may be due to the antibody not binding the assay plate or detaching from it during

washing steps. Such technical issues would lead to the loss of the target and the enriched

sequence. We can speculate from our data that the latter mechanism might have likely produced

such a result due to CR3022 sample titers being in the same magnitude as the BSA control titers

and due to the significant overlap with sequences present in the BSA control sample (approx

80% of sequences overlapped between pre-filtered CR3022 and BSA control).

We believe that it may be the case that mimosets obtained from phage display experiments

using Sanger sequencing could contain a considerable amount of quickly-amplifying parasitic

sequences, especially if the experiments do not account for such sequences. Many enrichment

rounds and amplification rounds would allow strong enrichment of those sequences (as in our

PAB240 mAb sample). Thus when the phage population is selected for sequencing by randomly

picking phage clones, there would be a high chance of picking a parasitic sequence. Without

vigorous experimental validation and filtering of such non-specific sequences, the data needs to

be treated with caution.
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It should be emphasized that the findings of this work in relation to discovered motifs and

enriched sequences through phage display biopanning require additional validation of antibody-

peptide complex formation. Despite implementing vigorous pre-processing steps to refine

antibody binding peptides, it is crucial that they are validated by experimental means. Methods

that allow high-throughput characterisation of their affinity to the antibody are preferred, for

example via microfluidic diffusional sizing (Arter et al., 2020).

All in all, the results in this work show that further improvements are needed for representation

methods. The established experimental pipeline for obtaining large scale mimoset data addresses

first step of improving such data-driven methods. Moreover, we believe that during this work we

have also obtained data that allows us to evaluate which sequences were poorly enriched or were

not enriched at all. We believe that such data may also be beneficial in future representation

method improvement.
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4 SUMMARY

We have found that pre-trained deep learning based sequence representations did not outperform

the sequence alignment baseline for mapping antibody binding peptides. Although implemented

representations led to better than Naive performance, they all suffered from some degree of

peptide length induced bias.

Commonly used Sanger sequencing in tandem with phage display limits the amount of mimotope

data obtained and may suffer from the presence of the amplification biased sequences. In this

work, we have combined phage display with NGS and applied vigorous pre-processing steps,

thus acquiring a high-quality sample. As a result, it was possible not only to confirm the anti-p53

mimoset binding motif with data in the literature but also to unravel the previously unknown

mimotope motif possibly binding anti-influenza A H1N1 antibody. Therefore, these results

validate the promising approach for deep panning monoclonal antibody mimotopes.

The COVID-19 pandemic has clearly exemplified how rapid vaccine design and implementation

is an essential step in mitigating the damage novel pathogens exhibit. Considering the possibility

of additional pathogen spill-over events to mankind, understanding the fundamental characteris-

tics of antibody-antigen sterical and physicochemial interactions will be crucial for improved

vaccine development pipelines. Currently nascent in silico methods for characterising possible

immune escaping variants will play major role in the viral arms race.

Overall, this work’s results outline the need to improve deep learning based sequence representa-

tions, specifically on short-peptide sequences. Additionally, the established methodology for

acquiring large-scale high-quality parallel data of antibody mimotopes serves as a fundamental

first step toward improving protein sequence-based computational models.
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APPENDIX

I. Tables

Table 15. PCR primer sequences. Base pairs in capital letters correspond to Illumina adapters,
spacers are in italic, target region specific sequences are in lowercase.

Primer name Primer sequence (5’-3’)
Fw1-pair1st TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGattcctttagtggtacctttctattctc
Rw1-pair1st GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGcgtcaactttcaacagtttcggccg
Fw1-pair2nd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGgattcctttagtggtacctttctattctc
Rw1-pair2nd GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGgtcaactttcaacagtttcggccg
Fw1-pair3rd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGtgattcctttagtggtacctttctattctc
Rw1-pair3rd GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGtcaactttcaacagtttcggccg
Fw1-pair4th TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGctgattcctttagtggtacctttctattctc
Rw1-pair4th GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGcaactttcaacagtttcggccg

Table 16. Phage amplified eluate titering results. BSA concentration in rounds of panning
remained constant at 5mg/mL.

mAb conc.
(ug/mL)

Tween-20
(%)

CR3022
(pfu/ul)

H1N1
(pfu/ul)

pAB240
(pfu/ul)

BSA
(pfu/ul)

Panning round 1 100 0.1 3.25e+10 4.45e+10 4.40e+10 3.45e+10
Panning round 2 66 0.3 1.60e+10 2.85e+10 4.80e+10 5.50e+10
Panning round 3 33 0.5 7.40e+10 3.45e+9 1.08e+10 4.40e+9
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Table 17. Amount of sequences remaining after each filtering step. Control and Naive samples
were not used in last two steps since they act as reference. It should be noted that last two
pre-processings steps were done on peptide sequences.

Sample name
Stitched
reads

Matched
frag-
ments

36bp
frag-
ments

Without
STOP
codon

Matching
NNK

Quality
score

Filtering
control
se-
quences

Filtering
cross-
targets

Naive non-amp. 3759060 2950321 2938795 2780438 2736668 2335002 - -
Naive amp. 3558467 2510499 2501584 2410480 2370366 2010640 - -
CR3022 Pan. 1 392575 306321 305381 298546 295668 275881 139490 137158
CR3022 Pan. 2 276894 252016 251792 249025 248219 231804 33250 17829
CR3022 Pan. 3 287520 268291 268116 264573 263953 245144 33916 13418
H1N1 Pan. 1 375999 287520 285389 277057 272909 253230 242666 214906
H1N1 Pan. 2 343098 265488 264945 277057 272909 253230 199786 108081
H1N1 Pan. 3 375673 202973 202624 200792 167392 154800 110218 27943
PAB240 Pan. 1 366296 292775 291646 284909 281074 259827 256046 245353
PAB240 Pan. 2 382686 285436 284478 279960 276828 255756 203291 186799
PAB240 Pan. 3 409210 225617 225051 223116 2211527 205194 251212 227520
Control (BSA) 1 419081 310665 309347 300753 297077 274983 - -
Control (BSA) 2 320610 218716 218443 217840 217035 200146 - -
Control (BSA) 3 434675 226218 226058 225930 225450 205317 - -
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Table 18. Detailed description of phage libraries across mimosets in Dataset A.

Target Mimoset Randomness Phage Library name
Library
type

Peptide
length

Diversity
Article ref.,
PMID

1 1
Semi-
random

LX8 and X15CX Linear 14 - 16940148

1 2
Completely
random

X15 and X21 Linear 15 or 21 - 16940148

1 3
Completely
random

CX12C Circular 12 - 16940148

1 4
Completely
random

f3-15mer Linear 12 2.5x108 9430247

1 5
Completely
random

X21 Linear 22 6.5x108 9430247

1 6
Semi-
random

XCX(3)SDLX(3)CI Circular 10 - 11413337

1 7
Semi-
random

X(7)SDLX(3)CI Circular 14 - 11413337

2 1
Completely
random

f3-15mer and f88-15mer Linear 15 - 16630634

2 2
Semi-
random

f88-Cys1 Circular 13 2.8x109 16630634

3 1
Completely
random

J404 Linear 9 - 17675514

4 1
Completely
random

X20 Linear 16 1x109 8798975

4 2
Completely
random

X20 Linear 20 5x109 19653209

4 3
Semi-
random

X16 Linear 7 - 22870226

4 4
Semi-
random

X16 Linear 7 - 22870226

4 5
Semi-
random

X16 Linear 7 - 22870226

5 1
Completely
random

Ph.D.-12 Linear 7 1x109 21237206

5 2
Completely
random

Ph.D.-C7C Circular 12 1x109 21237206

6 1
Completely
random

X10 Linear 10 - 18855146

6 2
Completely
random

X10 Linear 10 - 18855146
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Table 19. Full target names according to the number used in the work.

Target
Number

Dataset A target name Dataset B target name

1 Anti-gp120 monoclonal antibody b12
Anti-HIV-1 gp41 MPER monoclonal
antibody 2F5

2
Anti-spike glycoprotein monoclonal an-
tibody 80R

Anti-MSP1a monoclonal antibody
15D2

3 Anti-FPR monoclonal antibody NFPR1
Anti-NTX monoclonal antibody
BNTX18

4
Anti-gp120 monoclonal antibody
GV4H3

Anti-HSP90 monoclonal antibody
AC88

5
Anti-HIV-1 gp41 MPER monoclonal
antibody 2F5

Anti-coagulation factor VIII mono-
clonal antibody 2-76

6 Anti-p53 monoclonal antibody
Anti-glycoprotein E2 monoclonal anti-
body 3/11

Table 20. Dataset A hierarchical clustering detailed results. Peptide distribution across different
clusters based on their mimoset origin. As example, "Target.Mimoset" value 1.3 should be read
as mimoset 3 belonging to target 1.

Cluster 1 2 3 4 5 6
Target.Mimoset

1.1 2
1.2 31 1
1.3 3 16
1.4 3
1.5 2
1.6 6 2
1.7 10
2.1 17 1
2.2 36 3 2
3.1 86 4
4.1 8 1
4.2 6
4.3 13 1 6
4.4 8 9
4.5 4 3 1
5.1 42 2
5.2 27
6.1 23 5
6.2 30 1 3
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Table 21. Detailed description of phage libraries across mimosets in Dataset B.

Target Mimoset Randomness
Phage Li-
brary name

Library
type

Peptide
length

Diversity
Article ref.,
PMID

1 1
Completely
random

Ph.D-12 Linear 12 109 21237206

2 1
Completely
random

Ph.D-12 Linear 12 109 22427942

3 1
Completely
random

Ph.D-12 Linear 12 109 11275260

4 1
Completely
random

Ph.D-12 Linear 12 109 19741295

4 2
Completely
random

Ph.D-12 Linear 12 109 19741295

5 1
Completely
random

Ph.D-12 Linear 12 109 25520269

6 1
Completely
random

Ph.D-12 Linear 12 109 16496330

6 2
Completely
random

Ph.D-12 Linear 12 109 16496330

Table 22. Peptide distribution across different clusters based on their mimoset origin in Dataset
B. As example, "Target.Mimoset" value 1.3 should be read as mimoset 3 belonging to target 1.

Cluster 1 2 3 4 5 6 7
Target.Mimoset

1.1 45
2.1 2 2 34 1
3.1 8 13 11 1
4.1 15
4.2 12
5.1 23 1 2 1
6.1 1 3 15
6.2 1 4
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II. Figures

Figure 18. Multiple sequence alignment logos for each of the mimosets in the Dataset A.
Horizontal axis show alignment position, vertical axis show number of occurrences of the aligned
residue.

72



Figure 19. Visualization of t-SNE dimensionality reduced peptide representations generated
by various methods on Dataset A. A) Peptide representations generated by BERT, B) PLUS, C)
SeqVec, D) UniRep h_avg, E) UniRep h_final, F) RGN_f1 layer, G)RGN_r1 layer, H) RGN_r2
layer.
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Figure 20. Multiple sequence alignment logos for each of the mimosets in the Dataset B.
Horizontal axis show alignment position, vertical axis show number of occurrences of the aligned
residue.
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Figure 21. Visualization of t-SNE dimensionality reduced peptide representations generated
by various methods on Dataset B. A) Peptide representations generated by BERT, B) PLUS, C)
SeqVec, D) UniRep h_avg, E) UniRep h_final, F) RGN_f1 layer, G)RGN_r1 layer, H) RGN_r2
layer.
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Figure 22. Stacked bar plot of pre-processed sequencing data from CR3022 mAb sample.
Y-axis shows the fraction from total sequences that is occupied by the clones while X-axis shows
the amount of unique sequences among the clones. Table highlights most abundant sequences
and their fractions from total sequence pool.
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Figure 23. Stacked bar plot of pre-processed sequencing data from H1N1 mAb sample.
Y-axis shows the fraction from total sequences that is occupied by the clones while X-axis shows
the amount of unique sequences among the clones. Table highlights most abundant sequences
and their fractions from total sequence pool.
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Figure 24. Stacked bar plot of pre-processed sequencing data from PAB240 mAb sample.
Y-axis shows the fraction from total sequences that is occupied by the clones while X-axis shows
the amount of unique sequences among the clones. Table highlights most abundant sequences
and their fractions from total sequence pool.
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Figure 25. Stacked bar plot of pre-processed sequencing data from control (BSA) sample.
Y-axis shows the fraction from total sequences that is occupied by the clones while X-axis shows
the amount of unique sequences among the clones. Table highlights most abundant sequences
and their fractions from total sequence pool.
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Figure 26. Visualization of t-SNE dimensionality reduced peptide representations generated
by various methods on obtained experimental data. A) Peptide representations generated by
BERT, B) PLUS, C) SeqVec, D) UniRep h_avg, E) UniRep h_final, F) RGN_f1 layer, G)RGN_r1
layer, H) RGN_r2 layer. Legend; 1 - CR3022, 2 - H1N1, 3- PAB240.
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