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GLOSSARY 

Complex trait/disease Trait or a disease that is influenced by multiple (genetic 
and non-genetic) factors.

Heritability  The proportion of variation in a trait or a disease, which 
is explained by genetic variation between individuals.  

Genome-wide 
association study  

Study design testing millions of genetic variants over the 
whole genome without an a priori hypothesis to detect 
associations between these variants and phenotype. 

Single nucleotide 
polymorphism  

Substitution of one nucleotide with another one in a 
DNA sequence, which occurs with at least 1% frequency 
in a population. 

Polygenic Risk Score  A measure summarizing person’s estimated genetic risk 
for a trait/disease based on GWAS effect sizes and per-
son’s genetic data. 

Effect size A statistical measure showing the strength of an asso-
ciation between, e.g., a genetic variant and an outcome.  

Population  
structure 

The occurrence of systematic allele frequency differences 
between populations due to evolutionary processes (e.g. 
migration, non-random maiting). 

Principal Component 
Analysis  

A statistical dimensionality reduction method to better 
summarize the dataset. 

Genetic admixture Exchange of genes between two previously isolated
populations. 

Genetic ancestry Origin of genetic material from specific descendants.  
Epigenetics A field of study, which involves modifications on top of 

DNA, which are involved in gene expression, but do not
change the DNA sequence. 

Personalized medicine A field in medicine, which aims to improve stratification 
and timing of health care by using individual’s genetic 
and non-genetic information to result in better pre-
vention, prediction or treatment of a disease.  
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ABBREVIATIONS 

aspPS Ancestry-specfic partial polygenic score
BMI Body mass index
casPS Combined ancestry-specific polygenic score
DNA Desoxyribonucleic acid
dwGRS Doubly-weighted genetic risk score
EstBB Estonian Biobank
EWAS Epigenome-wide association study
FPG Fasting plasma glucose
GRS Genetic risk score
GWAS Genome-wide association study
HbA1c Glycated hemoglobin
LAD Local ancestry deconvolution
LD Linkage disequilibrium
Lifelines Lifelines Cohort Study and Biobank
Meta-GWAS Meta-analysis of genome-wide association study  
MS Methylation score
PC Principal component
PCA Principal component analysis
pPS Partial polygenic score
PRS Polygenic risk score
SNP Single nucleotide polymorphism
swGRS Single-weighted GRS
T2D Type 2 diabetes
  

10 



NOTES FOR THE READER  

* As the science is always a result of a good team work not an individual effort, 
the author of this thesis chose to use ‘We’ instead of ‘I’ in the parts describing 
included chapters. However, the author can be considered responsible for the 
research design, realization, analyses, and interpretation of results.  
 
** There is no absolute agreement, which scientific term to use for polygenic risk 
score (PRS). Therefore, throughout this thesis the term varies according to the 
corresponding publications. We have used terms as doubly-weighted GRS and 
polygenic score (PS), which both indicate the PRS calculation via applying 
several p-value thresholds as described in the paragraph ‘polygenic risk scores’.  
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GENERAL INTRODUCTION 

Type 2 diabetes 

Type 2 Diabetes (T2D) is a chronic metabolic disease characterized by elevated 
blood glucose levels due to the body’s ineffective use of insulin, which is respon-
sible for glucose uptake in liver, fat, and muscle1,2. The less responsive these 
tissues become to insulin, i.e., insulin resistance, the more insulin is produced by 
pancreatic beta cells till these cells are exhausted by the high production of insulin 
leading to their progressive deterioration3. Thus, ꞵ-cell deterioration and insulin 
resistance are the main causes of T2D. T2D predisposes to co-morbidities such 
as cardiovascular and renal diseases and other long-term complications such as 
retinopathy and neuropathy or even limb amputation if appropriate and timely 
treatment is not administered4. Along with these complications T2D leads to 
lower quality of life and it may result in premature mortality with a 5–10 years 
lower life expectancy4.  
 
 
Prevalence and diagnosis of type 2 diabetes 

Currently there are approximately 537 million adults between 20 and 79 years 
old diagnosed with diabetes (T2D accounts for approximately 90% of the dia-
betes cases) and this number is projected to rise to 643 million by the year 2030 
and 783 million by the year 2045 (Figure 1)5.  
 

Figure 1. Estimated age-adjusted comparative prevalence of diabetes in adults (20–
79 years) in 2021 (IDF, 2021).  
  

<4%
4–<5%
5–<7%
7–<9%
9–<12%
>12%
no estimates made
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Furthermore, due to slow progression of hyperglycemia, i.e., a condition with 
excessive levels of glucose in blood, the clinical symptoms of T2D are often mild 
or absent. Therefore, depending on the country, it is estimated that 30–80% of the 
T2D cases remain undiagnosed6. In the year 2021, diabetes caused approximately 
6.7 million deaths often accompanied by other comorbidities5.  

T2D is typically diagnosed if one of the following criteria is met: fasting 
plasma glucose (FPG) > 7.0 mmol/L and/or glycated hemoglobin (HbA1c) ≥ 
6.5% or 2-hour plasma glucose ≥ 11.1 mmol/L4. FPG is the blood glucose level 
measured after at least eight hours of fasting. HbA1c is a form of hemoglobin that 
is chemically linked to glucose molecules. Since glucose molecules are not prone 
to form a chemical bond with hemoglobin, elevated levels of HbA1c indicate 
increased blood glucose levels. Hba1c represents the average plasma glucose of 
approximately the last three months7. 2-hour plasma glucose is the measure of 
blood glucose level 2 hours after taking the 75-gram oral glucose tolerance test6.  

 
 

Complex traits  

T2D is a common complex disease caused by genetic and non-genetic (e.g. 
environment and lifestyle) risk factors, and by the interactions between them1. Its 
complex nature is similar to that of height and body mass index (BMI), which 
allows us to draw parallels between the findings from the studies for BMI and 
height and those for T2D. Therefore, in the current thesis, BMI and height were 
used as complex model traits, which have several advantages over T2D. First, 
based on both twin and family studies, the heritability estimates for height reach 
to 90%8,9, while for BMI a larger environmental contribution is observed with 
heritability estimates ranging from 30 to 90% depending on the study design10,11. 
Second, height and BMI are based on standard measures that are relatively easy 
to collect, therefore it is more certain that databases (biobanks and other data 
repositories) have these measures available. Third, in genetic studies complex 
continuous model traits are often preferred over the dichotomous ones since these 
require much smaller sample size to reach the same statistical power to detect 
new genetic loci12,13, which makes these studies more feasible to conduct.  
 
 
Risk factors for T2D 

In the current thesis risk factors of T2D are divided into ‘non-genetic’ and ‘genetic’ 
risk factors. Historically, ‘non-genetic’ risk factors are the most explored and 
established ones. Examples include BMI, age, and lifestyle habits such as smoking, 
alcohol consumption, and unhealthy diet4. Here these are called “non-genetic” 
although it is well known that most of these factors also have a genetic component 
as described above for BMI. Identifying additional risk factors, including specific 
genetic loci or variants, would improve the understanding of etiology of T2D and 
help to ease its societal and individual burden. 
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Non-genetic, established risk factors 

For T2D, the main risk factor is obesity, which is often caused by urbanization, less 
active lifestyle, and higher intake of unhealthy food4. The fact that there has been 
a rapid, simultaneous increase in the number of obese individuals and T2D cases 
is an indicator of their intertwined nature. In research, obesity is generally repre-

Besides obesity, risk of having T2D increases with age due to the simultaneous 
decrease in insulin sensitivity and it has been shown that the pancreas is not able 
to renew beta cells beyond the age of 303,15. Therefore, it could be that the in-
creasing numbers of T2D cases are partly explained by the world’s aging popu-
lation16. For example, there is a consistent increase in T2D prevalence by age 
reaching to its highest value for the age group of 50 to 59 years5. Nevertheless 
despite that the abovementioned non-genetic risk factors are well established, 
they do have variable effects on different individuals, e.g. there are many obese 
individuals who doesn’t get T2D, while some non-obese people do. This could 
be explained by differences in genetic susceptibility1.  

 
 

Genetic risk factors  

It has been shown that genetic factors play a major role in T2D with heritability 
estimates ranging from 30–69% depending on the study design17,18. In large 
proportion these estimates also contain the heritability of obesity, since around 
90% of the individuals with T2D are overweight (defined as BMI≥25kg/m2) or 
obese1,19. Due to rapid methodological advancements and high heritability of T2D, 
genetic risk factors are currently thoroughly investigated20,21. Their inclusion in 
disease prediction models is becoming more common since genetic factors are 
fixed from the birth onwards and are seen as longer-term predictors compared to 
the non-genetic risk factors, which often occur later in life such as weight gain or 
rise in blood sugar levels.  
 
Genetic variation and their discovery 

The most common type of genetic variants are single nucleotide polymorphisms 
(SNPs), the replacement of one deoxyribonucleic acid (DNA) base pair (nu-
cleotide) with another one in a specific location in the genome occurring with a 
frequency of at least 1% in the population22. On average one human genome dif-
fers from the reference genome on approximately 4 to 5 million SNPs23. SNPs 
are an important source of differences in genetic disease susceptibility24. There-
fore, in a clinical context, SNPs are often used to represent our genetic risk for a 
certain phenotype. To detect SNPs involved in the pathogenesis of complex traits 
and diseases, the primary method is a genome-wide association study (GWAS), 
which aims to detect genotype-phenotype associations by testing millions of 
genetic variants over the whole genome without an a priori hypothesis25. In 
GWAS each SNP association with the complex trait or disease is independently 
tested. Therefore, there is a high multiple testing burden and the significance of 
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sented by a BMI (units: weight(kg)/height(m)2) equal to 30 or higher14.  



the SNP needs to be very low (p<5×10–8) for it to be regarded as a true positive 
association. Thus, to improve the statistical power, often the GWASs are com-
bined into a meta-analysis of GWASs (meta-GWAS)26.  

The first GWAS for T2D was conducted in 2007 in a French cohort of 661 T2D 
cases and 614 controls with information available for approximately 400,000 
SNPs. Back then only five significantly associated genetic loci were detected27. 
In 2020, so far the largest meta-GWAS for T2D was published including five 
ancestral groups with over 1.4 million individuals from which approximately 16% 
were T2D cases. Millions of variants were tested and 568 genomic regions 
associated with T2D were detected28. Such increases in GWAS sample size and 
improvements in genotyping techniques have resulted in a rapid escalation of the 
number of SNPs identified for T2D, although each associated SNP individually 
only has a small effect on a polygenic disease such as T2D29,30. Therefore, often 
these variants are combined into a single measure called genetic or polygenic risk 
score (GRS or PRS, respectively). 

 

Polygenic risk scores  

A PRS is a measure combining genetic risk across the genome and therefore re-
presenting each person’s genetic susceptibility for a certain trait or a disease31. It 
is calculated by summing up the copies of genetic risk variants weighted by their 
effect sizes obtained from earlier GWASs or meta-GWASs31. Initially the risk 
score included only genome-wide significant SNPs (p<5×10–8) and it was called 
a Genetic Risk Score (GRS). The PRS allows more lenient p-value thresholds to 
include more SNPs not reaching the genome-wide significance level due to 
insufficient statistical power. Such a PRS improves the variance explained for the 
outcome trait32. Although the PRS has demonstrated its high potential for the 
future application in clinical practice by detecting individuals in different risk 
categories (Figure 2)33–35, it still has some limitations. For example, it has been 
recognized that if GWAS summary statistics are used for a PRS calculation in a 
population with a genetic population structure different from that of the discovery 
cohort, the PRS has much lower predictive value (also called transferability or 
generalizability issue)36,37.  
 

Figure 2. Risk stratification by PRS. 
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Population structure 

Population structure is the presence of systematic allele frequency differences 
between (sub)populations due to genetic drift, non-random mating and recent 
migration processes38. Such variation in allele frequencies has been detected 
within and between different populations due to their unique history39. Therefore, 
population structure has remained a main confounder for genetic association 
studies and it is still under-explored40. There are several methods to account for 
population structure such as Principal Component Analysis (PCA)41, Genomic 
Control (GC)42, Linear Mixed Models43 or Linkage Disequilibrium Score Regres-
sion (LDSC)44. However some argue that these methods do not correct for it 
completely45–47. One explanation for this could be that individuals included in 
GWASs are often assumed to originate from genetically homogeneous popu-
lations, which means that only individuals belonging to the largest ancestry group 
are included48. So far, most of the GWASs (~80%) have been conducted in Euro-
pean populations, but when using these European-based GWAS effect sizes for 
calculation and application of PRSs in non-Europeans, the predictability becomes 
much lower or even inaccurate36,48. Although, population structure has been 
demonstrated at the continental level36,37,49, several studies have shown its 
existence also on a finer scale50–54. This indicates that populations are genetically 
more heterogeneous than expected, including the GWAS discovery cohorts, due 
to evolutionary processes such as admixture, selection, and non-random mating47. 
Hence, it is clear that the population structure is a confounder for genetic studies, 
but the challenge is to remove it and not to make wrong conclusions due to 
existing population structure. Therefore, two of the chapters in this thesis focused 
on how to account for population structure on a finer-scale, among Europeans 
and for the admixed individuals in the PRS construction in order to improve the 
transferability or generalizability issue.  
 

Genetic admixture  

Genetic admixture occurs when individuals from previously separated popu-
lations intermix and their offspring will carry the genetic information of both 
populations55. Due to past events in human history genetic admixture has resulted 
in ancestry differences between populations, between individuals from one popu-
lation, and even within one human genome (Figure 3).  

As a result of admixture events each person’s genome is like a mosaic of 
segments originating from different ancestries (‘genetic ancestry’)55. Especially 
modern human populations are becoming more mixed, for example in large 
metropolises, which are major melting pots for people originating from different 
ancestries. Such mosaic genomes result in a wide range of genetic and phenotypic 
variation, which are important to understand from an epidemiological perspective 
to more accurately predict and explain the differences in health outcomes56. 
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Figure 3. Admixture of two source populations, which after generations of recombinations 
result in admixed genomes in the following population containing part of the genetic info 
from source 1 (ancestry 1) and part from source 2 (ancestry 2).  
 

Besides, current GWASs effect sizes might be population dependent due to the 
differences in linkage disequilibrium patterns, allele frequencies, rare variants 
and environmental effects29,57,58, which makes studying admixed individuals’ 
genomes with several ancestral backgrounds especially complicated. However, 
since admixture is one of the fastest evolutionary processes, it is a great mecha-
nism to reveal differences in ancestral genetic variation related to disease59. For 
example, leveraging ancestral inference, a method to detect the genetic ancestry 
of a locus (local ancestry inference) or relative proportions of ancestry in a genome 
(global ancestry inference), may help overcoming confounding effects introduced 
by population specific LD patterns, hence pinpointing the true causative variants. 
Furthermore, such an ancestry informed approach may improve prevention and 
treatment especially for complex traits, where incorporating local ancestry in-
ference has already shown promising results in increasing detection of more genetic 
associations and in improving the genetic prediction for admixed individuals59,60.  

 
 
Epigenetics 

The recent rapid increases in worldwide prevalence of T2D cannot be explained 
by genetic components, since the population structure only changes minimally 
from generation to generation. Therefore, the scientists are exploring potential 
molecular mechanisms triggered by the environmental exposures and gene-
environment interactions involved in T2D. Whereas genetic factors are fixed for 
life, epigenetic factors (those responsible for gene expression without altering the 
DNA sequence) are partly reversible by environmental and lifestyle factors61,62. 
Epigenetic mechanisms such as DNA methylation (the most commonly investi-
gated epigenetic process, Figure 4) and histone modification are used by cells to 
regulate gene expression in response to environmental triggers16.  
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Figure 4. Methylation – addition of a methyl group on top of the DNA strand. It typically 
takes place at CpG sites, where cytosine is followed by guanine nucleotide.  
 

Many studies have shown that epigenetic factors have a high potential to explain 
part of the T2D pathogenesis61,63–65. For example, common methylation patterns 
associated with T2D have been detected by epigenome-wide association studies 
(EWAS)66,67. These could lead to a better understanding of inter-individual dif-
ferences in disease susceptibility due to the environmental and lifestyle factors 
involved in T2D pathogenesis68. Wahl and colleagues showed in 2017 that 62 
methylation markers out of 187 that were associated with BMI, were also 
associated with incident T2D, offering promisine for using epigenetics markers 
in disease prediction63. To reduce the global burden of T2D and to better under-
stand environmental factors and gene-environment interactions involved in the 
development of T2D, the inclusion of epigenetics in disease prediction should be 
further investigated. 
 
 
Personalized prediction 

Many studies have demonstrated the high potential of a PRS to stratify individuals 
into risk categories according to their genetics33,35,69. For example, individuals in 
the highest PRS risk quantile for incident T2D have been demonstrated to have 
3 times higher risk of T2D than the individuals in the lowest PRS quantile69. Also, 
for breast and prostate cancer PRS has shown its ability to clearly distinguish 
individuals belonging to different risk categories35,70. Moreover, Khera and 
colleagues (2018) concluded that their PRS for coronary artery disease could 
even detect individuals at risk comparable to rare monogenic mutations with large 
effects33. Such predictions based on genetic information have only been made 
possible by major recent advances in the genomics field such as increasing GWAS 
sample sizes, improved coverage of the genome and the initiation of biobanks. It 
has been suggested that such PRS-based personalized prediction could lead to 
personalized medicine with the ultimate aim to postpone the onset of complex 
diseases such as T2D or even to prevent them via more frequent screening or 
better preventive strategies for high-risk individuals33,69,71,72.  
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AIMS OF THIS THESIS  

The main aim of this thesis was to improve the prediction of T2D by combining 
approaches from genetic epidemiology, population genetics, and epigenetics. The 
sub-aims were to improve the prediction by refining the PRS calculation, by 
addressing the PRS transferability issue and by adding an epigenetic component 
to the prediction of T2D. In addition we reviewed the latest advancements in the 
genomics field that pave the way towards personalized medicine.  
 
 
OUTLINE OF THIS THESIS  

Chapter 1 validates and evaluates the performance of the doubly-weighted GRS 
(dwGRS) in the Estonian Biobank and in the Lifelines Cohort Study and 
Biobank69. The dwGRS applies an additional weight for each included SNP to 
correct for the ‘Winner’s curse’ phenomenon compared to the traditional, single-
weighted GRS (swGRS) for the prediction of incident T2D.  
 
Chapter 2 explores the performance of the local ancestry deconvolution (LAD) 
software73 in detecting the unique genetic tiling of admixed individuals via 
inferring their genetic ancestries. Next, these ancestral estimations are used to 
improve the calculations of PRSs resulting in the development of novel methods 
of the ancestry-specific partial PRS (aspPS) and the combined ancestry specific 
Polygenic Score (casPS). These PRSs aim to improve the personalized prediction 
for admixed individuals via combining the knowledge from ancestral estimates 
and publicly available GWAS summary statistics, which have been obtained from 
more homogeneous genomes. These methods are applied to the example traits of 
height and BMI and diseases such as T2D and breast cancer.  
 
Chapter 3 focuses on Principal Component Analysis and its limitations while 
applied in GWAS to account for population structure. The effect sizes of SNPs 
estimated in one population are population dependent and cause a lower predict-
ability when used in the calculation of the PRS for validation in a different popu-
lation. Traditionally Principal Components (PCs) are calculated using population-
specific genotype data. In this study it was tested whether calculating the PCs 
using projection onto those from a reference population for both the discovery 
and validation sample would mitigate the PRS transferability issues, and whether 
the adjustment for PCs in the PRS validation model would be necessary.  
 
Chapter 4 investigates the associations between the Methylation Scores (MSs) 
and prevalent T2D and its glycemic endophenotypes, i.e., FPG and HbA1c. 
Besides the MSs, GRSs were calculated and their individual and combined effects 
on the outcomes were tested in order to evaluate their independent additive effect 
on the outcome. 
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Chapter 5 provides an overview of the latest advancements in the field of ge-
nomics and how these advancements result in more genetic discoveries leading 
the way towards higher genetic prediction accuracy and eventually the implemen-
tation of personalized medicine. EstBB was used as a prime example for which 
we described the challenges of implementing personalized medicine on a national 
level.  
 

Figure 5. Illustrative outline of this thesis. Numbers indicate the chapters.  
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METHODS 

Study sample/cohorts 

Below is an overview of three large prospective European Biobanks, which data 
were used in this thesis. These biobanks share the goal of investigating genetic 
and non-genetic risk factors to improve the prediction, diagnosis, and treatment 
of diseases with a focus on common complex diseases. All three biobanks have 
been approved by their ethical committees and all the participants have signed 
informed consent74,76,79.  
 
 
The Lifelines Cohort Study 

The Lifelines Cohort Study (Lifelines) is a multidisciplinary prospective popu-
lation-based cohort study and biobank with a unique three-generation design 
examining the health and health-related behaviors of over 167,000 persons living 
in the North-Netherlands. Individuals between the ages 0 to 93 years were invited 
for participation in the study between 2006‒2013 with the aim to follow them up 
for at least 30 years. Starting from baseline, every five years biomaterials are 
collected, a physical examination is done, and extensive questionnaires are 
completed. In between, participants fill in questionnaires approximately every  
1.5–2.5 years74,75. Besides the information on sociodemographic, behavioral, 
mental, and psychosocial factors collected with the questionnaires and the expo-
some data, also genome-wide genetic data are currently available for 51,000 
participants, but it is planned to have these data for all participants in the near 
future75. In the current thesis the Lifelines data from only the adult participants 
(≥18 years) have been used in Chapters 1 and 4.  
 
 
Estonian Biobank  

The Estonian Biobank (EstBB) is a prospective population-based biobank with 
the first wave of data collection from approximately 52,000 volunteers conducted 
between the years 2002–201176. Participants were 18 years or older77. At baseline, 
extensive questionnaires, physical measures, and biomarkers were collected. 
Follow-up data are made available via linkage with the national health registries 
and via new examination of individuals. Besides, electronic health records con-
taining phenotypic information are updated every six months76,77. Currently the 
EstBB has recruited more than 200,000 gene donors, which represent approxi-
mately 20% of the whole Estonian population78. EstBB data were used in Chapters 
1, 2 and 3.  
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UK Biobank  

The UK Biobank (UKBB) Project is a prospective population-based cohort study 
with data collected from approximately 500,000 individuals aged 40 to 69 years 
from across the United Kingdom at their recruitment visit between the years 2006 
to 201079. At baseline, a broad range of phenotypic, genetic, and health-related 
measures and information were collected. Genome-wide genotype data are avail-
able for all participants. Follow-up data are collected by web-based question-
naires and by data linkage to health and medical records79,80. UKBB data were 
used in Chapters 2 and 3.  
 

 
 
Doubly-weighted GRS 

 

 
Statistical analyses 
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Here are briefly introduced the core methods used and/or developed to improve 
the prediction for T2D. See each chapter for more details. A sidenote about 
genetic (GRS) and polygenic risk score (PRS) terms. There is no absolute 
agreement how to use these terms24. Similarly in chapters of this thesis I have used 
terms as doubly-weighted GRS and polygenic score (PS), which both indicate the 
PRS calculation via applying several p-value thresholds as described in the 
paragraph ‘polygenic risk scores’.  

 

In Chapter 1, the novel method of doubly-weighted GRS (dwGRS) was internally 
replicated in the EstBB and externally validated in Lifelines. The usual method 
for GRS calculation involves summing up independent genome-wide significant 
(p<5×10–8) genetic variants and weighing these by their effect sizes from an 
independent meta-GWAS. In this manner genetic variants, which are truly 
associated with the disease, but did not reach the genome-wide significance level 
due to low power of the meta-GWAS, are left out from the GRS resulting in 
suboptimal prediction performance. Therefore, the EstBB statistical research 
team developed a new method called the ‘doubly-weighted GRS’ (dwGRS)69. 
The dwGRS aims to overcome the Winner’s curse (a phenomenon stating that the 
genome-wide significant SNP effects are overestimated by chance), by weighing 
each genome-wide significant SNP with an extra weight. This weight is the 
estimated probability (𝜋ො i) that each specific genetic variant belongs to the set of 
top SNPs of pre-defined size showing the true association with the outcome. The 
probability estimate is obtained via a simulation approach, where a simulated 
effect size for each SNP is drawn from a normal distribution with the mean and 
standard deviation equal to the original effect size and standard error from the 
meta-GWAS, respectively. The 𝜋ො i is then computed as the average score over 
1000 repetitions. Equation 1 for dwGRS:  
 



𝑑𝑤𝐺𝑅𝑆 = ෍ 𝜋iෝ  (1000)𝛽i෡ே
௜ୀଵ 𝑋௜ 

Equation 1. Calculation of doubly-weighted GRS 
 𝜋iෝ (1000) ‒ estimated probability for the i-th marker to belong to the set of 1000 top 

SNPs with the strongest effect on T2D received from simulation studies 𝛽i෡  ‒ estimated logistic regression parameter for SNP i obtained from meta-
analysis 𝑋௜ ‒ allele dosage of i-th SNP N ‒ total number of SNPs included in the score 

 
 

Ancestry-specific partial PS 

In Chapter 2, to test the hypothesis that the GWAS summary statistics are partly 
population dependent, different formulas for PS calculations were developed for 
admixed individuals so that each part of the genome originating from a specific 
ancestry would receive a corresponding population GWAS effect sizes if avail-
able. Firstly, the formula of partial PS (pPS) was developed, which uses only part 
of the genome’s genetic variants instead of the genetic variants across the whole 
genome. Equations 2 and 3 for the partial PS:  
 𝑥‾′௝ = 1𝑁௦  ෍ 𝛽መ௜ேೞ

௜ୀଵ 𝑋௜௝ pPS௝ = 𝑥‾′௝– 𝜇௫‾ᇱ𝜎௫‾ᇱ  

Equation 2. Calculation of raw pPS.  Equation 3. Standardization of pPS. 
  𝑥‾′௝ ‒ raw pPS for individual j 𝑁௦ ‒ subset of the variants of the genome used for the pPS calculation 𝛽መ௜ ‒ estimated effect size from the GWAS for SNP i 𝑋௜௝ ‒ allelic state at site i for individual j 𝜎௫‾ ‒ standard deviation of the 𝑥‾′ statistic computed across all 𝑁ூ individuals of a 

reference population while using only subset 𝑁௏ of variants of the genome.  𝜇௫‾ ‒ mean of the 𝑥‾′ statistic computed across all 𝑁ூ individuals of a reference 
population while using only subset 𝑁௏ of variants of the genome. pPSj ‒ standardized partial polygenic score for individual j 

 

Following, the Efficient Local Ancestry Inference (ELAI)81 (a software package 
learning the structure of haplotypes) for local ancestry deconvolution (LAD), was 
used at first to infer the genetic ancestries of admixed study individuals: Egyptians, 
Ethiopians, African-American. For all these listed populations it is known that 
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they have both African (ancestry A) and West-Eurasian (ancestry B) background. 
The results from the LAD analysis helped to identify the proportions of the ge-
nomes that come from these ancestries A and B. Similarly, the LAD was applied 
to UKBB admixed individuals to detect proportions of their genomes coming 
from ‘European’, ‘African’, or ‘East Asian’ ancestries. Such a LAD allowed the 
improvement from the pPS into an ancestry-specific PS (aspPS), where only the 
detected genomic subsets related to the correct ancestry were used for pPS 
calculations. Detection of the correct ancestry for the genomic subset of SNPs 
allows applying the GWAS summary statistics based on the population most 
similar to its ancestry. For the individuals, where at least two aspPSs could be 
calculated, the main advantage is to combine these aspPS into combined ancestry-
specific PS (casPS) weighted by their ancestry proportions.  
 
 
Correcting GWAS and PS validation with projected PCs 

In Chapter 3 GWASs were conducted for height and BMI in a subset of the 
UKBB. A projection approach for PC adjustment in a GWAS discovery set 
(UKBB subset) and in PRS target sets (independent UKBB and EstBB subsets) 
was tested. The PCs used for adjustment in GWAS and in PRS target sets were 
computed via projecting the GWAS discovery samples and the PRS target set 
samples onto the PC spaces of the reference dataset of 1000 Genomes and an 
external subset of the UKBB or EstBB sample, respective to the target set. The 
core of the projection approach is that only the external sample set is used to infer 
the eigenvectors of the PC space and the discovery/target set individuals are 
projected onto the generated PC space to obtain their PC coordinates. The 
hypothesis was that such an approach will better account for the population 
dependent nature of the GWAS effect sizes and lead to an improvement in PRS 
transferability between two populations.  
 
 
Methylation Scores 

In Chapter 4, MSs were calculated by 1) regressing out the methylation plate and 
position on each epigenome-wide significant (p<1×10–7) CpG site and then, 
2) summing up these epigenome-wide significant CpG residuals weighted by 
their effect sizes from EWASs. Next to the MSs GRSs were calculated by 
summing up the weighted genome-wide significant (p<5×10–8) SNPs to represent 
the person’s genetic risk for a disease. Equation 4 for methylation score and 
equation 5 for genetic risk score:  
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𝑀𝑆௝ = ෍ 𝛽መ௞௄
௞ 𝑐𝑝𝑔௞௝ 

Equation 4. Calculation of methylation score 

 𝑐𝑝𝑔௞௝ ‒ standardized residualized methylation level for individual j and cpg site k 𝛽መ௞ ‒ effect size estimated for the k-th cpg site from the EWAS K ‒ number of CpG sites included in the methylation score      
 

𝐺𝑅𝑆௝ = ෍ 𝛽መ௞௄
௞ 𝑋௞௝ 

Equation 5. Calculation of genetic risk score 

 𝑋௞௝ ‒ allele dosage for k-th SNP and j-th individual 𝛽መ௞ ‒ estimated effect size from GWAS for SNP k 
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Author contribution to the current thesis chapters  

Chapter 1 I ran all the required analyses, interpreted the results, designed the 
figures, and drafted the manuscript. 

Chapter 2 I helped to run part of the PS analyses, prepared data and figures and 
contributed in the revision of the manuscript.  

Chapter 3 I ran all the required analyses, interpreted the results, designed most 
of the figures, drafted the manuscript.  

Chapter 4 I provided the analysis plan and scripts for all the sub-cohorts, ran 
the analyses in the LL pT2D sub-cohort, interpreted and summarized 
the results from all the sub-cohorts, designed the figures, and drafted 
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Chapter 5 I helped to prepare figures and co-wrote the manuscript.  
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GENERAL DISCUSSION  

Summary of the main findings 

Common complex diseases, with T2D being a prime example, have the highest 
health-burden worldwide since there is still a lack of knowledge of all the risk 
factors involved and how to best apply these for disease prediction and pre-
vention. However, it is known that there is great variability between individuals 
in the extent to which the complex disease is explained by genetics and by non-
genetic (lifestyle and environment) risk factors. Therefore, personalized pre-
diction based on genetic and non-genetic determinants, is seen as a way to tailor 
prevention and treatment to the high risk groups for T2D. Nonetheless, these 
personalized approaches are not yet widely practiced and one of the reasons for 
that is the existence of several methodological caveats such as being able to explain 
only a small part of the estimated heritability and PRS transferability issues due 
to population structure. Therefore, my thesis focused mainly on improving the 
personalized prediction by refining the PRS calculation, by addressing the PRS 
transferability issue and by adding an epigenetic component to the prediction of 
T2D. Finally, we reviewed the latest advancements in the genomics field, which 
could pave the way towards personalized medicine.   

Chapter 1 internally and externally validated a novel method of polygenic risk 
score (PRS) calculation called the ‘doubly-weighted genetic risk score’ (dwGRS) 
in the Estonian Biobank (EstBB) and the Lifelines cohort, respectively. This 
method applies additional weighing of the included single nucleotide poly-
morphisms (SNPs) based on their probability to belong to the top associated 
variants with the aim to correct for the ‘Winner’s curse’. In both biobanks the 
dwGRS for prevalent T2D demonstrated stronger association with incident T2D 
than the traditional GRS, the latter consisting of previously identified genome-
wide significant SNPs only1. In addition, when measuring the 5-year predicted 
risks based on the model with and without the dwGRS, the model including the 
dwGRS demonstrated its ability to predict the incident T2D cases better than the 
model without, which was a clear indication for the clinical relevance of the 
dwGRS.  

Chapter 2 introduced novel methods to overcome the current polygenic score 
(PS) applicability issues for recently admixed (admixture event less than 100 
generations ago) individuals from the UK Biobank (UKBB) and compared these 
with the traditional PSs for height and BMI. First, the results confirmed that 
traditional PSs using European-based GWAS effect sizes have much lower pre-
dictive value among recently admixed individuals than among Europeans. Second, 
when local ancestry deconvolution was performed on the UKBB admixed indi-
viduals and the specific ancestry genomic segment was matched with the corre-
sponding ancestry GWAS summary statistics to calculate ancestry-specific partial 
PS (aspPS), unbiased PS distributions were achieved. Third, when for the UKBB 
admixed individuals with partial European background the aspPSs were combined 
(called combined ancestry-specific PS) for the parts of the genome for which the 
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corresponding ancestry GWAS summary statistics were available, the trait pre-
dictability improved and in most of the cases outperformed the total traditional 
PSs based on UKBB or Japanese Biobank summary statistics.  

Chapter 3 aimed to minimize the PRS transferability issue through a Principal 
Component (PC) projection approach in two European cohorts: UKBB and the 
EstBB for model traits of height and BMI. The hypothesis was that using a refe-
rence population to define the PCs used in correcting for population stratification 
in GWAS, would minimize the population dependency of GWAS effect sizes. 
Chapter 3 showed that such a projection approach for PCs did not improve the 
transferability of PRS calculation from UKBB to EstBB. Out of four projection 
sets (European, Non-European, the full 1000 Genomes Project cohort, and a sub-
sample from the same large dataset as used in the GWAS), the latter one still 
performed the best together with dataset-specific PC adjustment in the PRS pre-
diction model. However, some population structure still remained in the PRS 
even in the best conditions, warranting the cautionary inclusion of PC covariates 
when validating a PRS.  

Chapter 4 studied the effects of Methylation Scores (MSs), epigenetic risk 
profiles likely reflecting gene-environment interaction and environmental effects, 
on prevalent T2D and its underlying endophenotypes of fasting plasma glucose 
(FPG) and glycated hemoglobin (HbA1c). By using the data from three Dutch 
sub-cohorts (LL pT2D, LL COPD and LL DEEP), all originating from the large 
North-Netherlands Lifelines Cohort Study and Biobank, Chapter 4 showed that 
depending on the outcome trait or disease, MSs for prevalent T2D, incident T2D, 
and FPG had mostly significant effects on the outcome and that their effects were 
mainly independent of the effects of GRSs. Finding such a trend towards MS 
independent effect indicates that MSs mostly reflect environmental risk factors 
or gene-environment effects. However, future studies with larger datasets are 
warranted to confirm this pattern.  

Chapter 5 reviewed how further genetic discoveries are improving perso-
nalized prediction and advance functional insights into the link between genetics 
and disease. Some examples of important developments are increasing efforts of 
whole genome sequencing, ever larger datasets and meta-analyses, creation of bio-
banks, better computational and storage resources, and exploration of the neg-
lected parts of the genome. In addition to these developments, this review showed 
that highly supportive conditions are necessary to implement and use such 
advancements in favor of personalized prediction and medicine with the EstBB 
as a prime example. 
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Discussion of the main findings 

The increasing interest in including genomic information in disease risk pre-
diction and recent advancements in the genomics field have been successfully 
translated into personalized prediction for common complex diseases, high-
lighted by a number of studies, in which the substantial clinical potential of PRSs 
was demonstrated1–7. However, the PRSs still only explain a fraction of total 
heritability estimates based on twin and family studies8,9 and PRSs are still limited 
by their low transferability10–18. Therefore, my thesis focused on potential solutions 
to overcome the PRS limitations and to improve the amount of explained variance 
by (epi)genetic risk factors for T2D.  
 
Improvement in polygenic risk score performance 

Improving PRSs is highly relevant since complex diseases such as T2D impose a 
high burden on the medical system19. The ultimate goal of personalized prediction 
involving PRSs would be avoiding or at least postponing the onset of T2D. The 
dwGRS applied in Chapter 1 showed a slight improvement in incident T2D pre-
diction compared to the traditional GRS. Although, the added explained variance 
by the dwGRS was small, especially when compared to parts explained by the 
established phenotypic risk factors such as BMI and age for T2D, Wray et al. 
(2021) have emphasized that the real clinical potential of PRSs should be eva-
luated by their ability to differentiate between disease risk categories8. Similarly 
in Chapter 1, we compared dwGRS quintiles while adjusting for the environ-
mental and clinical risk factors and demonstrated its ability to detect 2.8 and 2.3 
times higher risk of incident T2D for individuals in the highest quintile compared 
to the lowest in EstBB and Lifelines, respectively. Similarly, other PRS using 
new methodological approaches have also shown their ability to differentiate high-
risk from lower-risk individuals for complex diseases. For example, Vujkovic 
et al. showed that individuals in the upper 10th decile of traditional PRS have a 
5.21 higher risk of incident T2D compared to the ones in the lowest20. Läll and 
colleagues showed that women in the top 5% of the metaGRS (a method using 
weighted averages of previously selected top two predicting GRSs, which both 
use GWAS weights from different sources) had 4.2 times higher risk for breast 
cancer compared to the lowest 50% in EstBB5. Furthermore, after the successful 
performance of the dwGRS in the original study in the EstBB, where the dwGRS 
was developed1, EstBB decided to apply dwGRS in providing personalized 
feedback for the participants (shown in Chapter 5, Figure 4).  

As shown by the examples above, incorporating PRS in personalized pre-
diction is quite promising. Nevertheless the genomics field is still in search of 
better methods for PRS construction to optimize explained variance for complex 
diseases21–27. Many new methods for PRS computation have been developed in 
recent years each with their pros and cons. The most promising PRS methods 
(determined by the percentage of times this PRS ended up among the top two 
methods with the best prediction performance in the review article by Ma and 
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Zhou28) were PRS-CS, BSLMM, AnnoPred, BayesR, SbayesR, lassosum, multi-
BLUP, LDpred, and MTGBLUP. All the listed PRS methods include some 
advanced methodological steps such as more flexible modeling assumptions, 
accounting for the strength of linkage disequilibrium (LD) between all SNPs 
instead of selecting an LD pruned SNPs set, incorporating functional SNP anno-
tations or incorporating computationally more efficient algorithms compared to 
traditional PRS. All these PRS methods demonstrate clinical potential for detecting 
high-risk individuals, which could lead to more frequent screening of high-risk 
individuals and to more cost-efficient prevention programs29–31.  

Nevertheless, developing and validating new PRS methods is just one piece of 
the puzzle towards reaching the goal of personalized medicine in my opinion, 
because the explained variance for none of these methods gets anywhere near the 
total heritability estimates based on twin and family studies. One explanation why 
PRS do not reach these estimates is over-estimation of the heritability from the 
twin and family studies due to the high chance that estimates include the shared 
environmental component9. Other pieces of the puzzle, which have been also 
described in Chapter 5, could be increase in GWAS sample size (and thus power) 
to reach more accurate PRS32, which may be easier for continuous than for di-
chotomous outcomes such as T2D33; inclusion of rare variants, which are 
believed to constitute an important part of the genetic component of complex 
diseases34,35; inclusion of structural DNA variants36 and increased attempts to also 
model interactions within the genetic loci (dominance effects) and between 
presumably independent loci (epistasis). The first steps towards inclusion of rare 
variants are taken by increasing efforts of whole genome sequencing (WGS) with 
some great examples of large population level WGS initiatives highlighted in 
Chapter 5. One of these, the UK Biobank initiative, just reached the 200,000 
samples WGS milestone in November, 202137. Additionally, increasing the GWASs 
sample size would lead to higher accuracy of PRS38,39, as shown for example by 
Hirschhorn and colleagues, who found that the PRS for height based on a GWAS 
including approximately 5 million individuals finally reached the estimate for 
common SNP-based heritability40. Such findings have only become feasible due 
to the creation of large biobanks and building large international consortia. All in 
all, based on Chapter 1 and other previous literature introducing and validating 
new PRS methods, there has been an improvement in the performance of the PRS 
in disease risk prediction. I believe that it is just a matter of time before improved 
genomic resolution combined with improved PRS methods allows us to target 
high-risk individuals for complex disease such as T2D in clinical settings. Never-
theless, despite these promising perspectives for PRS, there still remains the 
question of the validity of the PRS (‘Are we measuring what we think we are?’) 
and whether it is valid for all individuals.  
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PRS transferability: problems and possible solutions 

In recent years the number of studies aiming to tackle the problem of PRS trans-
ferability between different populations has increased10,15,41–43 since currently 
personalized prediction is not equally applicable for everyone. The PRS construc-
ted from GWAS summary statistics based on European cohorts has much lower 
performance in other populations, most probably due to differences in allele 
frequencies, rare variants and linkage disequilibrium patterns between popu-
lations10,18,44,45. For example, Martin and colleagues showed that a PRS calculated 
on European summary statistics across 17 quantitative traits provided prediction 
accuracies that were on average 4.9 times lower in Africans, 2.5 times lower in East 
Asians and approximately 1.7 times lower in South-Asians and Latino Americans 
when compared to Europeans11. However, the problem does not occur only on the 
level of global populations. Each human genome has its unique tiling with parts 
originating from specific ancestries, especially in modern societies, where dif-
ferent cultures come together and there are more genetically mixed individuals. 
For example, it is estimated that more than one-third of the US population stems 
from more than one ancestral population46. Until recently the common approach 
was to systematically remove admixed individuals from large-scale genetic 
studies to avoid possible bias resulting from insufficient correction for population 
structure47. Therefore, in Chapter 2 via applying local ancestry deconvolution the 
new PRS methods were developed to extend personalized medicine on admixed 
individuals resulting in more accurate PRS prediction for them. I believe that 
aspPS and casPS are currently among the most advanced methods to calculate as 
accurate PRSs as possible for admixed individuals when matching their genetic 
ancestry proportions with the corresponding ancestry GWAS. However, these 
advanced methods are applicable only for the individuals with part of their genome 
originating from Europeans or any other population, for which there are powerful 
enough (meta)-GWASs available. For non-European GWASs, available sample 
sizes are typically smaller, which implies reduction in prediction accuracy39. There-
fore, these new methods of aspPS and casPS could become even more useful in 
the personalized prediction for admixed individuals when genomic data resolution 
improves through increased sample size and through inclusion of more diverse 
populations. In fact, there are already initiatives, which include more diverse popu-
lations such as Pan-UK, which has included six continental ancestry groups and 
large-enough admixed groups for whom there are more than 16,000 GWASs for 
different phenotypes available48. Also other initiatives such as the African Genome 
Variation Project49, the GenomeAsia 100K Project50 and Human Heredity and 
Health in Africa (H3Africa)51, which are all aiming to include, introduce, and 
develop precision medicine in non-European populations. However, expanding 
genetic studies to non-Europeans also requires development of customized geno-
typing arrays and more diverse WGS reference panels43,49 to better capture 
specific risk variants, which could differ between the populations.  

Until very recently there was a trend towards using uniform GWAS discovery 
sets to minimize the confounding by population structure, rather than exploring 
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the diversity and admixture to receive biologically more relevant universal effect 
sizes arising from different LD patterns in diverse datasets. Therefore, besides 
the need for more genetically diverse datasets, there is also a need for better reso-
lution of the genome achieved via detecting the genetic ancestry for genome parts 
for example via ancestry deconvolution. In addition to the PRS methods devel-
oped in Chapter 2, there are other approaches developed to include admixed 
individuals in genetic studies such as the recently developed software package 
called ‘Tractor’, which enables GWAS in admixed individuals while applying 
local ancestry-aware regression47. Other than that, there have also been attempts 
to calculate ‘polyethnic scores’ by the software package XP-BLUP, which com-
bines transethnic and ancestry-specific information to improve the PRS pre-
diction52 or the multiethnic PRS by Márquez-Luna and colleagues, which takes 
advantage of weights based on GWAS among Europeans (accuracy by large 
sample size) and weights based on GWAS among sub-population from the target 
population (accuracy by the same LD patterns)53. Also fine-mapping, a method 
to identify real causal variants in genomic regions resulting in disease risk, has 
been seen as a promising alternative to the GWAS population-specific tagging 
variant summary statistics to expand PRS also to other populations54. For example, 
PolyPred is a novel cross-population PRS method incorporating fine-mapping to 
solve the LD differences and it demonstrated significant increase in prediction 
accuracy for UKBB Africans and in Biobank Japan55. Importantly, all these studies 
concluded that expanding genetic studies on non-European populations should 
continue to enlarge sample sizes in order to provide enough statistical power. 
Only via increasing diversity and more accurately accounting for the origin of the 
genome, is it possible to make PRS prediction globally feasible.  

Now that I have addressed the transferability issue of PRS for admixed and 
non-European individuals, a next question is PRS transferability among European 
populations, which was investigated in Chapter 3. Although it has been con-
firmed that the PRS transferability problem increases with the genetic distance 
between populations56 and it is caused by differences in population genetic struc-
ture, several recent studies have highlighted the fine-scale population genetic 
structure among Europeans (or even inside a single country) causing biased PRS 
prediction performance12,17,57–59. If this population structure is not correctly 
accounted for, it results in spurious disease associations in GWAS and lower 
predictive power of the PRS even in another European population56. Correction 
for the population structure can be done by adding PCs as covariates in the 
statistical analysis60. Such PCs can be obtained by PC analysis using only the 
genetic data of the individuals analyzed or they can be determined by projection 
onto a PC space created using a reference set61. In Chapter 3 the hypothesis was 
that by using a reference dataset to receive the PCs, the PRS transferability 
problems possibly arising from the use of discovery cohort specific effect sizes 
could be mitigated. It was shown that population-specific PCs still resulted in 
better performing PRSs in an independent cohort than the PCs calculated by 
projecting the study samples into the 1000G reference set. Besides, regardless of 
the PC approach taken, the PRS performance was always lower when applied to 
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another cohort than when applied in an independent sample from the same cohort. 
In other words the transferability issue remained. This could be explained by the 
fact that PCs based on common variants (traditional approach of calculating PCs) 
do not capture the recent population structure as well as PCs that also include rare 
variants62. Thus, findings from Chapter 3 highlight that the traditional way of 
conducting GWAS through incorporating PCs does not entirely remove the 
existing population structure.  

 
The contribution of epigenetics  

Although T2D is a highly heritable disease, the recent rapid increase in diabetes 
prevalence cannot be explained by the genetic component. To a large extent it is 
explained by environmental, especially lifestyle factors, and by the interactions 
between genetics and environment63. Methylation as the most common and also 
reversible epigenetic process is believed to be a molecular link between the 
environment and disease64. Adding to or removing a methylation group from the 
DNA could switch certain genes on or off65,66. It has been shown that diet, 
physical activity, and smoking can influence methylation patterns in the human 
genome67–71, which makes it a promising mechanism for disease prevention and 
treatment monitoring. Therefore, Chapter 4 investigated the added value of a 
methylation score (MS) in explaining the variation in T2D and its endopheno-
types (FPG and HbA1c). Results of this chapter were mostly confirming the 
hypothesis that MS could represent environmental effects as MSs explained a 
small proportion of the inter-individual variation in T2D in addition to the GRS 
and that the effects of the MSs and GRSs were largely independent. Nevertheless, 
the contribution of the MSs was not as large as that of the GRS. It could be 
explained by the small sample size of the EWAS used to weight the CpG sites 
included in the MS, because the predictive power of the MS seemed to increase 
with increasing sample size of the discovery EWAS. Therefore, initiatives for 
large EWASs or even meta-EWASs are urgently needed. Another downside is 
that the methylation chips only cover a small part of the CpG sites in the entire 
genome. For example only 1.5% of all CpG sites mostly from CpG-dense 
genomic regions are covered by the 450K chip, leaving quite a large proportion 
of the epigenome still to investigate. Although the more recent studies are already 
using the HumanMethylation850 (EPIC) microarray, which includes 850,000 
CpG sites and around half of them are located in CpG-sparse regions, which have 
been shown to have effect on gene expression as well72,73. As a result, there are 
few other studies confirming the hypothesis that methylation markers represent 
environmental risk components74–76, and only one other that also incorporated 
genetic predictors64. 

Till now, due to the lower costs and better feasibility, most of the EWASs have 
a cross-sectional study design meaning that methylation levels and outcomes are 
measured at the same time point77,78. Therefore, future longitudinal studies are 
warranted to investigate the predictive effect of MSs on incident T2D. Further-
more, similar as genetic studies, epigenetic studies could be more diverse and 
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should be expanded to include other epigenetic processes such as histone modi-
fication79 , including more ancestries80–82 and to have a better coverage of epi-
genome72, in order to increase the amount of variance explained.  
 
 
Future research 

Based on the results of the current thesis, different PRSs and MS show great 
promise as screening tools, to detect individuals at high (epi)genetic risk for 
complex diseases. However, both methods could be further improved. One way 
to do this would be by using better (epi)genomic resolution, also described in 
Chapter 5 and by further methodological developments (described below).  
 
Improvement of T2D classification  

T2D is a very heterogeneous disease with patients presenting a broad range of 
characteristics. The current definition of T2D may be an umbrella-term including 
many different subtypes of T2D. For example, a study conducted in a large 
diabetes cohort in southern Sweden83 demonstrated that it is possible to dissect 
adult-onset diabetes into five different subtypes (four subtypes for T2D) based on 
age at diabetes onset, HbA1c, BMI, measures of insulin resistance and secretion, 
and glutamic acid decarboxylase antibodies (GADA) (see Figure below).  
 

Figure 1. Novel type 2 diabetes subtype characteristics. Adapted from Ahlqvist et al. 2020. 
 
These subtypes showed differences in clinical characteristics, complication 
severity, drug response, and disease progression and were also replicated among 
other European cohorts84–86, and cohorts from India85, China and the United 
States87 showing the generalizability of such a classification. More importantly, 
these subtypes revealed partial but strong distinctions in their genetic etiology88. 
Therefore, future studies should not only focus on the predictors of T2D in 
general, but should apply such a refined diabetes definition to improve the PRSs 
accuracy resulting in a more tailored medical treatment for each individual with 
a specific subtype of T2D. 
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Multidisciplinary research 

As also demonstrated in the current thesis, bringing together different research 
fields – genetics, epigenetics and population genetics – could improve our under-
standing of the genetic and environmental effects on T2D and complex traits in 
general. However, under the notion that ‘the whole is greater than the sum of its 
parts’ these research fields could be even more intertwined in the future. One 
great example of this would be evolutionary medicine. Understanding the human 
past is important to better understand the genetic and environmental risk factors 
involved in disease progress, as also shown in Chapter 2. Another excellent 
example of merging the research fields is a study by Schradel et al (2022), where 
they showed that the individuals belonging to different T2D sub-types described 
in previous paragraph, also differed by the methylation patterns measured in 
blood89. Therefore, as a next step I would suggest to combine the approaches from 
the separate chapters of this thesis and to build prediction models that include 
PRSs that consider the genetic ancestry for parts of the genome and a MS, while 
using improved, more homogeneous subtypes of T2D as outcome. 
 
Towards multi-omics 

In addition to the rapid advancements in the genetics field, we should zoom in on 
other molecular levels to get a more detailed understanding of the complexity of 
T2D. That could be done via epigenomics, transcriptomics, proteomics, meta-
bolomics and pharmacogenomics revealing new biomarkers and disease mecha-
nisms, which would result in more precise personalized interventions and treat-
ment approaches. However, similar to genetics, also the multi-omics field is in 
need of more data and data diversity before reliable results can be produced90–92. 
Even if the technology for the multi-omics is available, limitations of motivation, 
time and costs preclude its application and integration in clinical settings.  
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CONCLUSIONS 

The findings of this thesis aimed to remove methodological hurdles along the way 
towards accelerating personalized medicine for complex diseases in general 
while using T2D as a specific example. Here were tested existing and developed 
new approaches to reveal more of T2D’s complex nature and indicating ways 
towards more personalized prediction and medicine accessible and feasible for 
everyone. These findings indicate that the scientists should continue unraveling 
the mechanisms leading to complex diseases with practicing more multi-
disciplinary approaches, which could lead to novel methods with improved 
accuracy to target high-risk individuals. In this way personalized prediction 
becomes more feasible and inseparable from the medical field. 
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EESTIKEELNE KOKKUVÕTE (Summary in Estonian) 

Komplekstunnuste ja -haiguste personaalse ennetamise edendamine 
teist tüüpi diabeedi näitel 

Levinud komplekshaigused, näiteks teist tüüpi diabeet (type 2 diabetes, T2D), on 
ühed juhtivad haigestumuse ja suremuse põhjused kogu maailmas, kuna endiselt 
puuduvad teadmised kõigi nendega seotud riskitegurite kohta ja selle kohta, 
kuidas olemasolevaid riskitegureid kõige paremini rakendada haiguste prognoosi-
miseks ja ennetamiseks. Siiski on teada, et komplekshaigustega seotud geneeti-
lised ja mitte-geneetilised (sh elustiil ja keskkond) riskitegurid varieeruvad 
indiviidide vahel suurel määral. Seetõttu on geneetilistel ja mitte-geneetilistel 
andmetel põhinevate algoritmide väljatöötamine oluline, et suunata ennetus ja 
ravi eelkõige nendele indiviididele, kes kuuluvad kõrgesse T2D riskirühma. 
Sellele vaatamata ei kasutata personaliseeritud lähenemisviise veel laialdaselt, 
kuna esinevad erinevad metoodilised piirangud. Näiteks on praegused geneeti-
lised meetodid võimelised seletama ainult väikese osa hinnangulisest päritavusest 
ja polügeensed riskiskoorid (PRS-d), mis on huvipakkuva tunnusega seotud 
geneetiliste variantide kaalutud alleelide summad, ei ole populatsioonistruktuuri 
tõttu otseselt ülekantavad ühest populatsioonist teise.  

Käesolev doktoritöö keskendus peamiselt T2D geneetilistele ja epigeneeti-
listele riskiteguritele eesmärgiga parendada haiguse personaliseeritud ennetus-
võimet, et nende meetodite laialdasema kasutusega inimeste tervist edendada. 
Lisaks anti töös ülevaade genoomika valdkonna uutest arengutest ja nendega 
seotud tulevikuvisioonist personaalmeditsiini rakendamisel. Järgnevad viis pea-
tükki põhinevad väitekirja teadusartiklitel.  

1. peatükis valideeriti uudne PRS-i arvutamise meetod, mida nimetatakse 
“topeltkaalutud geneetiliseks riskiskooriks” (doubly-weighted genetic risk score, 
dwGRS) Eesti Geenivaramu ja Lifelines’i biopankade andmestikes. dwGRS puhul 
kaaluti kaasatud ühenukleotiidilised polümorfismid (single nucleotide poly-
morphisms, SNPs) vastavalt empiiriliselt hinnatud tõenäosusele kuuluda SNP-de 
hulka, millel on uuritava tunnusega tegelik seos. dwGRS eeliseks on see, et korri-
geeritakse juhuslikku SNP-de seose ülehindamist uuritava tunnusega. Mõlemas 
biopanga andmestikus näitas dwGRS tugevamat seost T2D haigestumusega kui 
traditsiooniline GRS, mis koosneb ainult eelnevalt tuvastatud kogu genoomi 
hõlmavatest olulistest SNP-dest. Lisaks näitas viie aasta haigestumustõenäosuse 
hindamisel dwGRS-i sisaldav mudel paremat T2D haigestumuse ennustus-
võimet, mis näitab selgelt dwGRS-i sobivust kliiniliseks rakenduseks.  

2. peatükis analüüsiti uusi meetodeid polügeensete skooride (polygenic scores, 
PS) kasutamiseks hiljuti segunenud (segunemissündmus vähem kui 100 põlv-
konda tagasi) indiviididel, kelle esivanemad pärinevad erinevatest populatsiooni-
dest, Ühendkuningriigi biopangas (UK Biobank, UKBB) ja võrreldi neid tradit-
siooniliste PS-dega pikkuse ja kehamassiindeksi jaoks. Esiteks näitasid tule-
mused, et traditsioonilistel PS-del, mis kasutavad skooris kaasatud SNP-de jaoks 
kaalusid Euroopa-põhistest genoomiülestest assotsiatsiooniuuringutest (Genome-
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Wide Association Study, GWAS), on hiljuti segunenud isikute puhul palju 
madalama ennustusvõimega kui eurooplaste puhul. Teiseks, UKBB segunenud 
indiviidide genoomiandmetel kasutati kohaliku põlvnemise lahtiharutamise (Local 
Ancestry Deconvolution, LAD) meetodit. Selle tulemusena sai kokku sobitada 
kindla põlvnemisega genoomse segmendi ja vastava päritoluga GWAS-i kaalud 
põlvnemis-spetsiifilise osalise PS (ancestry-specific partial polygenic score, 
aspPS) arvutamiseks, siis saavutas see tõepärase PS-i jaotuse. Kolmandaks, 
UKBB-st pärit segunenud põlvnemisega indiviididel, kel oli osaliselt Euroopa 
taust, sai arvutada ning omavahel kombineerida mitu aspPS-i – kombineeritud 
põlvnemis-spetsiifiline PS (combined ancestry specific polygenic score, casPS). 
CasPS-i sai arvutada just nende genoomi osade põhjal, mille kohta olid olemas 
vastava päritoluga GWAS-i kaalud. Selline uudne PS saavutas parema kompleks-
tunnuste ennustusvõime, mis enamustel juhtudel ületas traditsiooniliste PS-de 
tulemuse, mis põhinesid kas ainult UKBB või Jaapani biopanga kaaludel.  

3. peatüki eesmärk oli vähendada PRS-i ülekantavuse probleemi kahe 
Euroopa kohordi (Estonian Biobank – EstBB ja UKBB) vahel, kus uuritavateks 
tunnusteks olid pikkus ja kehamassiindeks. Selleks kasutati peakomponentide 
(Principal Components, PC) projektsioonil põhinevat lähenemisviisi. Kui tava-
päraselt kohandatakse GWAS peakomponentidele, mis on arvutatud sama 
uuringukohordi andmete põhjal, et limiteerida populatsiooni geneetilise struk-
tuuri mõju, siis selles uuringus oli GWAS korrigeeritud peakomponentidele, mis 
olid arvutatud referentspopulatsiooni põhjal. Eelduseks oli, et selline lähenemine 
vähendab GWAS-ist pärinevate kaalude sõltuvust uuringupopulatsiooni geneeti-
lisest struktuurist ning vähendab PRS-i ülekantavuse probleemi teise populat-
siooni, kus on omakorda erinevused geneetilises struktuuris. Tulemused näitasid, 
et selline PC-de projektsioonimeetod ei parandanud PRS-i ülekantavust UKBB-
st EstBB-sse. Neljast projektsioonikogumist (eurooplased, mitte-eurooplased, 
kogu 1000 Genoomi Projekti kohort ja alamvalim samast suurest andme-
kogumist, mida kasutati GWASs) oli viimane siiski kõige parem koos andme-
kogumi-spetsiifilise PC kohandamisega PRS-i valideerimismudelis. Siiski sisaldas 
PRS isegi parima PC korrektsiooni korral teatavat populatsioonistruktuuri, mis 
rõhutab PRS-i arvutamisel ja seejärel valideerimisel kasutatavate populatsiooni 
struktuuri korrigeerivate meetodite tähtsust ja kriitilist suhtumist vajaliku 
populatsioonistruktuuri korrigeeriva meetodi osas.  

4. peatükis arvutati metülatsiooniskoorid (Methylation Score, MS) ja uuriti 
nende rolli T2D esinemise korral ning nende glükeemiliste endofenotüüpide nagu 
paastuplasma glükoosi (Fasting plasma glycose, FPG) ja glükohemoglobiini 
(glycosated hemoglobin, HbA1c) tasemetes. Metülatsioon on molekulaarne 
mehhanism, mis leiab aset geenide ning keskkonna koosmõjul ja/või ainult kesk-
konna mõjul desoksüribonukleiinhappe (DNA) pinnal. Põhja-Hollandi rahvastiku-
põhise kohordi (Lifelines) kolme alamkohordi (LL pT2D, LL COPD ja LL 
DEEP) andmete põhjal leiti, et sõltuvalt uuritavast fenotüübilisest tunnusest või 
haigusest oli MS-pT2D, MS-iT2D ja MS-FPG-l (kolm MS-i, mis olid vastavalt 
T2D levimust, haigestumust ja FPG kaalusid kasutades arvutatud) enamasti 
statistiliselt oluline mõju uuritavale tunnusele või haigusele ning nende mõju oli 
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enamasti sõltumatu geneetilise riskiskoori mõjust. Selline tulemus näitab, et MS 
võib olla molekulaarne mehhanism, mis peegeldab keskkonna mõjusid haiguse 
levimuses.  

5. peatükis anti ülevaade, kuidas hiljutised arengud geneetiliste andmetega 
uuringutes võimaldavad geneetiliste meetodite paremat ennustusvõimet ja eden-
davad teadmisi funktsionaalsetest seostest geneetika ja haiguste vahel. Mõned 
näited olulistest arengusuundadest on üha suurenevad jõupingutused kogu-
genoomide sekveneerimisel, suurenevad andmekogumid ja nende meta-analüüsid, 
biopankade loomine, paremad arvutus- ja salvestusressursid ning tähelepanuta 
jäetud genoomi osade uurimine. Lisaks nendele arengutele näitas käesolev üle-
vaateuuring, et selliste teadmiste kasutamiseks personaliseeritud ennetuses ja 
meditsiinis on vaja soosivaid tingimusi. Nii on Eesti Geenivaramu heaks mudel-
näiteks sellest, kuidas arengud ja avastused geneetiliste andmetega, turvaliseks 
geenidoonorluseks vajaliku seadusandluse sätestamine ning rahvastiku kõrge 
osalushuvi avavad uusi võimalusi personaliseeritud ennetuse ja personaal-
meditsiini arendamiseks. 
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NEDERLANDSE SAMENVATTING (Summary in Dutch) 

Verbetering van de persoonlijke predictie van complexe eigenschappen 
en ziektes: een toepassing op Type 2 Diabetes 

Veel voorkomende complexe ziekten, waarvan Type 2 Diabetes (T2D) een 
uitstekend voorbeeld is, hebben wereldwijd de hoogste gezondheidslasten, omdat 
er nog steeds een gebrek is aan kennis van alle betrokken risicofactoren. Daar-
naast weet men nog niet hoe deze het best kunnen worden toegepast voor 
ziektevoorspelling en -preventie. Het is echter bekend dat er tussen individuen 
grote variabiliteit bestaat in de mate waarin de complexe ziekte wordt verklaard 
door genetische en door niet-genetische (leefstijl en omgeving) risicofactoren. 
Daarom wordt gepersonaliseerde voorspelling, gebaseerd op genetische en niet-
genetische informatie, gezien als een manier om preventie en behandeling op 
maat te maken en te richten op hoog risicogroepen voor T2D. Toch worden deze 
gepersonaliseerde benaderingen nog niet op grote schaal toegepast en één van de 
redenen daarvoor is het bestaan van verschillende methodologische limitaties, 
zoals het feit dat huidige genetische risicoprofielen slechts een klein deel van de 
geschatte erfelijkheidsgraad kunnen verklaren en dat ze niet overdraagbaar zijn 
naar niet-Europese individuen ten gevolge van populatiestructuren. Daarom richt 
mijn proefschrift zich vooral op het verbeteren van de gepersonaliseerde voor-
spelling door het verfijnen van de PRS-berekening, door het aanpakken van het 
PRS overdraagbaarheidsprobleem, door het toevoegen van een epi-genetische 
component aan de voorspelling van T2D en door het samenvatten van de laatste 
ontwikkelingen op het gebied van genomics, zodat uiteindelijk een weg gebaand 
zou kunnen worden naar gepersonaliseerde geneeskunde. 

Hoofdstuk 1 valideerde intern en extern een nieuwe methode voor de bere-
kening van polygene risicoscores, de zogenaamde ‘dubbel gewogen genetische 
risicoscore’ (dwGRS) in respectievelijk de Estonian Biobank en het Lifelines 
cohort. Deze methode past een extra weging toe van de opgenomen enkel-
nucleotide-polymorfismen (SNP’s) op basis van hun waarschijnlijkheid om tot 
de sterkst geassocieerde varianten te behoren met als doel te corrigeren voor de 
“Winner‘s curse”. In beide biobanken toonde de dwGRS voor prevalente T2D 
een sterkere associatie met incidente T2D dan de traditionele GRS, die alleen 
bestaat uit eerder geïdentificeerde genoom-breed significante SNP’s. Bovendien, 
bij het meten van de vijfjaars voorspelde risico’s op basis van het model met en 
zonder de dwGRS, kon het model met de dwGRS beter incidente T2D voor-
spellen dan het model zonder, wat een duidelijke indicatie was voor de klinische 
relevantie van de dwGRS.  

Hoofdstuk 2 introduceerde nieuwe methoden om de huidige problemen met 
de overdraagbaarheid van de polygene risicoscore (PS) voor individuen van 
recentelijk gemengde (minder dan 100 generaties geleden) afkomst uit de UK 
Biobank (UKBB) op te lossen en vergeleek deze methoden met de traditionele 
PS’en voor lengte en BMI. Ten eerste bevestigden de resultaten dat traditionele 
PS’en, die gebruik maken van effectgrootte schattingen uit Europese genoom-



160 

brede associatie studies (GWAS), een veel lagere voorspellende waarde hebben 
onder individuen van recentelijk gemengde afkomst dan onder Europeanen. Ten 
tweede, wanneer lokale voorouderlijke deconvolutie werd toegepast op de UKBB 
individuen van gemengde afkomst en het specifieke voorouderlijke genomische 
segment werd afgestemd op de samenvattende statistieken uit overeenkomstige 
voorouderlijke GWAS om voorouderlijk-specifieke partiële PS (aspPS) te bere-
kenen, werden onvertekende PS distributies gevonden. Ten derde, wanneer voor 
de UKBB individuen van een gemengde, maar gedeeltelijke Europese afkomst 
de aspPSs werden gecombineerd (gecombineerde voorouderlijk-specifieke PS 
genoemd) met de delen van het genoom waarvoor samenvattende statistieken uit 
GWASs gebaseerd op corresponderende afkomst beschikbaar waren, dan 
verbeterde dat de voorspelbaarheid van de uitkomstmaten en presteerde het in 
sommige gevallen beter dan de totale traditionele PS’en gebaseerd op ofwel de 
samenvattende statistieken uit de UKBB of Japanse Biobank GWAS.  

Hoofdstuk 3 richtte zich op het minimaliseren van het PRS overdraag-
baarheidsprobleem door middel van een Principal Component (PC) projectie 
benadering in twee Europese cohorten, UKBB en de Estse Biobank (EstBB), voor 
de modeleigenschappen lichaamslengte en BMI. De hypothese was dat het 
gebruik van een referentiepopulatie om de PCs te definiëren die gebruikt worden 
bij het corrigeren voor populatiestratificatie in GWAS, de populatieafhankelijk-
heid van GWAS effectgroottes zou minimaliseren. Hoofdstuk 3 toonde aan dat 
een dergelijke projectiebenadering voor PCs de overdraagbaarheid van de PRS 
van UKBB naar EstBB niet verbeterde. Van de vier projectiesets (het Europese, 
het niet-Europese deel en het volledige 1000-genoom project cohort, en een 
deelsteekproef uit dezelfde grote dataset als gebruikt in de GWAS), presteerde de 
laatste nog steeds het beste, samen met dataset-specifieke PC-correctie in het 
PRS-voorspellingsmodel. Er bleef echter nog steeds enige populatiestructuur in 
de PRS aanwezig, zelfs onder de beste omstandigheden, wat de opname van PC-
covariaten bij de validatie van een PRS rechtvaardigt.  

Hoofdstuk 4 introduceerde de Methylation Score (MS) die mogelijk gen-
omgeving interactie en omgevingseffecten weergeeft die van invloed zijn op 
prevalente T2D en de onderliggende endofenotypes van nuchtere plasma glucose 
(FPG) en geglyceerd hemoglobine (HbA1c). Door gebruik te maken van de 
gegevens van drie Nederlandse subcohorten (LL pT2D, LL COPD en LL DEEP), 
allen afkomstig uit de grote Noord-Nederlandse Lifelines Cohort Study en Bio-
bank, toonde hoofdstuk 4 aan dat afhankelijk van het kenmerk of de ziekte, de 
MS voor prevalente T2D, incidentele T2D, en FPG meestal significante effecten 
hadden op de uitkomst en dat hun effecten meestal onafhankelijk waren van de 
effecten van de GRS. De bevindingen van deze trend aangaande een MS-
onafhankelijk effect geeft aan dat de MS gezien kan worden als een mogelijk 
moleculair mechanisme dat de omgevingsrisicofactoren of gen-omgeving inter-
actie-effecten weerspiegelt, maar toekomstige studies met grotere datasets 
moeten worden gedaan om een dergelijk patroon te bevestigen.  

In hoofdstuk 5 wordt besproken hoe verdere genetische ontdekkingen de 
voorspelling van persoonlijke aandoeningen kunnen verbeteren en functionele 
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inzichten in het verband tussen genetica en ziekte bevorderen. Enkele voor-
beelden van belangrijke ontwikkelingen zijn de toenemende focus op whole 
genome sequencing, steeds grotere datasets en meta-analyses, het creëren van 
biobanken, betere computationele en opslagmiddelen voor data, en de verkenning 
van de genegeerde delen van het genoom. Naast deze ontwikkelingen is uit dit 
overzicht gebleken dat er veel ondersteunende voorwaarden nodig zijn om een 
dergelijke vooruitgang te implementeren en te gebruiken ten behoeve van 
gepersonaliseerde ziektevoorspelling en genezing, met de Estse Biobank als een 
uitstekend voorbeeld. 
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