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1. INTRODUCTION 

Numerous and varied studies have given a new insight into our understanding of 
the human past. The history of human habitation in Europe includes multiple 
stages starting with hunter-gatherers living in Western Eurasia during the 
Palaeolithic, the introduction of agriculture and domestication to Europe 
through the first contacts with non-local people incoming from the Levant and 
Anatolia (West Asia), and the arrival of ‘Steppe’ people from the Pontic-
Caspian Steppe. Most of the studies have focused on the wider spectrum of 
genetic changes in Eurasia and the connection with archaeological evidence and 
historical events. Previously, researchers focussed on one culture, one 
geographical area, and/or one country. However, some areas of Eurasia are still 
understudied and their investigation and exploration might add more knowledge 
to the open gaps in the human migration history. 
 In particular, the Mediterranean Basin, a geographic landscape around the 
Mediterranean Sea located between the three continents – Africa in the South, 
Asia in the East, and Europe in the North – has played a central role in the 
history of human civilization. The climate around the Mediterranean Sea is 
mostly characterised by its mild winters and hot, dry summers, which makes the 
region a suitable place for human habitation. The Italian Peninsula, however, 
has long been understudied in the field of genetic history, despite its geographic 
location in the centre of the Mediterranean Basin and its socio-cultural 
connections to the surrounding populations. In addition, we know more about 
the historical events related to the Roman Empire and thereafter than about the 
migration events before the Iron Age and its genetic impact on the gene pool of 
present-day Italians. 
 Due to the development of next-generation sequencing (NGS) and successful 
extraction methods for ancient deoxyribonucleic acid (aDNA) from human 
remains, it is possible to combine the knowledge of history, archaeology, 
anthropology, and genetics to shed new insights into human history and present 
a new understanding of demographic changes. Nevertheless, the usage of aDNA 
is limited due to the inconsistent preservation of DNA molecules in human 
remains from areas with different environmental conditions, the limited number 
of available samples from geographical locations of interest, the degradation of 
DNA over time, and the high costs of analyses. Because of these factors, re-
searchers have been improving laboratory workflows and bioinformatic 
methods to generate more data and provide the public with the results.  
 This thesis focuses on the genetic and social structure-related changes in the 
Italian Peninsula between the end of the last glacial maximum (LGM, 19,000-
17,000 years ago (ya)) and ~2k ya parallel with the beginning of the Roman 
Republic. Genome-wide data was generated from human remains excavated 
from several archaeological sites in the northern, central, and southeastern 
regions of the Italian Peninsula.  
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This data was analysed in the context of previously published data to shed light 
on the genetic composition (and changes therein) of the ancient populations 
over time. The final dataset consisted of individuals dated between the 
Palaeolithic (43,000-5,000 BCE) and Iron Age (1,100-700 BCE), thus allowing 
us to study the three major demographic movements in conjunction with 
archaeological evidence in the Palaeolithic, the Neolithic, and during the 
Chalcolithic/Bronze Age transition (4,500-2,500 BCE). 
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2. LITERATURE OVERVIEW 

The following chapter will highlight innovations in the field of aDNA and will 
include an overview of historical events related to the genetic changes in the 
human genome of Eurasians and ancient Italians.  
 
 

2.1. Overview of ancient DNA studies 

2.1.1. Insights into the aDNA history 

Once upon a time, almost 40 years ago, the first era of aDNA studies (the 
1980s-1990s) began with the first attempts to extract DNA from soft tissues, 
hair, and bones. The first partial DNA was extracted from a small piece of the 
dried muscle of an extinct animal called the Quagga (Equus quagga), which 
was stored at the Museum of Natural History in Mainz, Germany (Higuchi et 
al., 1984). Here, the researchers were able to obtain 229 base pair (bp) long 
fragments of mitochondrial DNA (mtDNA), inserted them into bacterial clones 
to multiplicate the DNA fragments, and compared them to the mtDNA of 
present-day mountain zebra E. zebra.  
 Through the development of the polymerase chain reaction (PCR) method, 
which enabled the rapid amplification of finite copies of specific DNA frag-
ments using thermal cycling methods and the two main reagents – primers and a 
thermostable DNA polymerase (Kleppe et al., 1971; Mullis, 1990; The Nobel 
Prize in chemistry 1993, 1990), the previous method of bacterial cloning was 
replaced (Pääbo, 1984, 1985; Shizuya et al., 1992; Shizuya and Kouros-Mehr, 
2001); and researchers were able to amplify DNA fragments from ancient 
human brains, maize remains, archaeological human skeletal remains, and dry 
skins of the extinct marsupial wolf and kangaroo rats as well as from New 
Zealand moas (Pääbo, Gifford and Wilson, 1988; Rollo et al., 1988; Hagelberg, 
Sykes and Hedges, 1989; Thomas et al., 1989, 1990; Cooper et al., 1992). One 
early example of an attempt to isolate human DNA was published in 1984 by 
Svante Pääbo (Pääbo, 1984, 1985). In his publication, he described the success-
ful extraction of DNA from a 2,400-year-old mummified child and the analysis 
of the DNA fragments, which seemed to contain little or no signs of postmortem 
changes; this, however, may be due to the lack of reference studies. However, 
with the improvement of DNA extraction protocols and the development of 
dedicated aDNA laboratories, he clarified that he unfortunately extracted 
modern human DNA from the mummy (Pääbo, 2008, 2014). Nevertheless, 
Pääbo’s work and the introduction of stringent measures against modern DNA 
contamination opened the door for the second era of aDNA studies from the 
1990s to 2010. The second era was marked by the development of new 
technologies and methods to extract and analyse the DNA of various skeletal 
remains (Cooper et al., 1992; Höss, Dilling, et al., 1996; Yang, Golenberg and 
Shoshani, 1996; Poinar et al., 1998; Leonard, Wayne and Cooper, 2000; 
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Thomas et al., 2000; Greenwood et al., 2001), but it also led to intense debate 
by archaeologists and anthropologists around the trustworthiness of aDNA 
research. In the late 1990s, Pääbo and his team extracted and sequenced DNA 
from a Neanderthal-type specimen, thereby introducing a series of laboratory 
standards that are still used today (Krings et al., 1997; Ward and Stringer, 1997; 
Poinar and Cooper, 2000). Later, the aDNA field changed rapidly following the 
development of sequencing technology from shotgun sequencing to next-
generation sequencing (NGS). In 2005, researchers were able to recover partial 
DNA genomes (Noonan et al., 2005) and later, the complete mtDNA genome of 
a mammoth (Enk et al., 2011). The first genome of a 4,000 old Palaeo-Eskimo 
(Rasmussen et al., 2010) was obtained from a human specimen stored at the 
museum. Finally, the first draft sequence of a Neanderthal genome was 
published (Green et al., 2010).  
 Since 2010, the field has made significant advances in the demographic 
history of ancient human populations (Olalde et al., 2018; Racimo et al., 2020; 
Patterson et al., 2022), and in the history of pathogens (Bos et al., 2015; 
Harkins et al., 2015; Warinner, Speller and Collins, 2015; Keller, 2019), and the 
relationship(s) between animals and humans (Allaby et al., 2015; Evin et al., 
2015; Ludwig et al., 2015). Some of the latest studies have demonstrated a 
connectedness between particular lifestyles and their geographical spread such 
as the introduction of agriculture and domestication (Haak et al., 2015; Hof-
manová et al., 2016; Olalde et al., 2018).  
 

2.1.2. From Bone to Sequencing 

The preservation of aDNA depends on various factors, such as climate and geo-
graphical location, the presence of exogenous DNA from the environmental 
organisms, its degradation into short fragments and the damage of the DNA 
fragments over time (Green et al., 2010; Miller et al., 2012; Orlando et al., 
2013; Der Sarkissian et al., 2015). Researchers from the 1990s to the present 
day have discussed the potential for DNA preservation in cool and stable 
environmental conditions such as permafrost or caves (Höss, Dilling, et al., 
1996; Höss, Jaruga, et al., 1996; Hadly et al., 1998; Noro et al., 1998; van der 
Valk et al., 2021) and the negative impact of hot climate on DNA preservation 
as shown in studies from Egyptian mummies (Pääbo, 1984, 1985; Marota et al., 
2002; Zink and Nerlich, 2003, 2005) and ancient sub-Saharan African indivi-
duals (Skoglund et al., 2017). The first successful genome-wide study of three 
Egyptian mummies was published in 2017 (Schuenemann et al., 2017). How-
ever, some of the distinct biogeographical units stay understudied due to en-
vironmental conditions or the burial practices of various cultures following the 
failure to extract DNA (Pusch, Broghammer and Scholz, 2000; Joshua Levine, 
2017; Djinis, 2021).  
 Moreover, an organism or human body starts to decompose after death under 
different (biological and chemical) processes leading the DNA to decay into 
shorter fragments (Pääbo, 1989; Lindahl, 1993; Deagle, Paige Eveson and 



16 

Jarman, 2006). Examples of the processes are the nuclease activity within the 
cell and that DNA is not chemically stable leading to breaks in the DNA 
double-strand, which cannot be repaired after the death of an organism (Nishino 
and Morikawa, 2002). An example of a chemical process is depurination 
(Lindahl, 1993). Here, the purine residues are removed from the deoxyribose 
through hydrolysis, which may eventually lead to a break in the DNA filament. 
As a result, the fragmentation, as well as the length, are random and the frag-
ment length distribution can be taken as an indicator for aDNA studies (Poinar 
et al., 2006; Allentoft et al., 2012). Another significant characteristic of aDNA 
is the chemical modifications of the amino acid cytosine (C) to thymine (T) and 
guanine (G) to adenine (A) in the sequences. In particular, the C to T substitu-
tions are caused by cytosine deamination turning cytosine to uracil (U) leading 
to sequenced thymine. Following this, a G to A substitution is most likely 
visible in sequences during the library preparation and the synthesis process 
(Fogg, Pearl and Connolly, 2002). Based on that, the number of short fragments 
and the proportions of C to T substitutions can be used as a measure to 
authenticate the sequenced library of an individual as ancient or to find the pre-
sence of modern contamination (Briggs et al., 2007; Ginolhac et al., 2011; 
Jónsson et al., 2013).  
 All the characteristics mentioned above are instrumental in the development 
of new methods and technology (Meyer and Kircher, 2010; Hofreiter et al., 
2015). Today, researchers can keep the present-day (human) contamination 
limited and increase the availability of targeted aDNA fragments using a labora-
tory workflow for DNA extraction with minimal damage to the bone (Rohland 
and Hofreiter, 2007; Pinhasi et al., 2015; Margaryan et al., 2018; Rohland et al., 
2018), prepare libraries for highly degraded DNA fragments for high through-
put sequencing (Meyer and Kircher, 2010; Orlando et al., 2013), and use target 
enrichment via in-solution hybridisation or array to enrich the targeted DNA 
fragments (Gnirke et al., 2009; Meyer and Kircher, 2010; Carpenter et al., 
2013; Bos et al., 2015; Haak et al., 2015; Rohland et al., 2022). For the sample 
extraction, researchers prefer petrous bone portions, in particular, a core sample 
of the inner ear, to increase the endogenous human DNA content (Pinhasi et al., 
2015; Hansen et al., 2017), and teeth roots or dentin for sampling pathogen 
DNA (Margaryan et al., 2018). In recent years, researchers have tested different 
parts of the human skeletal remains (Parker et al., 2020) and found that the three 
auditory ossicles (malleus, incus, and stapes) are additional sources for well 
preserved human DNA (Sirak et al., 2020). Unfortunately, the availability of 
these ossicles is limited due to their small size and loss during archaeological 
excavations. Another additional source to study the human history is the dental 
calculus allowing the reconstruction of the diet profile of an individual by com-
paring the results with other individuals to get additional insights into the socio-
cultural context of an ancient human population (de La Fuente, Flores and 
Moraga, 2013; Weyrich, Dobney and Cooper, 2015; Arriola, Cooper and Wey-
rich, 2020; Sawafuji et al., 2020; Ottoni et al., 2021). 



17 

 Besides the DNA extraction from skeletal remains, researchers have started 
to extract DNA from sediments to study the whole metagenomic profile of 
individuals found in a cave or from a mass burial (Epp, Zimmermann and Stoof-
Leichsenring, 2019; Voldstad et al., 2020; Linderholm, 2021; Sarhan et al., 
2021; Murchie et al., 2022). Interestingly, sedimentary aDNA (sedaDNA) 
allows researchers to recover and analyse ecologically informative environ-
mental DNA which is rapidly metabolised by bacteria or degraded, hence, can 
be bound to sedimentary materials (Murchie, Kuch, et al., 2021; Murchie, Mon-
teath, et al., 2021). The results can be used to investigate organism diversity in 
understudied geographical regions and build a fine-scale taxonomic resolution 
of plant groups and mammals (Murchie et al., 2022).  
 

2.1.3. Most common strategies and statistical analyses  
in aDNA population genetics 

Different approaches have been used to investigate the ancestral components 
and genetic relationships of ancient as well as present-day individuals (Racimo 
et al., 2020). The most common approaches to studying the ancestral compo–
nents are principal component analysis (PCA) (Patterson, Price and Reich, 
2006; Novembre et al., 2008), ADMIXTURE for unrelated individuals (Ale-
xander, Novembre and Lange, 2009), and F-statistics (Peter, 2016). The latter is 
especially used as a base to reconstruct admixture events using model-based 
approaches like qpAdm/qpWave (Haak et al., 2015; Harney et al., 2021). Re-
searchers perform PCA and ADMIXTURE to study population structure by 
fitting ancient individuals into structural clusters, which can then be used to 
undertake F-statistics as well as model-based analyses. Here, the archaeological 
records of the studied site(s) as well as relative and absolute dates (radiocarbon 
dating using the C14 method) is considered to name the clusters and place the 
individuals into the context of previous studies. For the analyses, the genome-
wide data of ancient individuals are used to calculate the “distance” between the 
newly generated individuals and available published ancient as well as present-
day individuals. The PCA for genome-wide analysis is based on a covariance 
matrix and the visualised results of the principal components, known as eigen-
vectors, represent the highest individual variance (Patterson, Price and Reich, 
2006; Novembre et al., 2008). Complementary to the PCA, different cluster-
based methods using admixture algorithms are available to fit the ancient indivi-
duals into separate clusters based on their ancestral components. The first pro-
grams using these algorithms were STRUCTURE, which used a Bayesian 
framework (Pritchard, Stephens and Donnelly, 2000), FRAPPE (Tang et al., 
2005), and ADMIXTURE (Alexander, Novembre and Lange, 2009).  
The latter expanded the capacities of STRUCTURE using maximum likelihood 
approaches. To perform the ADMIXTURE analysis, the researchers give 
several K-s to predefine the different clusters to which individuals can be 
assigned. The individual’s ancestry can thus be represented between one or 
more predefined K-s. However, the results of the ADMIXTURE and other 
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programs such as CHROMOPAINTER (Lawson et al., 2012) are limited by the 
number of available SNPs for ancient individuals and should be taken into 
account in the interpretation. Another program called DyStruct is a model-based 
algorithm using stochastic variational inference to estimate shared ancestry 
from temporally genotype data (Joseph and Pe’er, 2018, 2019). DyStruct 
includes the dating of an individual to model the respective ancestries observed 
for populations whose allele frequencies drift over time.  
 Beyond the study of the ancestral components, researchers have also increa-
singly focused on the reconstructing ancient social structures such as kinship 
and descent through the integrated analysis of archaeological, osteological and 
stable isotopes data (Haak et al., 2008; Mittnik et al., 2019; Sjögren et al., 2020; 
Ingman et al., 2021). To investigate social organisation from a genetic point of 
view, one program, Relationship Estimation from Ancient DNA or READ, is 
commonly used to estimate the genetic relatedness of individuals within a burial 
site or excavated area (Monroy Kuhn, Jakobsson and Günther, 2018; Hugo 
Reyes-Centeno, 2021). This method is specially developed to estimate the 
relatedness between ancient individuals with low coverage and a low number of 
available SNPs, but it is limited to the number of available individuals and the 
high number of possible closely-related individuals in a dataset. The final 
results of the program and the uniparental markers are used to build the family 
tree(s) of the individuals. Uniparental markers are classified as mtDNA haplo-
groups, which are inherited from the mother to the child (both daughter and son) 
through the mitochondrion, and the Y chromosome (Y chr) haplotype, which is 
inherited from the father to the son as male individuals through the Y chromo-
some. Additionally, the diversity of uniparental markers has previously been 
studied extensively before the access of genome-wide data, and therefore gives 
additional insights into population structures (see section 2.2.). 
 
 

2.2. A summary of the demographic history of Eurasia 

2.2.0. The ancestral components  

The genetic compositions of present-day populations from Eurasian countries 
have been extensively studied. Novembre et al. (2008) analysed the genetic 
variation of 3,000 modern European individuals and found a close correspon-
dence between genetic and geographic distances (Novembre et al., 2008). Here, 
the PCA presented a reproduction of the European map with recognizable 
geographic features such as the Iberian Peninsula, Italian Peninsula, and South-
eastern Europe.  

One cluster contains French-, German-, and Italian-speaking people groups 
within Switzerland, suggesting shared genetic compositions. Hence, this map is 
the first indicator of the genetic differentiation of European populations based 
on geography.  
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 Previous studies have proposed three main groups of ancestral populations 
as possible sources for the gene pool of present-day Eurasians: (I) Eurasian 
Hunter-Gatherers including Caucasus/Iranian HG (CHG), Eastern Hunter-
Gatherers (EHG), and Western Hunter-Gatherers (WHG) representing the geo-
graphical region of published ancient individuals; (II) Early European Farmers 
(EEF) through migration events (=Neolithic revolution) from West Asia 
associated with the Neolithic farmers from Anatolia; and (III) ‘Steppe-related’ 
ancestry from the Pontic-Caspian Steppe associated with the culture in archaeo-
logy known as Yamnaya (Lazaridis et al., 2014; Haak et al., 2015) (Figure 1). 
However, those components did not arrive all at once in Eurasia but rather were 
admixed populations of known, as well as unknown, migration events (Jones et 
al., 2015; Lazaridis et al., 2016; Günther et al., 2018). In specific, the CHG/ 
Iranian HG component has been shown to be a distinct clade that split from 
WHG and Neolithic farmers representing a possible source of ancestry to the 
Yamnaya people (Jones et al., 2015; Fu et al., 2016; Narasimhan et al., 2019). 
In reference to earlier studies, additional components namely Ancient North 
Eurasians (ANE) (Patterson et al., 2012; Lipson et al., 2013), and Iranian 
Neolithic farmers (IN) (Lazaridis et al., 2016; Fernandes et al., 2020), have 
contributed to the gene pool of ancient and present-day populations. Also a 
small proportion of Neanderthal DNA has been found within ancient and 
present-day populations (Prüfer et al., 2014, 2021; Hajdinjak et al., 2021). 
Hence, the arrival of these components can be pinpointed in time through the 
combination of archaeological, historical, and genetic data. The section below 
will present an overview of what we know so far. 
 Approximately 45,000 years ago, modern humans arrived in Europe (Be-
nazzi et al., 2011; Fu et al., 2014; Hublin et al., 2020). During the Last Glacial 
Maximum (25,000-19,000 years ago, LGM), the northern part of Europe was 
still covered with ice and human settlement was restricted to certain refugia 
areas (Gamble et al., 2004; Mangerud et al., 2004). These first humans lived a 
hunter-gatherer lifestyle before farming spread to Europe around 7,500 years 
ago along with changes in the social structure (see section 2.2.3.). Genetic 
studies on ancient individuals dated to the Upper Palaeolithic (50,000-12,000 
ya) and Mesolithic (15,000-5,000 ya) periods indicate a population replacement 
with evidence of a continuous hunter-gatherer lifestyle during the Neolithic 
revolution in northern Europe (see section 2.2.3.). With the arrival of people 
from the Pontic-Caspian Steppe, there was a movement toward the usage of 
tools made out of bronze, copper and tin alloy (Dolfini, 2020).  
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Figure 1. Geographic distribution of archaeological cultures and graphic illustra-
tion of proposed population movements/turnovers discussed in the main text. 
a, Proposed routes of migration by Early farmers into Europe, 9,000-27000 years ago. b, 
Resurgence of hunter-gatherer-related ancestry during the Middle Neolithic, 7,000-
25,000 years ago. c, Arrival of Steppe-related ancestry in central Europe during the Late 
Neolithic, 4,500 years ago. White arrows indicate the two possible scenarios of the 
arrival of Indo-European language groups. Figure reprinted with permission from 
Extended data figure 4 (Haak et al., 2015), Springer Nature. 
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2.2.1. Palaeolithic Hunter-Gatherers  

Despite the limited number of human remains from ancient individuals dated to 
the Palaeolithic in western Eurasia, some human remains yielded enough 
nuclear DNA to study the genetic diversity of Palaeolithic hunter-gatherers in 
the Pre-LGM (45,000-25,000 ya), Post-LGM (19,500-14,500 ya) and in the 
transition to the Holocene (~17,500 ya-present). The oldest human remains at 
present are from Bulgaria (Bacho Kiro, 43-47 ka), Czech (Zlatý kůň, ≥45,000 
years), Romania (Oase I, 41,640-37,580 cal BP), and Russia (Ust'-Ishim, 
47,480-42,560 cal BP) (Krause et al., 2010; Fu et al., 2014, 2015, 2016; Seguin-
Orlando et al., 2014; Posth et al., 2016; Hublin et al., 2020; Prüfer et al., 2021).  
 The majority of the published ancient individuals carry the Y chr 
haplogroups C, F, I, J, K, and R whereby the Y chr haplogroups C with sub-
haplogroups C1 and CT are mostly found in ancient individuals from the 
Gravettian period (33,000-21,000 cal BP) and/or during the Pre-LGM period 
(Fu et al., 2014, 2016; Seguin-Orlando et al., 2014). The Y chr haplogroups C, 
I, and J are found more abundantly in ancient individuals from the Magdalenian 
(17,000-12,000 cal BP) and Epigravettian (~21,000-10,000 cal BP) periods. Fu 
et al. 2016 report one individual from Villabruna (14,180-13,780 cal BP) car-
rying the Y chr haplogroup R1b*, which later became common among ancient 
individuals arriving from the Pontic-Caspian Steppe during the Bronze Age 
migration events (Haak et al., 2015) (see section 2.2.4.). This indicates an early 
link between Europe and the western fringe of the Steppe Belt of Eurasia.  
 The study of the mtDNA haplogroups revealed a higher diversity during the 
Pre-LGM period in ancient individuals carrying mtDNA haplogroup U with 
various sub-haplogroups, as well as haplogroups M and R. the haplogroup M is 
primarily found in present-day Asian populations and is absent in modern Euro-
pean populations. It was, however, assigned to one individual (Ostuni1, 27,810-
27,430 cal BP) in South Italy, indicating a possible timing for the dispersal of 
modern humans into Eurasia (Kivisild, 2015; Posth et al., 2016). In the Post-
LGM period, mtDNA haplogroups U2’3’4’7’8’9 lineages are present in indivi-
duals from western Europe, but not in individuals dated to the Late Glacial 
period (14,500–11,500 ya) or during the transition to the Holocene (Fu et al., 
2016; Posth et al., 2016; Mathieson et al., 2018; Catalano et al., 2019). Here, 
the most frequent mtDNA haplogroup is U5b*, suggesting a population shift 
after the end of the Late Glacial period (Fu et al., 2016; Posth et al., 2016; Modi 
et al., 2021).  
 Besides the mtDNA and Y chr haplogroup diversity, researchers were able 
to study the genetic history of Upper Palaeolithic European individuals and 
identified at least 5 genetic clusters (‘El Mirón’, ‘Mal’ta’, ‘Satsurblia’, ‘Věsto-
nice’, and ‘Villabruna’) sharing a major amount of genetic drift (Fu et al., 2016; 
Villalba-Mouco et al., 2019). As a result, each cluster was named after the 
oldest individuals within, rather than after, the archaeological cultural comple-
xes.  
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The latter cluster ‘Villabruna’ is dated to around 14,000 ya and contains ancient 
individuals dated to Azilian, Epigravettian, and Mesolithic (see section 2.2.2.) 
sharing more ancestral components with non-European populations, e.g. from 
West Asia, reflecting migrations or population shifts within Europe with a 
possible population expansion from southeastern European or West Asian 
refugia correlating with the Bølling-Allerød interstadial (14,690-12,890 BP) and 
the cultural transitions within the Epigravettian and Magdalenian-to-Azilian. On 
the other side, ancient individuals, especially Kostenki 14, dated to the Pre-
LGM and before the end of the LGM period showed more genetic affinities to 
modern Europeans than to East Asians and perhaps contributed genetic 
components to ancient and modern Siberians, indicating a divergence from a 
single ancestral population in Europe, without evidence of substantial genetic 
influx from elsewhere (Seguin-Orlando et al., 2014; Fu et al., 2016). External 
genetic influences were instead detected in another ancient European genome, 
Goyet-Q116, whose genome can be described as predominantly similar to the 
Kostenki14 one with detectable contributions from an East Asian source. 
 

2.2.2. Mesolithic Hunter-Gatherers 

During the Mesolithic in Europe (15,000-5,000 BP), the hunter-gatherers could 
be divided into three major groups based on their ancestral components and 
geographical locations. The first group, identified in 2014, was the Western 
European hunter-gatherers (WHG), which includes ancient individuals from 
Loschburg (8,160-7,940 cal BP) and La Braña 1 (7,940-7,690 cal BP). This 
ancestry component still contributes to present-day Europeans (Lazaridis et al., 
2014; Olalde et al., 2014; Antonio et al., 2019). Mostly, the WHG individuals 
belong to the ‘Villabruna’ cluster sharing the major mtDNA haplogroup U5 
(Lazaridis et al., 2014; Olalde et al., 2014; Fu et al., 2016; Posth et al., 2016). 
 The second group – Eastern European hunter-gatherers (EHG) – was firstly 
defined by two individuals (Karelia (5,500-5000 BCE) and Samara (5,650-
5,555 cal BCE)) from Russia carrying a significant amount of ANE and 
suggesting the possible source of this ancestry in present-day Europeans 
(Lazaridis et al., 2014; Haak et al., 2015). Different studies have linked the 
genetic composition of the third group called Scandinavian hunter-gatherers 
(SHG) as an admixed group between WHG and EHG (Lazaridis et al., 2014; 
Haak et al., 2015; Lazaridis et al., 2016). The group was named after the first 
individuals (e.g. Motala 12 (7,670-7,580 cal BCE)) with their geographical 
origin in Sweden (Lazaridis et al., 2014). Another study from 2018 suggests 
two different early postglacial migrations into Scandinavia from the South and 
Northeastern part of Eurasia. Here, researchers analysed genome-wide data of 
SHGs and found significant differences in the amount of WHG ancestry in the 
individuals (Günther et al., 2018).  
 Further hunter-gatherer individuals from Southeastern Europe and the Baltic 
region were analysed and showed a similar pattern of admixture between WHG 
and EHG based on their geographical location (Mathieson et al., 2018; Mittnik 
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et al., 2018). Mathieson et al. 2018 highlighted the predominance of WHG 
ancestry during the Mesolithic and its decrease in the transition to the Neolithic. 
 

2.2.3. Neolithic Hunter-Gatherer and Farmers 

In the transition from the hunter-gatherer lifestyle to agriculture (~8,000-10,000 
ya), the hunter-gatherer-related ancestry component slowly decreased with the 
arrival of populations from the Eastern Mediterranean Basin, later known as 
Anatolian Neolithic Farmers (Lazaridis et al., 2014), following its resurgence 
during the Middle Neolithic (Günther et al., 2015; Haak et al., 2015; Martiniano 
et al., 2017). However, evidence of regional variability suggested that these 
populations admixed with local hunter-gatherers who adopted the farming 
lifestyle (Gamba et al., 2014; Allentoft et al., 2015; Günther et al., 2015; 
Cassidy et al., 2016; Hofmanová et al., 2016; González-Fortes et al., 2017; 
Lazaridis et al., 2017; Lipson et al., 2017; Tassi et al., 2017; Fernandes et al., 
2018; Valdiosera et al., 2018), with some exceptions in the Baltic region (Jones 
et al., 2017; Saag et al., 2017; Mathieson et al., 2018; Mittnik et al., 2018) and 
Scandinavia (Malmström et al., 2009; Skoglund et al., 2012, 2014). Here, the 
regions seemed to be more affected by the adoption of the farming lifestyle than 
the excess of Anatolian Farmer-related ancestry. Interestingly, in Britain, the 
story is quite different. Researchers found indications that the ancestral com-
ponents were almost completely replaced during the Early Neolithic period with 
the later arrival of the Neolithic transition in the British Isles (Collard et al., 
2010; Brace et al., 2019; Patterson et al., 2022).  
 Before the availability of ancient genome-wide data, the dispersal routes (the 
Mediterranean vs. Balkan route), as well as the very demic or cultural nature of 
the Neolithic transition were extensively discussed in the field of archaeology 
and history (Ammerman, 1973; Ammerman and Cavalli-Sforza, 2014; Fort, 
2015; Shennan, 2017). The origin of farming has been attributed to the Fertile 
Crescent in West Asia around 12,000 years ago. The farming lifestyle reached 
the Balkan region around 8,000 and Central Europe around 7,000 years ago 
(Porčić et al., 2020, 2021). 
 Initial studies focused on the mtDNA haplogroup diversity from various 
geographical locations in Eurasia and found a higher genetic diversity mainly in 
the haplogroup lineages H, HV, J, K, N1a, U, V, W, and X (Haak et al., 2005; 
Sampietro et al., 2007; Bramanti et al., 2009; Malmström et al., 2009; Lacan, 
Keyser, Ricaut, Brucato, Duranthon, et al., 2011; Hervella et al., 2012; Brandt 
et al., 2013; Brotherton et al., 2013; Hervella et al., 2015; Szécsényi-Nagy et 
al., 2015, 2017; Rivollat et al., 2017). Interestingly, based on the first mtDNA 
haplogroup studies, the admixture events between local hunter-gatherers and the 
Early European farmers were rejected because of the high differences between 
the assigned haplogroups to the local hunter-gatherers and the local farmers 
(Bramanti et al., 2009). However, mtDNA is a small part of the human genome 
inherited by the maternal line and lacks recombination, which restricts the 
generalisation to a population scale. 
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 The most frequent Y chr haplogroups found in ancient Neolithic farmers are 
C, F, G, H, I, and R (Rootsi et al., 2004; Battaglia et al., 2009; Keyser et al., 
2009; Haak et al., 2010; Lacan, Keyser, Ricaut, Brucato, Tarrús, et al., 2011); 
however, the latter is not associated with R1b (Kivisild, 2017). Among these, 
haplogroup G2a~ was most common in Early European farmers suggesting 
homogeneity of paternal lineages among early farmers but is rarely presented in 
present-day Europeans (Lacan, Keyser, Ricaut, Brucato, Tarrús, et al., 2011; 
Szécsényi-Nagy et al., 2015).  
 From a genetic perspective, the growing availability of genome-wide data 
from ancient individuals of any European country dated to the Neolithic allows 
researchers to build a detailed picture of the transition to farming and later to the 
Bronze Age. Early publications connected the first European farmers with their 
genetic origin in Anatolia and their spread over Europe through the Balkan 
routes (Lazaridis et al., 2016; Feldman et al., 2019). Various studies have 
presented evidence that the spread of farming reached Europe around 9,000 
years ago and spread northwards along the Danube river and westwards across 
the Mediterranean coast (Brandt et al., 2013; Skoglund et al., 2014; Haak et al., 
2015; Mathieson et al., 2015, 2018; Olalde et al., 2015, 2019; Lipson et al., 
2017; Rivollat et al., 2020). Researchers, however, did not find evidence that 
the big migration event (diffusion model) followed a direct admixture between 
the local hunter-gatherers and expanding farmers. Rather, it has been shown that 
the admixture was delayed in some regions of Eurasia for thousands of years 
seen in the presence of a recurring hunter-gatherer-related ancestry in the later 
stages of the Neolithic (Porčić et al., 2020, 2021; Papac et al., 2021). Interes-
tingly, through the increase of genome-wide data from various geographical 
regions in Eurasia, the spread of farming and the imbalance of the WHG 
ancestry component can be seen in the cluster-based analysis of all individuals 
(Olalde et al., 2015; Marcus et al., 2020; Aneli et al., 2021).  
 In addition to the genetic ancestry composition of ancient cultural groups 
and their connectedness to the spread of farming from Anatolia, recently the 
kinship of individuals has been a major research focus and revealed more 
insight into the social organisation of these groups. Other studies have re-
constructed the social relationship between individuals in a high-resolution 
analysis connecting genetic relationships and archaeological records and found 
evidence of paternal lineages in Neolithic tombs and cemeteries suggesting 
patrilocality (Goldberg et al., 2017; Amorim et al., 2018; Schroeder et al., 2019; 
Cassidy et al., 2020; Sjögren et al., 2020; Fowler et al., 2022). 
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2.2.4. The arrival of ancestral components during  
the Bronze Age period  

The Bronze Age period in Europe (~3,200-600 BCE) is occupied by the rapid 
arrival of the Western Steppe herders including Early Bronze Age Yamnaya 
culture, among others, from the Pontic-Caspian Steppe around 3,000 BCE, and 
major cultural changes, perhaps associated with a different perception of 
economics and social belonging of an individual (Allentoft et al., 2015; Haak et 
al., 2015). In recent years, the spread and impact of the Yamnaya culture have 
been studied extensively in Western Eurasia and the associated genetic ancestry 
is commonly referred to as Steppe-related ancestry (Lazaridis et al., 2014). It 
has been suggested that the Steppe-related ancestry component is a mix of 
mostly EHG-related ancestry, CHG-related ancestry, an unknown source from 
Armenia, and Iranian-Neolithic-related ancestry (Haak et al., 2015; Jones et al., 
2015; Lazaridis et al., 2016).  
 Various studies have highlighted the divergence of the Steppe-related 
ancestry component in ancient individuals dated to the sub-periods of the 
Bronze Age and its impact in the context of different ancient cultures and its 
geographical expansion (Lazaridis et al., 2017; Martiniano et al., 2017; Saag et 
al., 2017, 2019; Olalde et al., 2018, 2019; Papac et al., 2021; Villalba-Mouco et 
al., 2021; Patterson et al., 2022). At the beginning of the Early Bronze Age 
period, the Steppe-related ancestry component is absent in most of the ancient 
individuals in Western and Southern Europe and it increases during the Middle 
Bronze Age and stabilises at the end of the Bronze Age (Allentoft et al., 2015; 
Olalde et al., 2019; Fernandes et al., 2020; Patterson et al., 2022). The delay in 
the expansion of the Steppe-related ancestry component is visible in genome-
wide data available from the islands in the western Mediterranean Sea 
suggesting genetic isolation from Bronze Age populations on the mainland 
(Fernandes et al., 2020; Marcus et al., 2020).  
 On the other side, studies focusing on Southern European human history 
have found an extent of the so-called Iranian-Neolithic-related ancestry compo-
nent suggesting an arrival of this component during the Bronze Age period 
(Lazaridis et al., 2017) and a presence of a Northern African component in 
some of the ancient individuals confirming the beginning of the trade network 
around the Mediterranean Basin (Antonio et al., 2019; Fernandes et al., 2020; 
Marcus et al., 2020). 
 Aside from the arrival of the Steppe-related ancestry component in Western 
Eurasia, researchers have found an almost total replacement of the most 
common Y chr haplogroups from the Neolithic period by the Y chr haplogroup 
lineages R1b* and R1a*, the latter of which had been unknown in Western 
Eurasia until the Early Bronze Age period (Haak et al., 2015; Underhill et al., 
2015). The Y chr haplogroup R1b* was found in individuals dated to the 
Palaeolithic and Mesolithic (see sections 2.2.1. and 2.2.2.) (Fu et al., 2016; 
Mathieson et al., 2018). The turnover of the Y chr haplogroups was thoroughly 
studied in individuals dated to the Chalcolithic/Bronze Age transition from the 
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British Isles and the Iberian Peninsula (Olalde et al., 2018, 2019; Villalba-
Mouco et al., 2021) and archaeological sites located closely together (Papac et 
al., 2021). The results suggested a higher genetic contribution of non-local male 
individuals than non-local female individuals, which also has been confirmed 
by the divergence of the ancestral components between the individuals within a 
burial site (Olalde et al., 2019; Papac et al., 2021). Additionally, other studies 
have emphasized strong sex bias during the migration event indicated by the Y 
chr turnover (Goldberg et al., 2017; Martiniano et al., 2017; Mittnik et al., 
2019) and differences in ancestry profiles associated with the Corded Ware 
culture (Saag et al., 2017; Papac et al., 2021). 
 In addition, recently researchers have started to focus more on the social 
structures in the context of different ancient cultures, e.g. Bell Beaker (~2,750-
1,800 BCE), Corded ware (~2,900-2,300 BCE), and Globular Amphora culture 
(dated to Late Neolithic period), and found little changes in the paternal lineage 
during the Bronze Age, but various studies have implied female exogamy 
through the higher mtDNA diversity and the absent of closely related female 
individuals in the studied archaeological sites (Knipper et al., 2017; Olalde et 
al., 2018; Mittnik et al., 2019; Freilich et al., 2021; Papac et al., 2021; Villalba-
Mouco et al., 2021; Žegarac et al., 2021).  
 
 
2.3. The demographic history of the Italian Peninsula from 

an archaeological and aDNA perspective 
The following section gives an overview of the demographic history of pub-
lished ancient and present-day individuals from the Italian Peninsula. Since time 
periods and cultural expansion varied worldwide, and especially in Eurasia, the 
following periods are based on archaeological records in the Italian Peninsula 
(Figure 2).  
 
 

 
Figure 2. Chronology of periods and examples of cultures in the Italian Peninsula 
before the common era. 
(All dates are approximal, more details can be found in the respective sections below). 
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2.3.0. Gaps of knowledge based on Italian modern DNA 

In the study by Raveane et. al, the genetic distribution of present-day Italians 
and other European populations was studied extensively to investigate their 
ancestral composition as a result of migration and admixture (Raveane et al., 
2019). To evaluate this, genome-wide data of more than 1600 individuals from 
20 Italian administrative regions and over 140 worldwide reference populations 
including genome-wide data of published ancient individuals were used. As a 
result, the genetic differentiation of present-day Italians can be separated into 
three main groups/clusters scattering the geographical locations: Sardinia, 
Northern (North/Central-North Italy), and Southern Italy (South/Central-South 
Italy and Sicily). For the investigation of the ancestral compositions of the 
modern clusters, different combinations of ancient putative sources were tested, 
using Chromopainter and non-negative least squares (NNLS) algorithms. 
Comparing all the analyses, the so-called Italian clusters were characterised by 
high amounts of Anatolian Neolithic (AN) contribution with a closer affinity to 
AN in present-day Italians from Northern Italy and Sardinia. The other two 
components mostly represented were WHG and CHG with higher amounts in 
present-day Italians from the South. Besides these components, the EHG-related 
component with higher frequency in North Italy and the IN component with a 
higher concentration in the south were found and suggested as secondary 
sources of genetic ancestry in the region.  
 Besides these primary contributions, the researchers evaluated the North-
South differences as a source of the presence and absence of the Anatolia 
Bronze Age and Steppe Bronze Age ancestries. For a better understanding of 
these ancestries and the high genetic differences between the North and South 
of Italy, the genetic affinities of genome-wide data of ancient published 
individuals from the Italian Peninsula were explored and confirmed in previous 
studies (Keller et al., 2012; Allentoft et al., 2015; Olalde et al., 2018). Here, the 
authors interpreted/suggested that parts of the differentiation in ancient ancestry 
composition in the different areas of Italy are partly due to the migration events 
during the Bronze Age period. However, given the limited number of genome-
wide sequences from published ancient individuals e.g. dated to the Neolithic 
and Iron Age, the obtained results can only be seen as a suggestion of different 
migration events.  
 

2.3.1. The Palaeolithic and Mesolithic 

During the Upper Palaeolithic (~50,000-12,000 BP) and at the end of the Ice 
Age/end of the Pleistocene, the Italian Peninsula was connected with the islands 
of Elba and Sicily allowing the first Homo sapiens to inhabit the Italian 
Peninsula and the island of Sicily (Benazzi et al., 2011; Douka et al., 2012; 
Sineo et al., 2015). One of the oldest human remains was discovered at the 
archaeological site Riparo Mochi (Italian Peninsula) dated 48,000 years ago 
(Douka et al., 2012).  
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 Genetic studies initially focused on the mtDNA diversity of hunter-gatherers 
dated to the Gravettian (33,000-21,000 BP) and Epigravettian (~21,000-10,000 
cal BCE) and found that the individuals dated pre-LGM carry the mtDNA 
haplogroups M, U2*, and U8 (Posth et al., 2016; Modi et al., 2021). After the 
LGM period, the individuals carry the mtDNA haplogroup U5* which has 
predominantly been found in ancient individuals dated to Epigravettian and 
Mesolithic, suggesting a replacement of the mtDNA haplogroups through the 
arrival of populations from West Asia (Mathieson et al., 2015; Fu et al., 2016; 
Posth et al., 2016; Modi et al., 2021).  
 The replacement has also been seen in the conducted genome-wide analyses, 
given that ancient individuals (Ostuni1, Ostuni2, Paglicci108, and, Paglicci133) 
dated to the pre-LGM belong to the so-called ‘Věstonice’ cluster sharing more 
genetic shifts with ancient and present-day Siberians, while ancient individuals 
dated to the Epigravettian (Continenza and Villabruna) belong to the so-called 
‘Villabruna’ cluster, in which most of the WHG individuals fall (see section 
2.2.1.) (Seguin-Orlando et al., 2014; Fu et al., 2016; Antonio et al., 2019; 
Catalano et al., 2019; Villalba-Mouco et al., 2019).  
 

2.3.2. The Neolithic 

The Neolithic (7,000-3,500 BCE) in the Italian Peninsula was dominated by two 
cultures – Cardium pottery (6,400-5,500 BCE) and Impressed Ware (6,000-
4,000 BCE) – connecting the Italian Peninsula with other regions along the 
Adriatic Sea in the East and the Ligurian Sea in the West (Broodbank, 2006; 
Zilhão, 2014; Martins et al., 2015; Capelli et al., 2017). Both cultures showed 
similarly decorative styles of pottery with little differences in the use of the 
materials to imprint the patterns.  
 From a genetic perspective, studies focusing on the Italian Peninsula, in-
cluding the biggest Italian islands Sardinia and Sicily, have shown similar 
genetic ancestries as in other parts of Europe during that period (Antonio et al., 
2019; Fernandes et al., 2020; Marcus et al., 2020). However, the cluster-based 
analysis of the Early Neolithic individuals has shown that the individuals fall 
separately within the so-called European Neolithic cluster suggesting an im-
balance of the WHG ancestry component and the difference in connectedness 
within the Mediterranean Basin (Olalde et al., 2015; Marcus et al., 2020; 
Rivollat et al., 2020; Aneli et al., 2021). Particularly ancient individuals from 
the island of Sardinia showed a stronger genetic affinity toward western 
Mediterranean populations than to the Italian Peninsula (Fernandes et al., 2020; 
Marcus et al., 2020). 
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2.3.4. The Chalcolithic and Bronze Age 

From an archaeological point of view, the Chalcolithic (3,500-2,200 BCE) and 
Bronze Age (2,200-900 BCE) periods are significant for the appearance of 
metallic techniques and the establishments of the first economic stratification 
represented in different cultures. Thus, the Remedello, Rinaldone, and Gaudo 
cultures can be found in the North of the Italian Peninsula while the Laterza and 
Abealzu-Filigosa cultures are found in the South of the Italian Peninsula and 
Sardinia. The Chalcolithic/Bronze Age transition is marked by the spread of the 
Bell Beaker culture into the Italian Peninsula around 2,200 BCE. The end and 
start of one of the cultures are uncertain because of the integration of new 
“foreign elements” into the existing cultures.  
 The genetic changes during the Chalcolithic/Bronze Age transition and the 
arrival of the Western Steppe herders have been extensively studied in recent 
years (Allentoft et al., 2015; Haak et al., 2015; Jones et al., 2015; Mathieson et 
al., 2015, 2018; Olalde et al., 2018; Villalba-Mouco et al., 2021). However, the 
genetic data was limited to six ancient individuals from the Italian Peninsula 
dated to this period of change (Allentoft et al., 2015; Olalde et al., 2018). All 
six individuals were collected from the Northern part of the Peninsula and 
radiocarbon dated to the Chalcolithic and Early Bronze Ages. These individuals 
are associated with the Remedello and Bell Beaker culture, respectively, and 
especially the latter culture was widely spread over West Europe reaching Great 
Britain (Olalde et al., 2018) and additionally presenting a wide spread of the 
Steppe-related ancestry component in the regions. In the Italian Peninsula, the 
Steppe-related ancestry component is significantly presented in one (I2478: 
2195–1940 cal BCE) out of the three individuals associated with the Bell 
Beaker culture dated to the Early Bronze Age.  
 On the other hand, the Steppe-related ancestry component was not detectable 
in one female individual (RISE486: 2134-1773 cal BCE) from the Remedello 
culture dated to the Early Bronze Age, indicating that the region might not be 
affected by the expansion of the Yamnaya-related group from the Pontic-
Caspian Steppe or due to the limitation of three ancient individuals from the 
geographical location. The two other individuals from the Remedello culture 
were dated to the Chalcolithic and fall within the genetic cluster with other 
ancient individuals from the Neolithic and Chalcolithic (Allentoft et al., 2015) 
as seen in other publications focusing on the Italian Peninsula and the islands 
Sardinia and Sicily (Antonio et al., 2019; Fernandes et al., 2020; Marcus et al., 
2020). The Steppe-related ancestry component was found, however, in indi-
viduals dated to the Iron Age (Antonio et al., 2019).  
 In addition, the presence of the Y chr haplotype R1b associated with the 
spread of the Steppe-related ancestry component was present in the individuals 
dated to the Iron Age in the central Italian Peninsula, but not present in 
individuals related to the Remedello and Bell Beaker culture (Allentoft et al., 
2015; Olalde et al., 2018; Antonio et al., 2019).  
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2.3.5. The Iron Age  

The Iron Age in the Italian Peninsula was characterised by the mass presence of 
iron artefacts in archaeological sites and the growth of the political stratification 
as well as the trading network through the Mediterranean Sea routes and across 
the Alps to Northern Europe (Hodos, 2020). Furthermore, a lot of cultural 
groups were present in the Italian Peninsula during this period showing a high 
diversity of the material culture (Figure 2). From a genetic point of view, the 
generated genome-wide data is limited to individuals from the central Italian 
Peninsula and Venose (Southern Italian Peninsula) showing a high genetic 
heterogeneity and confirming the mobility of people during the time period 
(Antonio et al., 2019; Posth et al., 2021). In detail, the individuals presented 
significant compositions of the Steppe-related ancestry and/or Iranian-Neo-
lithic-related ancestry components shifting from Central to the Southern Italian 
Peninsula confirming the trading network with the eastern part of the Medi-
terranean Basin. However, the exact influx of the Iranian-Neolithic-related 
ancestry component in the Southern Italian Peninsula is uncertain. In addition, a 
Northern African-related ancestry component was found in individuals from the 
central Italian Peninsula with an increase during the Roman Republic indicating 
additionally the mobility of people (Antonio et al., 2019; Fernandes et al., 2020; 
Marcus et al., 2020). 
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3. AIMS OF THE STUDY 

This thesis aims to investigate the demographic history of ancient individuals 
from the Italian Peninsula, the broad connection to ancient Eurasians and 
Africans, and the resulting genetic influence on present-day Italians. Using 
NGS, new genome-wide data of ancient individuals from archaeological sites in 
Northern, Central, and Southeastern Italy was generated at the Ancient DNA 
Laboratory of the Institute of Genomics, the University of Tartu in Estonia and 
assembled with published data to explore the more specific aims compiled in 
the three references:  
 The first study (REF I) examines the re-population of Southern Europe and 
subsequently Eurasia after the end of the LGM around 19k-17k ya and the 
potential relation to the Villabruna cluster, which is dated to the Bølling-Allerød 
around 14,000 years ago. For this reason, genome-wide data of one ancient 
individual from Northern Italy will be generated and analysed with published 
individuals dated between ~45,000 and 7,000 ya to characterise the genetic 
affinities with individuals associated with the introduced genetic cluster.  
 The second study (REF II) aims to investigate the genetic and social 
structure-related changes during the transition from the Chalcolithic to the 
Bronze Age period in the Italian Peninsula. To conduct the study, a genome-
wide dataset of ancient individuals from Northeastern and Central Italy will be 
generated. To investigate the genetic changes and structural shifts during the 
transition in a more detailed study/framework, published genome-wide data of 
ancient individuals from the Italian Peninsula, Sardinia, and Sicily dated from 
the Neolithic to the Iron Age will be added to the dataset.  
 The third study (REF III) explores the external gene flow in Southeastern 
Italy during the Iron Age and its consequences on the genetic distribution of 
present-day Italians. New genome-wide data of ancient individuals from 
Southeastern Italy will be generated and placed into context with other ancient 
individuals from the Italian Peninsula. To characterise the genetic origin of an 
Iron Age group – the Daunians – whose cultural place of origin is under debate 
from an archaeological and historical perspective; specifically, the genetic 
affinities of published individuals from the Balkan and Aegean will be 
investigated. Besides the study of the external gene flow, the possible 
foundation of present-day Italians in South Italy will be explored.  
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4. MATERIALS AND METHODS 

For the three listed publications, a dataset of newly generated genome-wide data 
at the Ancient DNA Laboratory at the Institute of Genomics, the University of 
Tartu in Estonia and published data from ancient and present-day individuals was 
compiled. The list of published ancient and present-day individuals can be found 
in the supplemental materials of the REF II and REF III. The following figure 3 
represents A) the geographical location of the archaeological sites featuring the 
periods, B) and the absolute or relative radiocarbon dates of the newly generated 
ancient individuals (included in the final dataset for autosomal analysis) from the 
Italian Peninsula (Figure 3). I here provide, for each publication, a paragraph 
summarising the materials and methods used in each publication. Additional 
information about the experimental and computational methods can be found in 
the original publications and/or their supplemental materials.  

Figure 3. Overview of the newly generated data from the Italian Peninsula used in 
these studies. 
(A) The geographical location of the archaeological sites. (B) Absolute or relative 
radiocarbon dates of the individuals included in the genome-wide analyses.  
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4.1. Reference I 
In this study, new genome-wide data was obtained from one individual un-
covered at the archaeological site of Riparo Tagliente (Stallavena di Grezzana, 
Verona, Italy) in the Northeastern part of the Italian Peninsula and is currently 
stored at the Natural History Museum of Verona, Italy. The individual was 
directly radiocarbon dated to 16,980-16,510 cal BP (95.4% probability) and 
associated with Late Epigravettian cultural artefacts.  
 To explore the genetic ancestry and relationship to contemporary hunter-
gatherers, different quantitative and statistical approaches, e.g. multidimen-
sional scaling (MDS), Outgroup f3 and f4 statistics as well as qpGraph using 
Admixtools, were performed (Patterson et al., 2012). The evolutionary history 
of the mtDNA was inferred by using the Maximum Likelihood method and 
General Time Reversible models (Nei and Kumar, 2000) (see STAR methods, 
REF I). 
 
 

4.2. Reference II 
In this study, DNA was extracted from human remains from four archaeological 
sites geographically located in the Northeastern and Central Italian Peninsula. 
After screening and additional sequencing, the program READ (Monroy Kuhn, 
Jakobsson and Günther, 2018) was used to identify genetically identical 
individuals and calculate the potential minimum number of individuals due to 
the commingled remains (Adams, 2014; Dolfini, 2020) in three out of the four 
archaeological sites. To evaluate the significance of the genetic changes during 
the Chalcolithic/Bronze Age transition in the Italian Peninsula, Sardinia, and 
Sicily, different genomic analyses including PCA, Admixture/DyStruct, 
Chromopainter/NNLS and Sourcefinder, and qpAdm were performed (see 
STAR methods, REF II). In addition to the validation of the ancestry patterns, 
the genetic relatedness of the ancient individuals dated to between the Neolithic 
and Iron Age were estimated to investigate the social pattern, e.g. related to the 
burial practices. Kinship analyses were performed in combination with the 
uniparental markers and obtained archaeological information. Furthermore, the 
phenotype features of the newly generated individuals were studied to answer 
open questions related to skin pigmentation, metabolism and digestion, and the 
role of pathogens.  
 
 

4.3. Reference III 
In this study, DNA was extracted from human remains from three closely 
located archaeological sites in Southeastern Italy. After quality control, the final 
dataset was merged with ancient and present-day Eurasian individuals, espe-
cially present-day individuals from Apulia to study the origin of the Daunians 
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and put the ancient individuals into the Pan-Mediterranean genetic context. 
Besides the genomic analysis focusing on model-based approaches such as the 
qpAdm/qpWave framework, the relatedness of the individuals was tested using 
READ and the comparison of uniparental markers. 
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5. RESULTS AND DISCUSSION 

The following section provides an overview of the three scientific publications 
compressing the main results and discussions. Figure 4 presents the average 
human coverage of the ancient individuals included in the final genome-wide 
analyses (Figure 4). More detailed information can be found in the publications 
and their respective supplemental information. 
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Figure 4. The final genome-wide average human coverage of the newly published 
ancient individuals was used in these studies. 
Here the individuals are ordered by the periods (blue=Palaeolithic, green=Chalcolithic, 
yellow=Early Bronze Age, orange=Bronze Age, light red=Iron Age, dark red=Mediaeval 
period) and the shapes highlight the representative sample location of each individual 
(rhombus=compact tissue (mean=0.28×), cycle=tooth (mean=0.152×), square=petrous 
bone (mean=0.243×)). The red lines show the mean coverage of the sample location. 
The numbers represent the number of SNPs overlapping with the 1240K Human Origin 
SNP Array.  
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5.1. A new study of a Palaeolithic individual backdates  
the westward human migration in Southern Europe (REF I) 

For this study, DNA was extracted from five human skeletal elements of one 
individual (Tagliente2) with focal cemento-osseous dysplasia (compact tissue) 
discovered at the archaeological site Riparo Tagliente (Delai et al., 2015). Here, 
the library of the compact tissue had the highest DNA concentration compared 
to the tooth root and dentin powder of the individual proposing another potential 
source for DNA preservation in addition to the regular sources, e.g. petrous 
bone core or the other alternatives such as auditory ossicles and talus (Parker et 
al., 2020; Sirak et al., 2020). After quality control and additional sequencing of 
the selected library, the genome-wide coverage was 0.28×-fold yielding 266k 
SNPs overlapping with the 1240k Human Origin SNP Array.  
 

5.1.1. mtDNA and Y chr haplogroup diversity 

First, the genetic sex of the individuals was determined to be male using the 
sex/autosomal chromosome ratio allowing the estimation of the Y chr haplo-
group. The Y chr haplogroup was estimated to be I2, which has been found in 
the majority of ancient individuals in Europe ~14,000 years ago (Figure 3B, 
Supplemental data S1C and S1E, REF I). The estimated mtDNA haplogroup of 
Tagliente2 is U2’3’4’7’8’9, which he shares with several other ancient indivi-
duals from West Europe during the Post-LGM, including two other ancient 
individuals (Paglicci 108 (28,430-27,070 cal BP), San Teodoro 2 (15,232-
14,126 cal BP)) from the Italian Peninsula and one individual (Oriente C (layer: 
12,250-11,850 BCE) from Sicily (Fu et al., 2016; Posth et al., 2016; Mathieson 
et al., 2018; Catalano et al., 2019; Modi et al., 2021) (Figure 3A, Supplemental 
figure S4, Supplemental Data Table S1C and S1D, REF I). 
 

5.1.2. Population perspective 

Results of the MDS analysis revealed that Tagliente2 falls into a genetic group 
with WHG individuals mostly assigned to the ‘Villabruna’ cluster and dated to 
the Post-LGM period (Figure 4A, REF I) (Fu et al., 2016). Because the genetic 
affinities of those individuals within the ‘Villabruna’ cluster indicated a large 
replacement of the previous European hunter-gatherer populations after  
~14,000 ya and showed a higher affinity with a West Asian genetic component, 
statistical tests (f3 and f4 statistics) of Tagliente2 were performed (Figure 4B, 
Supplemental figure S2, S3B–S3B, REF I). The results expressed the shared 
genetic features of the individuals within the ‘Villabruna’ cluster with Tag-
liente2 and confirmed the affinity with West Asian genetic components. 
 These results proposed evidence that backdates the presence of a population 
associated with the ‘Villabruna’ cluster by ~3,000 years in Northern Italy and 
supports two different scenarios of migration: i) an involvement from a board 
network of a Southern Europe-Eastern Europe refugia during and immediately 
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after the LGM, or ii) a more-abrupt genetic turnover with the distribution of 
both genetic and cultural similarities. Throughout the scenarios described in 
detail in REF I cannot be tested with the available archaeological evidence, 
Tagliente2 provides new insights into the major migration events during the 
Upper Palaeolithic affecting the genetic background of all Europeans and its 
presence already in Southern Europe during the cold phase following the LGM 
peak. However, for a better understanding of the migration events, additional 
genome-wide data of ancient individuals from Southern Europe would be 
needed to investigate the genetic changes in more detailed times and connect the 
network between Europe, the Balkan, and Eastern Europe/Western Asia.  
 While writing this thesis, a preprint manuscript has presented newly 
generated genome-wide data of two individuals from Sicily (San Teodoro 3 (not 
dated) and San Teodoro 5 (15,322-14,432 cal BP)) associated with the Late 
Epigravettian period showing a yet unknown genetic Italian lineage within the 
‘Villabruna’ cluster (Scorrano et al., 2021). Both individuals share mtDNA and 
Y chr haplogroups with other European Palaeolithic individuals and confirm the 
conclusions based on the uniparental markers stated above. On the other hand, 
the authors found a difference in the shared genetic drifts between the Sicilian 
individuals and ancient HG from the Iberian and the Italian Peninsula sug-
gesting a gene flow involving ancestry related to Pre-LGM hunter-gatherers in 
Southern Italy as previously observed in the Iberian Peninsula and a different 
ancestry proportion in ancient individuals within the ‘Villabruna’ cluster.  
 
 

5.2. Changes in the (social) structure after the arrival of 
Steppe-related ancestry (REF II) 

For this study, DNA was extracted from 51 human skeletal elements including 
tooth roots and petrous bones from 3 commingled cave burial sites (Broion, La 
Sassa, and Regina Margherita) and one single grave burial site (Gattolino) 
following the standard protocols for aDNA (Meyer and Kircher, 2010). After 
validation of each sequenced library (one sample per individual except 4 
individuals), the relatedness between the samples was estimated using READ 
(Monroy Kuhn, Jakobsson and Günther, 2018) (Supplemental data S4, REF II). 
The results were compared with the estimated mtDNA and Y chr haplogroups 
to identify genetically identical samples and to calculate the minimum number 
of unique individuals. The identical samples were merged together leaving  
22 unique individuals (Broion=11, Gattolino = 4, La Sassa = 4, Regina 
Margherita = 4) (Figure 4; Figure 1A and 1B, Table 1, Supplemental data S1A 
and S1B). For the study, a subset of ancient and present-day individuals in 
Eurasia was selected and merged with the newly generated individuals (Keller 
et al., 2012; Gamba et al., 2014; Lazaridis et al., 2014; Olalde et al., 2014; 1000 
Genomes Project Consortium et al., 2015; Allentoft et al., 2015; Haak et al., 
2015; Jones et al., 2015; Mathieson et al., 2015; Lazaridis et al., 2016; 
Broushaki et al., 2016; Fu et al., 2016; Hofmanová et al., 2016; Lazaridis et al., 
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2017; Lipson et al., 2017; Martiniano et al., 2017; Saag et al., 2017; van den 
Brink et al., 2017; Olalde et al., 2018; Mathieson et al., 2018; Damgaard et al., 
2018; Fregel et al., 2018; Günther et al., 2018; Harney et al., 2018; Mittnik et 
al., 2018; Valdiosera et al., 2018; Antonio et al., 2019). 
 

5.2.1. Arrival of Steppe-related ancestry component 

To explore the arrival of the Steppe-related ancestral component in the Italian 
Peninsula, the genome-wide data of the newly generated individuals were 
analysed with selected published ancient and present-day individuals (STAR 
methods, REF II). The results confirmed the diversity of ancestry components 
during the Chalcolithic and pinpointed the arrival of the Steppe-related ancestry 
component in ancient individuals in the central Italian Peninsula as early as 
1,600 BCE, with an increase through time.  
 We applied different statistical, model-based clustering, and orthogonal 
methods (STAR method section, REF II) to estimate the ancestral components 
of the newly generated and published ancient individuals from the Italian 
Peninsula dated between the Neolithic and Iron Age (Figure 1A and 1B, Table 
1, Supplemental data S1A and S1B, REF II). We found that the newly generated 
individuals and published individuals dated to the Chalcolithic are within the 
so-called European Neolithic (EN) cluster featuring Eastern European Neolithic 
individuals on the right side in the PCA (Figure 5; Figure 2A, REF II). This 
pattern has already been reported by (Marcus et al., 2020) highlighting that 
ancient individuals from Sardinia dated to the Neolithic are genetically closer to 
Western European Neolithic individuals than to Eastern European Neolithic 
individuals including Neolithic individuals from the Italian Peninsula. The 
individuals dated to the Early Bronze Age (EBA) fall within the Post-Neolithic 
cluster overlapping with present-day Eurasian and published ancient individuals 
dated to the Bronze Age period (Figure 2A, REF II). We further investigated the 
genetic affinities of the Chalcolithic individuals to WHG individuals using f3 
and f4 outgroup statistics (Supplemental data S2H, REF II). The results of the f4 
statistics in form f4(Mbuti.DG, Italy_Mesolithic.SG; Italy_Sardinia_N, X) 
indicated that Italy_Sardinia_N shares more with Italy_Central_Mesolithic than 
with the Chalcolithic individuals from the Italian Peninsula explaining the 
overlap of ancient Sardinian individuals dated to the Chalcolithic in the right 
side of the EN cluster (Fernandes et al., 2020; Marcus et al., 2020).  
 To estimate the genetic contribution of the Steppe-related ancestry com-
ponent in the ancient individuals dated between the Neolithic and Iron Age, we 
performed qpWave/qpAdm, DyStruct, Admixture, and f4 statistics in form 
f4(Mbuti.DG, Yamnaya Kalmykia; X, Anatolia_N) (modified figure 6; Figure 
2B+C, Supplemental figure S2–S4, Supplemental data S3, REF II). The results 
of these allele frequency-based tests were all consistent and indicated significant 
enrichment of the Steppe-related ancestry component in ancient individuals 
dated to the EBA and Bronze Age, (represented by two published ancient 
individuals related to the Bell Beaker culture in the Northern Italian Peninsula 
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(Olalde et al., 2018)), all newly generated individuals dated to the EBA and BA 
and published ancient individuals from the central Italian Peninsula dated to 
Pre-Roman Imperial time (Antonio et al., 2019) (Figure 2C, Supplemental 
figure S4, REF II). We further tested the presence of the Iran-Neolithic related 
ancestry component in Pre-Bronze Age individuals as indicated by (Antonio et 
al., 2019; Fernandes et al., 2020), but did not find any significant results. Our 
study does not reject the hypothesis of the Iran-Neolithic related ancestry 
component in the Pre-Bronze Age time period nor the presence of the Steppe-
related ancestry component in the southern Italian Peninsula, however, more 
genome-wide data from different geographical locations in the Italian Peninsula 
would be needed to define the presence of those genetic components and assess 
the dynamics of the spread of the Steppe-related ancestry component. 

Figure 5. Principal component analysis of newly generated individuals with pre-
viously published data projected onto the variation from present-day populations. 
The two highlighted clusters (European Neolithic cluster and Post-Neolithic cluster) 
present the genetic affinities of the newly generated ancient individuals. Figure re-
printed with permission from figure 2A (REF II), Elsevier.  
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5.2.2. Shift in uniparental markers 

The uniparental markers of the ancient individuals were estimated and com-
pared to published ancient individuals from Eurasia to investigate a structure 
among the ancient groups. Mostly, the individuals carried subclades of the 
mtDNA haplogroups H, J, K, and N1 (Table 1, Supplemental data S1B and 
S1E, REF II), equivalent to the mtDNA haplogroup diversity of published 
ancient individuals dated to the Late Neolithic and Bronze Age (Lazaridis et al., 
2014; Haak et al., 2015). We found a change in the Y chr haplotypes with the 
enrichment of the Steppe-related ancestry component during the EBA in the 
newly generated individuals in comparison to the Y chromosome haplotypes of 
published ancient individuals from previous studies (modified figure 6; Figure 
2C, REF II) (Keller et al., 2012; Allentoft et al., 2015; Olalde et al., 2018; 
Antonio et al., 2019; Fernandes et al., 2020; Marcus et al., 2020). The results 
are consistent with previous studies focusing on the spread of the Steppe-related 
ancestry component and the Y chr haplotype R1 (Allentoft et al., 2015; Haak et 
al., 2015; Olalde et al., 2019; Papac et al., 2021; Villalba-Mouco et al., 2021).  

Figure 6. Result of the f4 statistics to estimate the enrichment of the Steppe-related 
ancestry component in ancient individuals from the Italian Peninsula and the 
respective Y chr haplotypes of male individuals. 
In detail, the Figure presents the analysis of the Steppe-related ancestry component in 
selected published (transparent) and newly generated ancient individuals (X) from the 
Italian Peninsula using f4 statistics in form f4(Mbuti.DG, Yamnaya Kalmykia; X, 
Anatolia Neolithic) (samples with * have a Z score less than or equal to 3). Tests with 
less than 5,000 SNPs were not included. The colours present the periods (red=Neolithic, 
blue=Chalcolithic, green=Early Bronze Age, purple=Bronze Age, yellow=Iron Age) 
included in this study. The Y chr haplotypes of male individuals are added to the figure 
to give a better understanding of the shift in uniparental markers during the transition. 
The modified figure is reprinted with permission from figure 2A (REF II), Elsevier.  
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5.2.3. Social structural-related shifts 

Besides the evaluation of the Steppe-related ancestry component, we explored 
the relatedness of the ancient individuals from the commingled cave burials 
during the transition, especially from the archaeological site Broion covering 
the periods Chalcolithic and Bronze Age, and tested whether the shift of burial 
practices occurred with the shift of genetic ancestry as featured in another recent 
study (Villalba-Mouco et al., 2021).  
 In general, the number of ancient individuals in our study is approximately 
equal between the Chalcolithic and Bronze Age periods (n=12 and 10, 
respectively). However, the number of male individuals within the Chalcolithic 
cave burials differs from the expected value (binomial; p-value = 0.038) hinting 
at a bias in the cave burial toward males. On the other hand, we tested this 
phenomenon using f3 outgroup statistics and confirmed the absence of a male-
sex bias associated with the arrival of the Steppe-related ancestry component as 
reported by other studies (Saag et al., 2017) (Supplemental figure S5, REF II). 
However, these results are by the limited number of ancient individuals from 
the Italian biassed Peninsula.  
 We did not find genetic relationships among the individuals within the 
Bronze Age cave burials including available published ancient individuals. 
Within the Chalcolithic cave burials, we estimated five potential 1st- to 3rd-
degree relationships between six individuals sharing uniparental markers, where 
all the relationships were detected between males (More details explained in the 
manuscript of REF II; Table 2, REF II). Interestingly, all the male individuals 
from the archaeological site Broion share the Y chr marker G2a-P15 and, 
despite the low average Y chr coverage, share the same haplotype G2a (modi-
fied figure 6; Figure 2C, Supplemental data S1F, REF II).  
 In addition, we examined the runs of homozygosity (ROH) by calculating 
the segment number and length of four length categories and estimating the size 
and homogeneity of populations dated from Mesolithic to Bronze Age and 
present-day Italians (STAR methods, Figure 4, Supplemental figure S7, Supple-
mental data S4, REF II). The ROH>1.6 cM showed a change in the population 
structure after the Mesolithic and more similar values to present-day Italians. 
We showed a significant difference of ROH>1.6 cM segments when comparing 
ancient individuals from the Neolithic and the Bronze Age indicating two 
possible scenarios: i) larger effective population size during the Bronze Age 
period in the Italian Peninsula or ii) increased diversity after an admixture event 
with local individuals during the Chalcolithic period.  
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5.2.4. Phenotypic features of ancient Italians 

For this part of the study, in total 332 ancient individuals from the Italian 
Peninsula were selected and imputed with genetic markers related to 115 
phenotypes associated with metabolism, immunity, and pigmentation (Allentoft 
et al., 2015; Lazaridis et al., 2016; Mathieson et al., 2018; Antonio et al., 2019; 
Fernandes et al., 2020; Marcus et al., 2020) (STAR methods, Supplemental data 
S6, REF II). In total, 15 variants were significant but were interpreted carefully 
due to the limited number of individuals. We estimated significant differences 
in the variants during and after the Roman Imperial period than during the 
Chalcolithic/Bronze Age transition (more details are explained in the manus-
cript of REF II). One interesting finding here is the decrease in alleles as-
sociated with the protection against Hansen’s disease (leprosy) and the funda-
mental increase of the disease in bioarchaeological findings and historical 
records in Europe from 3,000 BCE and its decline ~1,000 CE (Donoghue et al., 
2005; Köhler et al., 2017) (Table 3, Data S6C, REF II). 
 In the review by Aneli et al. 2021, the newly generated individuals were 
added to explore the five variants – lactose metabolism, fatty acid metabolism, 
immune system, skin pigmentation, and eye colour, which have been reported to 
be selected with the genetic changes during the major movements (Mathieson et 
al., 2015; Aneli et al., 2021). Here, the results presented a similar observation as 
reported in Mathieson et al. 2015. However, the selection for the lactase 
persistence is absent in individuals from the Italian Peninsula, Sardinia, and 
Sicily dated to the Bronze Age and first, it is presented in individuals from the 
Italian Peninsula dated to the Antiquity confirming our results stated above.  
 
 

5.3. Genetic distribution of present-day Southern Italians 
during the Iron Age (REF III) 

For this study, DNA was extracted from human skeletal remains from three 
necropoleis geographically located in modern Apulia, Southeastern Italy. The 
archaeological sites are dated to the Iron Age and Mediaeval periods referring to 
archaeological findings and historical records. After raw data processing, the 
final dataset contained 16 ancient individuals (Ordona = 8, Salapia = 5, San 
Giovanni Rotondo = 3), which were merged with selected ancient and present-
day individuals from i) AADR (https://reich.hms.harvard.edu/allen-ancient-dna-
resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data, ver-
sion 44.3; more details in the supplemental materials, REF III), ii) Chalco-
lithic/Bronze Age individuals (Saupe et al., 2021), ii) Tagliente2 individual 
(Bortolini et al., 2021), iii) genome-wide data of present-day Italian individuals 
(Raveane et al., 2019), iv) present-day Apulian individuals (Sallustio et al., 
2015), v) haploid genomes representing the Eurasian component of modern 
Ethiopians (Molinaro et al., 2019).  
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5.3.1. Genetic heterogeneity of Iron Age Apulia 

We investigated the genetic heterogeneity of the ancient individuals from 
Apulia to understand the connectedness of the geographical area with locals 
from the Italian Peninsula, Western Europeans, the Balkan; especially Croa-
tians, the Aegean; especially Cretan, and the Levantines. The results of the PCA 
showed that the ancient individuals dated to the Iron Age period cluster largely 
between ancient and present-day populations stretching along the PC2 and 
overlapping with other Iron Age individuals from the Mediterranean Basin 
(Figure 1C, REF III). We investigated these genetic affinities further using the 
qpWave/qpAdm framework and modelled the individuals using different 
combinations of ancestral components (WHG, Anatolian Neolithic, Steppe-
related, and CHG or Iranian-Neolithic- related) reported across Western Europe 
at that time (Figure 7; Method section, Figure 2B and 2C, Supplemental figure 
S7A , Supplemental data S5, REF III). The results showed that the Iron Age 
Apulians, mainly, could be modelled as a two-way admixture between Ana-
tolian Neolithic and Steppe-related ancestry; however, an alternative model 
compiled by Anatolian Neolithic and CHG/Iranian-Neolithic-related ancestry 
could also be a fit for a subset of the ancient individuals. At the same time, the 
ancient individuals shifting towards present-day populations from West Asia 
could be modelled as a three-way admixture between Anatolian Neolithic, 
Steppe-related, and CHG/Iranian-Neolithic-related ancestry explaining the shift 
within the PCA (Figure 1C, in detail Figure 2B-C, Supplemental figure S5A, 
REF III).  
 Remarkably, alternative models, including Minoans, as a possible source 
from the Aegean and Amhara_NAF (linked with Sea People), required an addi-
tional source for the model to be a better fit. The additional required sources are 
mostly related to Iranian-Neolithic/CHG, Steppe, or WHG individuals. In addi-
tion, we modelled and compared the genetic composition of ancient individuals 
dated to the Roman Republic and re-confirmed the major presence of the 
Steppe-related ancestry component as reported in (Antonio et al., 2019). Based 
on the results and the close geographical location of the newly introduced 
archaeological sites, we were able to conclude a high genetic heterogeneity 
during the Iron Age in the southeastern Italian Peninsula, which was impacted 
by the local ancestry with previous Bronze Age sources such as Minoans and 
Sea People. 
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5.3.2. Ancient heterogeneity as a base for the gene pool of 
present-day Italians in Southeastern Italy 

To examine the contributions of local Iron Age and Neolithic populations to the 
present-day southeastern Italians, we tested the genetic affinities of the ancient 
individuals using the results of the PCA visualisation and performed f4 statistics 
in form f4(Modern Apulian, Iron Age Apulian (IAA); Neolithic/Chalcolithic 
populations, Mbuti) (Figure 1C and 2A, REF III). We found that the ancient 
individuals primarily scatter between present-day Italians (including Sardi-
nians), whereas the picture is different for other European populations dated to 
the Iron Age (Schiffels et al., 2016; Saag et al., 2019). On the other side, we 
found that two ancient individuals dated to the Mediaeval period show a shift 
towards present-day West Asian and Caucasus populations indicating the 
potential source of the split between northern-central and southern present-day 
Italians. This shift was already seen in central Italian individuals dated to the 
Republican-Imperial Roman period, but it is unclear whether southeastern 
Apulian individuals would have shown a similar shift towards the present-day 
Italian gene pool (Antonio et al., 2019).  
 

5.3.3. The origin of the Daunians  

We further investigate evidence of the genetic origin of the Daunians using f3 
statistics, qpWave/qpAdm framework, and f4 statistics. The results of the f3 
statistics, using Minoans, Iron Age Croatians, and the local Roman Republicans 
as potential genetic sources respectively, declined a genetic origin from the 
Aegean (Figure 3A, REF III). The majority of the ancient individuals from the 
southeastern Italian Peninsula showed a higher genetic affinity with Roman 
Republicans suggesting a local Iron Age Italian ancestry.  
 Moreover, four individuals clustering closer with present-day Italians in the 
PCA (Figure 1C, REF III), presented a higher affinity towards Iron Age 
Croatian individuals making the Cretan or Arkadian origin less likely. 
 

5.3.4. Relatedness of Iron Age individuals from Southeastern 
Italy and genetic heterogeneity  

We estimated the genetic relatedness of the ancient individuals from the 
archaeological sites using READ (Monroy Kuhn, Jakobsson and Günther, 2018) 
and found a 1st-degree relationship between two female individuals from the 
archaeological site Ordona and two 2nd-degree relationships between one 
individual from Ordona and two individuals from Salapia. The latest relation-
ship was tested combining the sites differently and declined based on the 
comparison of the uniparental markers plus the obtained radiocarbon dates 
(more details in the Material and Method section of REF III). 
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 Notably, the genetic compositions differ between the two female individuals 
from Ordona, who shared the 1st-degree relationship and the identical mtDNA 
haplogroup H5c.  
 Both individuals pointed to different genetic contributions in the PCA with 
one individual having a closer genetic affinity towards West Asia and Caucasus 
present-day populations, although their radiocarbon dates overlapped (Figure 
1C, Supplemental figure S4+S7, REF III). We further investigated the genetic 
affinities using f4 statistics using ancient individuals dated from the Neolithic to 
the Roman Republic as a potential genetic source and confirmed the affinities 
towards published ancient individuals with significant genetic contributions 
from CHG (Supplemental figure S4, REF III). Based on the results, we were 
able to find additional evidence for the genetic heterogeneity during the Iron 
Age period in the southeastern Italian Peninsula. However, more genome-wide 
data from other archaeological sites along the Eastern coastline would be 
needed to fully understand the genetic contributions of groups from the Balkans.  
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6. CONCLUSIONS 

The results presented in this thesis showed that the Italian Peninsula has been 
shaped by continuous migration events reflected in the gene pool of present-day 
Italians and leaving their marks on the cultures. The main conclusions are the 
following: 
 
REF I: 

● The newly generated genome-wide data of one individual – Tagliente2 – 
dated 17,000 years ago showed genetic affinities with ancient indivi-
duals associated with the Villabruna cluster suggesting at least 3,000 
years earlier human migration events in Southern Europe. 

● The genetic analyses showed that the major migrations in Southern 
Europe occurred during the cold phase following the LGM peak and 
that Southern Europe, the Balkans, and Eastern Europe/Western Asia 
were already connected through the same network of potential LGM 
refugia sharing both genes and cultural information. 

 
REF II:  

● The first genome-wide data of ancient individuals dated to the (Early) 
Bronze Age from the northeastern and central Italian Peninsula indi-
cated the genetic changes during the Chalcolithic/Bronze Age transi-
tion, connected with the appearance of the Steppe-related ancestry 
component in Bronze Age individuals and its continuous presence 
during the Iron Age.  

● Two commingled cave burial sites suggested a shift in the social 
structure-related pattern during the Chalcolithic/Bronze Age transition. 
Five 1st- to 3rd-degree relationships between male individuals were 
only found in the sites dated to the Chalcolithic suggesting a close 
patrilineal kinship pattern. However, no close relationships were found 
between individuals dated to the Bronze Age.  

● The study of phenotypic-related alleles in both the newly generated and 
published ancient individuals from Neolithic to Modern times suggested 
that noticeable changes occur during or after the Roman Imperial period 
as exemplified in the decrease of the alleles associated with the 
protection against leprosy. 

 
REF III:  

● Newly generated genome-wide data from ancient individuals geo-
graphically located in the Southeastern Italian Peninsula suggested a 
high genetic heterogeneity during the Iron Age period, comparable with 
central Italian samples from the Republican and Imperial Roman 
periods.  
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● Our data depict a pan-Mediterranean genetic landscape for the south-
eastern Italian Peninsula and its connectedness to the Eastern Mediter-
ranean Basin with Mediaeval period individuals being genetically 
shifted toward West Asians. 

● Despite the sites being geographically close and sharing a material 
culture, we estimated the 1st-degree relationship for two female indi-
viduals characterized by different ancestral components, additionally 
indicating high mobility between the Mediterranean regions. 
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SUMMARY IN ESTONIAN 

Vahemere piirkonna geneetiline kujunemine enne meie 
ajaarvamist: fookusega Apenniini poolsaarele 

 
Rohkearvulised ja erisugused uuringud on panustanud meie arusaamisesse 
inimajaloost. Inimasustuse ajalugu Euroopas sisaldab mitmeid etappe, seal-
hulgas küttide-korilaste Lääne-Euraasias elamine paleoliitikumis, põlluharimise 
ja karjakasvatuse kasutuselevõtt läbi kontaktide Levantist ja Anatooliast (Lääne-
Aasia) Euroopasse rännanud inimestega ja Ponto-Kaspia stepirahvaste migrat-
sioon. Enamik senistest uuringutest on keskendunud üldistele geneetilistele 
muutustele Euroopas ja nende seostele arheoloogiliste tõendite ja ajalooliste 
sündmustega. Teadlased on varasemalt keskendunud ka kindlale kultuurile, 
geograafilisele piirkonnale ja/või riigile. Sellegi poolest on mõned Euroopa 
piirkonnad jätkuvalt väheuuritud ja neile keskendumine võib aidata täita lünki 
inimeste rändeajaloos. 
 Üks selline ala on Vahemere piirkond, mis jääb kolme maailmajao – Aafrika 
lõunas, Aasia idas ja Euroopa põhjas – vahele ning on mänginud keskset rolli 
inimtsivilisatsioonide ajaloos. Vahemere ümbruse kliimat iseloomustavad pea-
miselt pehmed talved ja kuumad, kuivad suved, mis teevad selle piirkonna 
inimasustusele sobivaks. Apenniini poolsaare geneetiline ajalugu on pikalt 
olnud väheuuritud, vaatamata poolsaare geograafilisele paiknemisele Vahemere 
piirkonna keskmes ning sotsiaal-kultuurilistele sidemetele ümbritsevate popu-
latsioonidega. Lisaks teame me rohkem ajaloolistest sündmustest, mis on seotud 
Rooma impeeriumi ja sellele järgnenud perioodidega, kui migratsioonidest enne 
rauaaega ja nende mõjust tänapäevaste itaallaste genoomidele. 
 Tänu teise põlvkonna sekveneerimistehnoloogia (NGS) kasutuselevõtule ja 
ammuse desoksüribonukleiinhappe (vana DNA) inimsäilmetest eraldamise 
meetodite väljatöötamisele on võimalik kombineerida teadmised ajaloost, 
arheoloogiast, antropoloogiast ja geneetikast, et heita valgust inimajaloole ja 
demograafilistele muutustele. Siiski piiravad vana DNA uurimist DNA mole-
kulide ebaühtlane säilimine erinevate keskkonnatingimustega piirkondades, 
kättesaadavate proovide piiratud arv huvipakkuvatest paikadest, DNA lagune-
mine ajas ja uuringute kulukus. Nende faktorite tõttu arendavad teadlased 
laboris kasutatavaid töövooge ning bioinformaatilisi meetodeid, et genereerida 
rohkem andmeid ja produtseerida tulemusi, mida avalikkusele tutvustada. 
 See doktoritöö keskendub geneetilise ja sotsiaalse struktuuriga seotud muu-
tustele Apenniini poolsaarel viimase jääaja maksimumi lõpust (19–17 tuhat 
aastat tagasi) Rooma vabariigi loomiseni (umbes 2000 aastat tagasi). Genereeriti 
ülegenoomsed andmed inimsäilmetest, mis pärinesid Itaalia põhja-, kesk- ja 
kaguosast. Neid andmeid analüüsiti varem avaldatud andmete kontekstis, et 
uurida ammuste populatsioonide geneetilist ülesehitust (ja selle muutusi) läbi 
aja. Lõplik andmestik koosnes indiviididest, kes pärinevad paleoliitikumist (43–
5 tuhat aastat enne meie aega) rauaajani (1100–700 aastat enne meie aega), või-
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maldades arheoloogiliste andmete kontekstis uurida kolme peamist rahvasti-
kuliikumist paleoliitikumis, neoliitikumis ja eneoliitikumi-pronksiaja üle-
minekul (4500–2500 aastat enne meie aega). 
 Käesoleva doktoritöö tulemused näitasid, et Apenniini poolsaart on mõju-
tanud järjestikused migratsioonid, mis peegelduvad tänapäeva itaallaste 
geenitiigis ja on jätnud jälje kultuuri. Peamised järeldused on järgmised: 
 
REF I: 

• Ühe 17 000 aasta vanuse indiviidi, Tagliente2 vastgenereeritud üle-
genoomsed andmed näitasid geneetilist lähedust Villabruna grupiga 
seostatud ammuste indiviididega, viidates varem teada olnust vähemalt 
3000 aastat varasematele migratsioonidele Lõuna-Euroopas. 

• Geneetilised analüüsid näitasid, et Lõuna-Euroopa suured ränded toi-
musid viimase jääaja maksimumile järgnenud külmal perioodil ning et 
Lõuna-Euroopa, Balkan ja Ida-Euroopa/Lääne-Aasia olid omavahel 
seotud juba potentsiaalsete jääaja maksimumi refuugiumite kaudu, jaga-
des nii geene kui kultuurilist infot. 

REF II: 
• Esimesed ülegenoomsed andmed Apenniini poolsaare kirde- ja keskosas 

(vanemal) pronksiajal elanud inimestelt viitasid eneoliitikumi-pronksiaja 
üleminekul toimunud geneetilistele muutustele, mis olid seotud stepiga 
seostatud päritolu ilmumisega pronksiajal ja selle jätkuva esinemisega 
rauaajal. 

• Kaks segatud materjaliga matmispaika koobastes vihjasid muutustele 
sotsiaalse struktuuriga seotud mustrites eneoliitikumi-pronksiaja üle-
minekul. Eneoliitikumi indiviidide seast leiti 5 esimese kuni kolmanda 
astme meessugulaste paari, mis viitab patrilineaarsetele ehk isa kaudu 
seotud sugulusmustritele. Pronksiaja indiviidide hulgast sealjuures lähi-
sugulasi ei leitud. 

• Nii uute kui varem avaldatud neoliitikumist kuni uusajani pärinevate 
indiviidide fenotüübiga seotud alleelide uurimine viitas märgatavatele 
muutustele Rooma impeeriumi ajal või pärast seda, mida väljendab näiteks 
leepravastase kaitse pakkumisega seostatud alleelide sageduse vähenemine. 

REF III: 
• Uued ülegenoomsed andmed Apenniini poolsaare kaguosa ammustelt 

indiviididelt paljastavad suure geneetilise varieeruvuse rauaajal, mis on 
võrreldav Kesk-Itaalia Rooma vabariigi ja impeeriumi perioodidega. 

• Meie andmed näitavad, et Apenniini poolsaare kaguosa geneetiline 
maastik oli Vahemere piirkonna ülene ning sellel alal oli ühendusi ka 
Vahemere piirkonna idaosaga, mida väljendab keskaegsete indiviidide 
suurenenud geneetiline sarnasus Lääne-Aasiaga. 

• Kuigi kaasatud matmispaigad paiknesid üksteisele lähedal ja jagasid 
materiaalset kultuuri, esines nende seas vaid üks paar esimese astme 
sugulasi, kes seejuures olid erineva geneetilise päritoluga naised, mis 
viitab suurele liikuvusele Vahemere erinevate piirkondade vahel. 
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