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Abstract: In this note we are concerned with estimates for the spectral projection

operator Pµ associated with the twisted Laplacian L. We completely characterize the
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As an application, we obtain a uniform resolvent estimate for L.
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1. Introduction

We consider the twisted Laplacian L on Cd ∼= R2d, d ≥ 1, which is
defined by

L = −
d∑
j=1

(( ∂

∂xj
− 1

2
iyj

)2
+
( ∂

∂yj
+

1

2
ixj

)2)
.

It is well known that L has a discrete spectrum which consists of the
points 2k + d, k ∈ N0 := N ∪ {0}. For any multi-index α, β ∈ Nd0, the
special Hermite function Φα,β is given by

Φα,β(z) = (2π)−d/2
∫
Rd
eix·ξΦα

(
ξ +

1

2
y
)

Φβ

(
ξ − 1

2
y
)
dξ, z = x+ iy,

which are the Fourier–Wigner transform of the Hermite functions Φα
and Φβ on Rd. It is easy to see that {Φα,β : α, β ∈ Nd0} forms a complete
orthonormal system in L2(Cd). Also, LΦα,β = (2|β| + d)Φα,β , which
means that Φα,β is an eigenfunction of L with eigenvalue 2|β|+d, hence
the eigenspace of L is infinite-dimensional. Here |β| = β1 + · · · + βd.
A simple calculation shows that Φα,β is also an eigenfunction of the
Hermite operator −∆z + 1

4 |z|
2 with eigenvalue |α| + |β| + d. So, the

functions Φα,β are called the special Hermite functions. For more about
the twisted Laplacian and the special Hermite functions, we refer the
reader to the monograph by Thangavelu [23].
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The spectral projection operator Pµ onto the eigenspace of L associ-
ated with the eigenvalue µ = 2k + d ∈ 2N0 + d is given by

(1.1) Pµf =
∑
α∈Nd0

∑
β:2|β|+d=µ

〈f,Φα,β〉Φα,β , f ∈ S(R2d).

Thus, it follows that f =
∑
µ∈2N0+d

Pµf . It is known ([23]) that Pµ is
also expressed by the twisted convolution

(1.2) Pµf = (2π)−df × ςk, µ = 2k + d,

where ςk(z) =
∑
|α|=k Φα,α(z) = Ld−1k

(
1
2 |z|

2
)
e−

1
4 |z|

2

and Lαk is the La-

guerre polynomial of type α. Here, the twisted convolution f×g is defined
by

f × g(z) =

∫
Cd
f(z − w)g(w)ei

1
2 Im z·w dw,

where z · w = z1w1 + · · ·+ zdwd for any z, w ∈ Cd.
The estimates for Pµ have been of interest in relation to Lp conver-

gence of the Bochner–Riesz means SαR(L) associated with the special Her-
mite expansion, which is given by SαR(L)f :=

∑
µ≤R(1−µ/R)αPµf (see,

for example, [23]). In particular, L2-Lq estimates for Pµ (equivalently,

Lq
′
-L2 estimates for Pµ) were studied by Thangavelu [22, 23, 24], Rat-

nakumar, Rawat, and Thangavelu [19], Stempak and Zienkiewicz [21],
and Koch and Ricci [13]. The sharp L2-Lq bound for Pµ is now well
understood. More precisely, for 2 ≤ q ≤ ∞,

(1.3) ‖Pµ‖2→q ≤ Cqµ%(q)

holds with the exponent %(q) given by

%(q) =

−
1
2

(
1
2 −

1
q

)
if 2 ≤ q ≤ 2(2d+1)

2d−1 ,

d−1
2 −

d
q if 2(2d+1)

2d−1 ≤ q ≤ ∞,

and the estimate (1.3) is optimal in that the exponent %(q) cannot be
taken to be a smaller one. Here, ‖T‖p→q denotes the usual operator norm
from Lp to Lq of a linear operator T defined by

‖T‖p→q = sup
f∈S, f 6=0

‖Tf‖q/‖f‖p.

The estimate (1.3) was shown by Thangavelu [22, 23] and, subsequently,
Ratnakumar, Rawat, and Thangavelu [19] for q ≥ q◦ with some q◦ >
2(2d + 1)/(2d − 1). Afterward, Stempak and Zienkiewicz ([21]) proved
(1.3) for all q ≥ 2 except q = 2(2d+1)/(2d−1). The remaining endpoint
case q = 2(2d+1)/(2d−1) was settled by Koch and Ricci [13]; moreover,
they showed that the estimate (1.3) is sharp. A local version of the
endpoint estimate was obtained earlier by Thangavelu [24].
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The purpose of this paper is to establish the optimal Lp-Lq esti-
mate for Pµ when 1 ≤ p ≤ 2 ≤ q ≤ ∞. Our result was inspired
by the recent work [9] of the authors regarding Lp-Lq estimates for
the Hermite spectral projection Πµ, which is the orthogonal projection
onto the eigenspace of the Hermite operator H = |x|2 − ∆ associated
with the eigenvalue µ. In [9], a systematic study concerning the bound
on ‖Πµ‖p→q was carried out. The main ingredients were a representa-
tion formula for Πµ and a modification of the TT ∗-argument. In par-
ticular, the representation formula was obtained by making use of the
Schrödinger propagator eitH and the fact that the eigenvalues of H are
in 2N0 +d. See [9, Section 2]. It turns out that a similar approach works
even more efficiently for the projection operator Pµ and we obtain a com-
plete characterization of the Lp-Lq bound on ‖Pµ‖p→q in terms of µ.

In Theorem 1.2 below, we show that the boundedness property of the
spectral projection Pµ is similar to that of the operator

℘kf(x, y) =
1

(2π)2d

∫
k−1≤|ξ|2<k

ei(x,y)·ξ f̂(ξ) dξ, (x, y) ∈ Rd × Rd,

which is the spectral projection operator associated with the Lapla-
cian −∆ in R2d. For a discussion regarding the sharp Lp-Lq bounds
for the operator ℘k, we refer to [9, Section 3.3]. Compared with the
Hermite spectral projection Πµ, the sharp exponent %(p, q) exhibits less
involved behavior and we do not have to appeal to the heavy machin-
ery used in [9]. Consequently, we obtain the sharp estimates much more
easily.

Before stating our result, we need to introduce some notations. Let
A,B,C,D,F ∈ [1/2, 1]× [0, 1/2] be the points defined by

A=
( 2d+ 3

2(2d+ 1)
,

1

2

)
, B=

( (2d)2 + 8d− 1

4d(2d+ 1)
,

2d− 1

4d

)
, C=

(
1,

2d− 1

4d

)
,

D=
(d+ 1

2d
,

1

2

)
, F=

( (2d)2 + 4d− 4

4d(2d− 1)
,
d− 1

2d− 1

)
, G=

(2d+ 3

4d
,

2d− 1

4d

)
.

For a point (x, y) ∈ [1/2, 1] × [0, 1/2], let (x, y)′ = (1 − y, 1 − x) and,
similarly, for a set S ⊂ [1/2, 1]×[0, 1/2] we put S′ = {(x, y)′ : (x, y) ∈ S}.
Then, we define the set R1, R2, and R3 ⊂ [1/2, 1]× [0, 1/2] as follows.

Definition 1.1. LetR1 denote the closed pentagon with vertices
(
1
2 ,

1
2

)
,

A, B, B′, A′, from which two points B and B′ are removed. Let R2

be the closed trapezoid with vertices A,
(
1, 12
)
, C, B, from which the
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closed line segment [B,C] is removed, and R3 denote the closed penta-
gon with vertices B, C, (1, 0), C′, and B′, from which the closed line
segments [B,C] and [B′,C′] are removed. (See Figure 1.)

1
q

1
p

A′

A

C′

CR1

R′
2

R2

R3

B′
B

0
1
2

1
2

1

1
q

1
p

D

F′

F
D′

D

G′

G

0
1
2

1
2

1

Figure 1. The points A, B, C, D, F, G and the regions R1,

R2, R3, and D. The point B lies on the line segment [A, (1, 0)]

connecting A and (1, 0). Also the midpoint of [B,B′] with
(
1
2
, 1
2

)
,

A and A′ together forms a square.

For (p, q) ∈ [1, 2]× [2,∞], we define the exponent %(p, q) by setting

(1.4) %(p, q) =



− 1
2

(
1
p −

1
q

)
,

(
1
p ,

1
q

)
∈ R1,

d
(
1
p + 1

q

)
− 2d+1

2 ,
(
1
p ,

1
q

)
∈ R2,

2d−1
2 − d

(
1
p + 1

q

)
,
(
1
p ,

1
q

)
∈ R′2,

d
(
1
p −

1
q

)
− 1,

(
1
p ,

1
q

)
∈ R3.

We are now ready to state our main result.

Theorem 1.2. Let d ≥ 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞. We have the estimate

(1.5) ‖Pµ‖p→q ≤ Cp,qµ%(p,q)

if and only if (1/p, 1/q) 6∈ [B,C]∪ [B′,C′]. The bounds are sharp in that
the exponents %(p, q) cannot be improved. Additionally, we have

(i) If (1/p, 1/q) ∈ (B,C], we have ‖Pµ‖Lp→Lq,∞ . µ%(p,q).

(ii) If (1/p, 1/q) = B or B′, we have ‖Pµ‖Lp,1→Lq,∞ . µ%(p,q).

Here ‖Pµ‖Lp,r→Lq,s means the operator norm of Pµ from the Lorentz
space Lp,r to Lq,s.
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The twisted Laplacian is related to the Heisenberg sub-Laplacian [13,
23, 25]. The reduced Heisenberg group hd is the set Rd × Rd × T with
group law

(x, y, eit)(x′, y,′ eit
′
) = (x+ x′, y + y′, ei(t+t

′+ 1
2 (x
′·y−x·y′))),

and the sub-Laplacian L on hd is defined by

L = −
d∑
j=1

(( ∂

∂xj
− 1

2
yj
∂

∂t

)2
+
( ∂

∂yj
+

1

2
xj
∂

∂t

)2)
.

The estimate (1.5) can be used to generate the spectral projection es-
timates for the differential operators acting on a special class of func-
tions on hd. Especially, on the class of functions of the form g(x, y, t) =
eimtf(x, y), m ∈ Z, we have L(eimtf) = eimtLmf , where

Lm = −
d∑
j=1

(( ∂

∂xj
− m

2
iyj

)2
+
( ∂

∂yj
+
m

2
ixj

)2)
.

By scaling, it is easy to see that, for each nonzero m ∈ Z, the num-
bers (2k + d)|m|, k ∈ N0, are eigenvalues of Lm with the corresponding
eigenfunctions

Φmα,β(x, y) = |m|d/2Φα,β(|m|1/2x, sgn(m)|m|1/2y),

which form an orthonormal basis of L2(R2d). So, the pairs (|m|(2k +
d),m), m ∈ Z \ {0}, k ∈ N0, give the discrete joint spectrum of L
and −i∂t. Let Pm,k be the projection onto the joint eigenspace corre-
sponding to the eigenvalue (|m|(2k + d),m) (see [23, 13] for further
details). Then the spectral projection estimate (1.5) yields

‖Pm,ku‖Lq(hd) . (2k + d)%(p,q)|m|d(
1
p−

1
q )‖u‖Lp(hd).

We now consider the estimate for the resolvent of L, which takes the
form

(1.6) ‖(L− z)−1‖p→q ≤ Cp,q,z, z ∈ C \ (2N0 + d),

where (L− z)−1 is defined by

(1.7) (L− z)−1f =
∑
µ

(µ− z)−1Pµf.

Estimates for resolvents have a wide range of applications. In particular,
uniform resolvent estimates for partial differential operators which hold
with Cz independent of the spectral parameter have been studied in
relation to Carleman estimates and strong/weak unique continuation
properties (for example, see [12, 5, 14, 8, 9] and references therein).
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For the closely related Hermite operator H, it was shown in [5, 14, 9]
that

(1.8) ‖(H − z)−1‖p→q ≤ Cp,q
under the spectral gap condition

(1.9) dist(z, 2N0 + d) ≥ c◦
for some c◦ > 0. Escauriaza and Vega proved (1.8) for 2d

d+2 ≤ p ≤
2 ≤ q ≤ 2d

d−2 and showed the strong unique continuation property for

the differential inequality |∂tu + ∆u| ≤ |V u| with V ∈ L∞t L
d/2
x . Also,

in [9], the authors extended the range of p, q for (1.8) to an interval
on 1/p−1/q = 2/d and obtained the strong unique continuation property

with V ∈ L∞t L
d/2,∞
x .

As an application of the spectral projection estimate we obtain the
following uniform resolvent estimate for the twisted Laplacian.

Theorem 1.3. Let d ≥ 2 and c◦ > 0. Suppose that (1/p, 1/q) is in the
closed pentagon D with vertices (1/2, 1/2), D, F, F′, D′, from which
F and F′ are removed (the gray region in Figure 1). Then there is a
constant C = C(c◦) > 0 such that

(1.10) ‖(L− z)−1‖p→q ≤ C

provided that z ∈ C satisfies (1.9). Furthermore, if
(
1
p ,

1
q

)
= F or F′,

we have the restricted-weak type estimate ‖(L − z)−1f‖q,∞ ≤ C‖f‖p,1
provided that (1.9) holds.

For the 1-dimensional case the uniform resolvent estimate (1.10) holds
for all 1 < p ≤ 2 ≤ q <∞ (see Remark 1).

It is natural to expect that, as an application of the uniform resol-
vent estimates, one may be able to show the strong unique continuation
property for the heat equation associated with L as in the previous works
but we do not intend to pursue the matter here. When p = q′, the es-
timate (1.10) was previously obtained by Cuenin [4, Proposition 2.2] to
show clustering estimates for eigenvalues of the twisted Laplacian with
Lp potentials. In fact, he obtained the resolvent estimate (1.6) with the

bound (1 + |Re z|)%(q′,q)(1 + δ(z)−1), where δ(z) := dist(z, 2N0 + d).
As in the case of the Hermite resolvent estimate, the gap condi-

tion (1.9) is necessary for the uniform estimate (1.10) because the twisted
Laplacian has discrete eigenvalues. Indeed, ‖(L − z)−1‖p→q ≥ |µ −
z|−1‖f‖q/‖f‖p if f is in the eigenspace corresponding to µ ∈ 2N0 + d.
Thus, the operator norm goes to infinity as z goes towards µ.
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By making use of Theorem 5.1, one can easily show that (1.10) holds
only for 1/p − 1/q ≤ 1/d. Thus, 1/p − 1/q = 1/d is the critical case
for the estimate (1.10), and it is more difficult to obtain the uniform
estimate (1.10) for p, q satisfying 1/p − 1/q = 1/d. As for the crit-
ical case, we establish (1.10) for (1/p, 1/q) ∈ (F,F′) in Theorem 1.3.
However, we could not obtain the result in the expected range. More
precisely, from (1.7) and the estimate for the fractional twisted Lapla-
cian operator (Theorem 5.1), one may expect that the uniform resol-
vent estimate (1.10) holds for any p, q for which the uniform spec-

tral projection estimate ‖Pµ‖p→q . 1 holds. Let D̃ be the pentagon
with vertices (1/2, 1/2), D, G, G′, and D′ from which two points G,
G′ are removed. Then, the operator Pµ is bounded uniformly in µ if

(1/p, 1/q) ∈ D̃. The region D̃ is the union of the hatched region in Fig-
ure 1 and D, which contains R1.

The rest of the paper is organized as follows. In Section 2 we provide
a representation formula for Pµ which will be useful to show the sharp
Lp-Lq estimate for Pµ. We separately prove the sufficiency and the nec-
essary parts of Theorem 1.2 in Sections 3 and 4. We provide the proof
of the uniform resolvent estimate for L in Section 5.

2. Preliminaries

2.1. Representation formula for Pµ. The Schrödinger propagator eitL

associated with L can be expressed by using the spectral decomposition
of L, that is to say,

eitLf =
∑
µ

eitµPµf, t ∈ R.

So, we clearly have

(2.1) ‖eitLf‖2 = ‖f‖2, t ∈ R.
Since the eigenvalues of L are in 2N0 + d, the difference between two
eigenvalues µ, µ′ of L is in 2Z, i.e., µ − µ′ ∈ 2Z. As in the case of the
Hermite spectral projection, Pµ is also written as follows:

(2.2) Pµf(z) =
1

π

∫ π/2

−π/2
eitµe−itLf(z) dt, f ∈ S(R2d).

Set z = x + iy and z′ = x′ + iy′ ∈ Cd ∼= R2d. The same idea of ex-
ploiting the specific form of the eigenvalues was already used in [9]. We
note that the Schrödinger propagator e−itL also has the following kernel
representation:

(2.3) e−itLf(z) = Cd(sin t)
−d
∫
ei(
|z−z′|2

4 cot t+ 1
2 Im z·z′)f(z′) dz′,
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where Cd is a constant depending only on d. This can be easily deduced
from the corresponding kernel formula for the heat operator e−tL by
replacing t with it (see [23, p. 37]). Since

∑
µ Pµf converges absolutely

and uniformly for f ∈ S(R2d) (see (1.1)), we now get

(2.4) Pµf(z)=Cd

∫
Cd

∫ π/2

−π/2
(sin t)−dei(tµ+

|z−z′|2
4 cot t+ 1

2 Im z·z′)f(z′) dt dz′

for any f ∈ S(R2d).
Since the kernel of eit(µ−L) has a singularity at t = 0, we need to

decompose it away from the singularity. For any function η ∈ C∞(R),
let us define Pµ[η] by

(2.5) Pµ[η]f :=
1

π

∫ π/2

−π/2
η(t)eitµe−itLf dt.

Let ψ∈C∞c (R) be a smooth function such that ψ is supported in
[
− π

16 ,
π
16

]
and equals 1 on

[
− π

32 ,
π
32

]
, and set ψj = ψ(2j−1t) − ψ(2jt). Then we

have
∑∞
j=1 ψj(t) = ψ(t) except t = 0. Moreover, we define periodic

functions ϕ0 and ϕk of period π by setting

(2.6) ϕk(t) = ψk(t− π/2) and ϕ0(t) = 1− ψ(t)− ψ(22(t− π/2))

for t ∈ [−π/4, 3π/4]. Clearly, ϕ0, ϕk are smooth and

(2.7)

∞∑
j=1

ψj(t) +

∞∑
k=3

ϕk(t) + ϕ0(t) = 1

for t ∈ (−π/2, π/2)\{0}. Here, we break it away from ±π/2 as well as 0,
because the second derivative of the phase function vanishes at ±π/2.
Using the partition of unity, we decompose the projection operator as
follows:

(2.8) Pµ =
∑
j≥1

Pµ[ψj ] +
∑
k≥3

Pµ[ϕk] + Pµ[ϕ0].

Since the eigenvalues of L are in 2N0 + d, as before it is clear from
the spectral decomposition that

(2.9) eit(L−µ) = ei(π+t)(L−µ), µ ∈ 2N0 + d.

Thus, by periodicity it follows that Pµ[η]f = 1
π

∫ π
0
η(t)eit(L−µ)f dt for

any π periodic η. In particular, we have

(2.10) Pµ[ϕk] =
1

π

∫ π

0

ϕk(t)eit(L−µ)f dt, k = 3, 4, . . .
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2.2. Estimate for oscillatory integral. In this subsection, we ob-
tain some elementary oscillatory integral estimates to obtain the L1-
L∞ bound for Pµ[η].

Let the phase function φ be defined by

φ(t) := φ(z, z′, t) := t+
|z − z′|2

4
cot t+

1

2
Im(z · z′), z, z′ ∈ Cd.

By (2.3), (2.5), and scaling, we see that

Pµ[η]f(
√
µz)=

Cd
π

×
∫
Cd

(∫ π/2

−π/2
(sin t)−dη(t)eiµφ(z,z

′,t)dt
)
f(
√
µz′)µd dz′.

(2.11)

Since ‖f(
√
µ·)µd‖1 = ‖f‖1, to obtain the L1-L∞ bound for Pµ[η] we

need only to consider the kernel
∫ π/2
−π/2(sin t)−dη(t)eiµφ(z,z

′,t) dt in the

above. We define the oscillatory integrals Ij , Jk, and J 0 by

Ij(µ) := Ij(z, z′, µ) :=

∫
η(2jt)eiµφ(z,z

′,t) dt,

Jk(µ) := Jk(z, z′, µ) :=

∫
η(2k(t− π/2))eiµφ(z,z

′,t) dt,

J 0(µ) := J 0(z, z′, µ) :=

∫ π

0

ϕ0(t)eiµφ(z,z
′,t) dt,

for j, k ∈ Z, µ ∈ R, and z, z′ ∈ Cd, where η is a function supported
in [−π/8,−π/32] ∪ [π/32, π/8].

In what follows we show the estimates for Ij(µ), Jk(µ), and J 0(µ),
which are crucial for obtaining the sharp estimates for Pµ.

Lemma 2.1. Let d ≥ 1, j, k ≥ 1. Let η be a C1-function supported in
[−π/8,−π/32] ∪ [π/32, π/8]. Then we have

|Ij(z, z′, µ)| ≤ Cµ−1/22−j/2‖η‖C1 ,(2.12)

|Jk(z, z′, µ)| ≤ Cµ−1/22k/2‖η‖C1 ,(2.13)

|J 0(z, z′, µ)| ≤ Cµ−1/2,(2.14)

with C independent of z, z′ ∈ Cd, j, k, and µ > 1.

Proof: To show (2.12)–(2.14), we make use of the well-known van der
Corput lemma (see for example [20, p. 334]). We consider the time de-
rivative of the phase function φ of the integrals Ij , Jk, and J 0. A simple
computation shows that

(2.15) φ′(t) =
4 sin2 t− |z − z′|2

4 sin2 t
.
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We first show (2.12) for j ≥ 1. If |z − z′| ≥ 2−j+1 or |z − z′| ≤ 2−j−3,
there is no critical point of φ on supp η(2j ·) because η is supported in
[−π/2,−π/8] ∪ [π/8, π/2]. So, it is easy to see that

|φ′(t)| & 22j |(2 sin t− |z − z′|)(2 sin t+ |z − z′|)| & 1

on the support of η(2j ·). Thus, applying van der Corput’s lemma yields

|Ij(µ)| . min{µ−1, 2−j} . µ−1/22−j/2.

To complete the proof of (2.12) we only need to consider the case

|z − z′| ∼ 2−j .

Let us note that

(2.16) φ′′(t) = cos t|z − z′|2/2 sin3 t

and |φ′′| & 2j on the support of η(2j ·). Applying van der Corput’s lemma
again, we have (2.12). This completes the proof of (2.12).

Next we show the estimate (2.13) for k ≥ 1. If |z − z′| ≤ 1/2, we
have |φ′(t)| & 1 on the support of η(2k(· − π/2)) because 2| sin t| ≥
1. Thus |Jk(µ)| . µ−1 ≤ µ−1/22k/2. We may now assume |z− z′| > 1/2.
Using (2.16), we have

|φ′′(t)| & | cos t| = |cos t− cos(π/2)| & 2−k

on supp η(2k(· − π/2)). Thus, van der Corput’s lemma gives the desired
result (2.13).

Finally, noting that dist(suppϕ0, {0, π/2, π}) ≥ c for some c > 0
because of (2.6), we see that |φ′(t)| & 1 if |z − z′| ≤ 1/2 and |φ′′(t)| & 1
if |z− z′| ≥ 1/2 on the support of ϕ0. Hence, the estimate (2.14) follows
from the van der Corput lemma.

We frequently make use of the following summation trick to handle
the endpoint cases [1, 3].

Lemma 2.2 ([9, Lemma 2.4]). Let 1 ≤ pl, ql ≤ ∞ and εl > 0 for l = 0, 1,
and set θ = ε0

ε0+ε1
, 1
p∗

= θ
p1

+ 1−θ
p0

, and 1
q ∗

= θ
q1

+ 1−θ
q0
. Suppose that Tj,

j ∈ Z, are sublinear operators defined from Lpl → Lql with

‖Tj‖pl→ql ≤ Bl2j(−1)
lεl , l = 0, 1.

Then we have the following.

(i) If p0 = p1 = p and q0 6= q1, then
∥∥∑

j Tjf
∥∥
Lq∗,∞

. B1−θ
0 Bθ1‖f‖p.

(ii) If q0 = q1 = q and p0 6= p1, then
∥∥∑

j Tjf
∥∥
Lq

. B1−θ
0 Bθ1‖f‖p∗,1.

(iii) If p0 6= p1 and q0 6= q1, then
∥∥∑

j Tjf
∥∥
Lq∗,∞

. B1−θ
0 Bθ1‖f‖p∗,1.
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We close this section with some sharp L1-L2, L1-L∞ estimates
for Pµ[ηk], which are useful in showing the weak type estimate for Pµ
at (1/p, 1/q) ∈ (B,C].

Lemma 2.3. Let d ≥ 1, µ ∈ 2N0 + d, and k ∈ N0. Suppose ηk ∈
C∞c ((−π/2,π/2)) such that supp ηk is contained in an interval of length ∼
2−k and satisfies

∣∣ dl
dtl
ηk(t)

∣∣ ≤ Cl2
kl for all l ∈ N0. If 2k . µ, then we

have

‖Pµ[ηk]‖1→2 . 2−k/2µ
d−1
2 ,(2.17)

‖Pµ[ηk]‖1→∞ . µd−1.(2.18)

Proof: We prove (2.17) and (2.18) by combining with the known L1-
L2 estimate for Pµ (see (1.3)) and the spectral decomposition. Note that

(2.19) Pµ[ηk]f=
∑
µ′

1

π

∫ π/2

−π/2
ηk(t)eit(µ−µ

′)Pµ′f dt=
1

π

∑
µ′

η̂k(µ′−µ)Pµ′f.

By orthogonality and the estimate ‖Pµ‖1→2 . µ
d−1
2 (see (1.3)) we see

that

‖Pµ[ηk]f‖22 .
∑
µ′

|η̂k(µ′−µ)|2‖Pµ′f‖22 ≤ C
∑
µ′

|η̂k(µ′−µ)|2(µ′)d−1‖f‖21.

Since |η̂k(t)| ≤ CN2−k(1 + 2−k|t|)−N for any N with CN independent
of k and since 2k . µ, we have

‖Pµ[ηk]f‖22 .
∑
µ′

2−2k(1 + 2−k|µ′−µ|)−2N (µ′)d−1‖f‖21 . 2−kµd−1‖f‖21,

which yields (2.17). The estimate (2.18) can be shown in the same man-
ner using (2.19) since we have ‖Pµf‖∞ . µd−1‖f‖1 by (1.3) and duality.
We omit the detail.

3. Proof of Theorem 1.2: Sufficiency part

In this section, we show (1.5) for p, q satisfying 1 ≤ p ≤ 2 ≤ q ≤ ∞
and (1/p, 1/q) 6∈ [B,C] ∪ [B′,C′] and obtain the weak/restricted-weak
type estimates for Pµ for (1/p, 1/q) ∈ [B,C] ∪ [B′,C′]. Our argument
here is similar to the one used in the proof of the local estimate for the
Hermite spectral projection (Theorem 1.5 of [9]).

From the known L2-Lq bound (1.3) for Pµ and duality, we already
have (1.5) when p = 2, q = 2, or p = q′. Thus, by duality and in-
terpolation, it suffices to show (1.5) for (1/p, 1/q) ∈ R1, the weak
type estimate ‖Pµ‖Lp→Lq,∞ . µ%(p,q) for (1/p, 1/q) ∈ (B,C] (the asser-

tion (i)), and the restricted-weak type estimate ‖Pµ‖Lp,1→Lq,∞ . µ%(p,q)

at (1/p, 1/q) = B (the assertion (ii)).
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Strong type estimate for Pµ when (1/p, 1/q) ∈ R1. We first
prove (1.5) for

(
1
p ,

1
q

)
∈ R1. In view of (2.8) and Lemma 2.2, it is enough

to show that for j ≥ 1 and k ≥ 3

‖Pµ[ψj ]‖p→q . µ−
1
2 (

1
p−

1
q )2j(−1+

2d+1
2 ( 1

p−
1
q )),(3.1)

‖Pµ[ϕk]‖p→q . µ−
1
2 (

1
p−

1
q )2k(−1+

2d+1
2 ( 1

p−
1
q )),(3.2)

‖Pµ[ϕ0]‖p→q . µ−
1
2 (

1
p−

1
q ),(3.3)

whenever (1/p, 1/q) is in the closed quadrangle Q(d) with vertices
(
1
2 ,

1
2

)
,

A, (1, 0), and A′. Indeed, by (2.8), (3.1), (3.2), and the triangle inequal-
ity, we obtain

‖Pµ‖p→q .
∑
j≥1

‖Pµ[ψj ]‖p→q +
∑
k≥3

‖Pµ[ϕk]‖p→q + ‖Pµ[ϕ0]‖p→q

. µ−
1
2 (

1
p−

1
q )

if (1/p, 1/q)∈Q(d) satisfying 1
p −

1
q <

2
2d+1 . For (1/p, 1/q) =B or B′ ∈

Q(d), which satisfies 1
p −

1
q = 2

2d+1 , (iii) in Lemma 2.2 implies

‖Pµ‖Lp,1→Lq,∞ . µ−
1
2 (

1
p−

1
q ).

Moreover, this shows the assertion (ii) in Theorem 1.2. By real interpola-
tion between the restricted-weak type (p, q) estimates with (1/p, 1/q) =
B and B′, we get (1.5) for (1/p, 1/q) ∈ (B,B′) and, hence, for all
(1/p, 1/q) ∈ R1.

As will be seen later, better bounds are possible for Pµ[ϕk] and Pµ[ϕ0],
but (3.2) and (3.3) are sufficient for our purpose.

We now show (3.1)–(3.3) for (1/p, 1/q) ∈ Q(d). Thanks to (2.1)
we clearly have the isometry ‖e−itLf‖2 = ‖f‖2. It is clear that the
modified TT ∗-argument in [9, Lemma 2.3] works without modification.
From (2.12) and (2.11), we have ‖Pµ[ηj ]‖1→∞ . µ−1/22j(d−1/2) when-
ever ηj is a smooth function supported in [−2−j ,−2−j−2] ∪ [2−j−2, 2−j ]

and satisfies
∣∣ dl
dtl
ηj(t)

∣∣ ≤ C2jl for l = 0, 1. Thus, [9, Lemma 2.3] gives

the estimate (3.1) for j ≥ 1 and
(
1
p ,

1
q

)
∈ Q(d). Indeed, we apply [9,

Lemma 2.3] to Pµ[ψ±j ] by splitting ψj = ψ+
j + ψ−j , where ψ+

j (t) = ψj(t)
if t > 0, and 0 otherwise.

Next we consider the estimate (3.2) for Pµ[ϕk]. Here, the cutoff func-
tion ϕk is supported near π

2 . So, Lemma 2.3 of [9] does not apply directly,
but a little modification of the argument gives the desired result. Since
|sin t| & 1 on the support of ϕk, from (2.13), we have ‖Pµ[ϕk]‖1→∞ .
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µ−1/22k/2 for any k ≥ 3. Taking interpolation with ‖Pµ[ϕk]‖2→2 . 2−k,
which follows from the isometry (2.1) and Minkowski’s inequality, we get

‖Pµ[ϕk]‖p→p′.µ−
1
2 (

1
p−

1
p′ )2

k(−1+ 3
2 (

1
p−

1
p′ ))≤µ−

1
2 (

1
p−

1
p′ )2

k(−1+ 2d+1
2 ( 1

p−
1
p′ ))

for 1 ≤ p ≤ 2. Thus, in order to show (3.2) for (1/p, 1/q) ∈ Q(d), by
interpolation and duality it suffices to show (3.2) with (1/p, 1/q) =
(1/p◦, 1/q◦) := A, i.e., q◦ = 2 and p◦ = 2(2d + 1)/(2d + 3). Equiva-
lently, we will show that

(3.4) ‖Pµ[ϕk]∗Pµ[ϕk]‖p→q . µ−
1
2 (

1
p−

1
q )2−k

with (p, q) = (p◦, p
′
◦). By a simple change of variables, we see that

Pµ[ϕk]∗Pµ[ϕk]f =

∫ π

0

ϕk(s)

∫ π/2

−π/2
ϕk(t+ s)eit(µ−L)f dt ds.

Here, we note that the support of ϕk(·+s) is contained in [−2−k+1, 2−k+1]
for any s ∈ suppϕk. Let us define (Pµ[ϕk]∗Pµ[ϕk])l for l ∈ Z by

(Pµ[ϕk]∗Pµ[ϕk])lf :=

∫ π

0

ϕk(s)

∫ π/2

−π/2
ϕk(t+ s)ψl(t)e

it(µ−L)f dt ds

and we may write

Pµ[ϕk]∗Pµ[ϕk] =
∑
l≥k−2

(Pµ[ϕk]∗Pµ[ϕk])l.

Note that l ≥ 1 and the estimate (3.1) is valid with ψj replaced by
a smooth function ηj supported in [−2−j ,−2−j−2] ∪ [2−j−2, 2−j ] and

satisfies
∣∣ dn
dtn ηj(t)

∣∣ ≤ C2jn for n = 0, 1. Applying (3.1) to Pµ[ϕk(·+s)ψl],
we have

‖(Pµ[ϕk]∗Pµ[ϕk])l‖p→q . µ−
1
2 (

1
p−

1
q )2−k2l(−1+

2d+1
2 ( 1

p−
1
q ))

for all (1/p, 1/q) ∈ Q(d). As before, Lemma 2.2 gives

‖Pµ[ϕk]∗Pµ[ϕk]‖Lp,1→Lq,∞ . µ−
1
2 (

1
p−

1
q )2−k

for (1/p, 1/q) ∈ Q(d) satisfying 1/p−1/q = 2/(2d+1). Real interpolation
yields (3.4) for (1/p, 1/q) ∈ (B,B′). Since (1/p◦, 1/p

′
◦) is the intersection

between the line segment (B,B′) and the line of duality, we get the
desired estimate (3.4) with (p, q) = (p◦, p

′
◦).

It remains to show the estimate for Pµ[ϕ0]. As before, |sin t| & 1

on the support of ϕ0. So, from (2.14) we have ‖Pµ[ϕ0]‖1→∞ . µ−1/2.
Interpolating this with the L2 estimate derived from the L2 isometry
of eitL, we obtain for 1 ≤ p ≤ 2

(3.5) ‖Pµ[ϕ0]‖p→p′ . µ
− 1

2 (
1
p−

1
p′ ).
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Thus, in view of interpolation, it is enough to show (3.3) for (1/p, 1/q) =
A. Equivalently, we will show that

‖Pµ[ϕ0]∗Pµ[ϕ0]‖p→q . µ−
1
2 (

1
p−

1
q )

for (p, q) = (p◦, p
′
◦) with p◦ = 2(2d+1)/(2d+3). Actually, it follows from

the known bounds (3.1), (3.2), and (3.5). Indeed, from the periodicity
of ϕ0 and (2.9) it is easy to see that

Pµ[ϕ0]∗Pµ[ϕ0]f =

∫ π
2

−π2
ϕ0(s)

∫ π
2

−π2
ϕ0(t+ s)eit(µ−L)f dt ds.

So, using this and the partition of unity (2.7) we note that Pµ[ϕ0]∗Pµ[ϕ0]
equals∫ π

2

−π2
ϕ0(s)

{∑
j≥1

Pµ[ϕ0(·+ s)ψj ] +
∑
k≥3

Pµ[ϕ0(·+ s)ϕk]

+ Pµ[ϕ0(·+ s)ϕ0]
}
ds.

We have already had estimates for Pµ[ϕ0(·+ s)ψ±j ] and Pµ[ϕ0(·+ s)ϕk]

(see (3.1), (3.2)). Thus, Lemma 2.2 and the real interpolation imply∥∥∥∑
j≥1

Pµ[ϕ0(·+ s)ψj ] +
∑
k≥3

Pµ[ϕ0(·+ s)ϕk]
∥∥∥
p→q

. µ−
1
2 (

1
p−

1
q )

for (1/p, 1/q) ∈ (B,B′). Since (1/p◦, 1/p
′
◦) is in (B,B′), this particularly

yields∥∥∥∥∫ π/2

−π/2
ϕ0(s)

(∑
j≥1

Pµ[ϕ0(·+ s)ψj ] +
∑
k≥3

Pµ[ϕ0(·+ s)ϕk]
)
ds

∥∥∥∥
p◦→p′◦

. µ
− 1

2 (
1
p◦−

1
p′◦

)
.

Moreover, from (3.5), we also have∥∥∥∫ π/2

−π/2
ϕ0(s)Pµ[ϕ0(·+ s)ϕ0] ds

∥∥∥
p◦→p′◦

. µ
− 1

2 (
1
p◦−

1
p′◦

)
.

Combining these two estimates, we obtain the desired estimate.

Weak type estimate for (1/p, 1/q) ∈ (B,C]. Recalling (2.8), we
first handle

∑
j≥1 Pµ[ψj ]. To obtain the weak type (p, q) estimate for Pµ,

we prove

(3.6)
∥∥∥∑
j≥1

Pµ[ψj ]
∥∥∥
Lp→Lq,∞

. µd(
1
p+

1
q )−

2d+1
2
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for (1/p, 1/q) ∈ (B,C]. Note that
∑

2−j.µ−1 ψj = ζµ for some ζµ ∈
C∞c ((−cµ−1, cµ−1)) satisfying |ζ(l)µ (t)| ≤ Clµ

l for all l ∈ N0. So, we
write ∑

j≥1

Pµ[ψj ] = Pµ[ζµ] +
∑
2j.µ

Pµ[ψj ].

From Lemma 2.3, we have ‖Pµ[ψj ]‖1→2 . 2−j/2µ
d−1
2 for 2j . µ. By in-

terpolation between this estimate and (3.1) with (1/p,1/q)=B and (1, 0),
we obtain

‖Pµ[ψj ]‖p→q . 2j2d(
2d−1
4d −

1
q )µd(

1
p+

1
q )−

2d+1
2

for 2j . µ whenever (1/p, 1/q) is in the closed triangle T (d) with ver-
tices (1, 1/2), (1, 0), and B. Thus, choosing q0 <

4d
2d−1 < q1 such that

(1/p, 1/q0), (1/p, 1/q1) ∈ T (d) and using (i) in Lemma 2.2, we obtain

(3.7)
∥∥∥∑
2j.µ

Pµ[ψj ]
∥∥∥
Lp→Lq,∞

. µd(
1
p+

1
q )−

2d+1
2

for any (1/p, 1/q) ∈ (B,C].
We now handle Pµ[ζµ]. Since

∑
2−j.µ−1 ψj = ζµ, by (3.1) and (iii) of

Lemma 2.2 we have the restricted-weak type (p◦, q◦) estimate for Pµ[ζµ]
with (1/p◦, 1/q◦) = B:

‖Pµ[ζµ]‖Lp◦,1→Lq◦,∞ . µ−
1
2 (

1
p◦−

1
q◦ ) = µ−

1
2d+1 .

Interpolating this and the estimates ‖Pµ[ζµ]‖1→2.µ
d−2
2 , ‖Pµ[ζµ]‖1→∞.

µd−1 which follow from Lemma 2.3, we obtain

‖Pµ[ζµ]‖p→q . µd(
1
p−

1
q )−1

whenever (1/p, 1/q) is in T (d) \ {B}. Therefore, we get the estimate

‖Pµ[ζµ]‖p→q . µd(
1
p+

1
q )−

2d+1
2 for (1/p, 1/q) ∈ (B,C], since d

(
1
p−

1
q

)
−1 =

d
(
1
p + 1

q

)
− 2d+1

2 when 1
q = 2d−1

4d . Combining this with (3.7), we obtain

(3.6) for (1/p, 1/q) ∈ (B,C].
We now turn to

∑
k≥3 Pµ[ϕk] and Pµ[ϕ0]. Applying Lemma 2.3, we

have the estimate ‖Pµ[ϕk]‖1→2 . 2−k/2µ
d−1
2 for 2k . µ and (3.2), es-

pecially, with (1/p, 1/q) = B, (1, 0). We also have the restricted-weak
type (p, q) estimate for

∑
2−k.µ−1 Pµ[ϕk] at (p, q) = B. Thus, in the

same manner as before we can obtain

(3.8)
∥∥∥∑
k≥3

Pµ[ϕk]
∥∥∥
Lp→Lq,∞

. µd(
1
p+

1
q )−

2d+1
2
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for (1/p, 1/q) ∈ (B,C]. Finally, we have ‖Pµ[ϕ0]‖1→2 . µ
d−1
2 from

Lemma 2.3, ‖Pµ[ϕ0]‖1→∞ . µ−
1
2 , and ‖Pµ[ϕ0]‖p◦→q◦ . µ−

1
2d+1 at

(1/p◦, 1/q◦) = B from (3.3). Thus, interpolation gives

(3.9) ‖Pµ[ϕ0]‖p→q . µd(
1
p+

1
q )−

2d+1
2

for (1/p, 1/q) ∈ [B,C].
Combining the estimates (3.6), (3.8), and (3.9) together with (2.8), we

get the desired weak type (p, q) estimate for Pµ when (1/p, 1/q) ∈ (B,C].

4. Proof of Theorem 1.2: Sharpness

In this section we show that the estimate (1.5) is sharp and that
(1.5) fails for (1/p, 1/q) ∈ [B,C] ∪ [B′,C′].

Proposition 4.1. Let d ≥ 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞. For µ large
enough, there is a constant C, independent of µ, such that

‖Pµ‖p→q ≥ Cµ−
1
2 (

1
p−

1
q ),(4.1)

‖Pµ‖p→q ≥ Cµd(
1
p−

1
q )−1,(4.2)

‖Pµ‖p→q ≥ Cµ
2d−1

2 −d( 1
p+

1
q ).(4.3)

Proof of Theorem 1.2: Sharpness: By duality and (4.3) we obtain

‖Pµ‖p→q ≥ Cµd(
1
p+

1
q )−

2d+1
2

for any q ≥ 2. Combining this and the estimates in Proposition 4.1, we
obtain

‖Pµ‖p→q ≥ Cµ%(p,q)

for 1 ≤ p ≤ 2 ≤ q ≤ ∞.
The failure of the strong type estimate (1.5) for p, q satisfying

(1/p, 1/q) ∈ [B,C]∪ [B′,C′] can be shown by using the Lp-Lq transplan-
tation argument in [9, Lemma 3.5] (see the paragraph below Lemma 3.5
of [9]) because the twisted Laplacian L is also an elliptic operator on R2d.
To do so, we define a projection operator P by

P =
∑

kn≤µ≤(k+1)n

Pµ

for large k, n > 0, and set P (z, z′) as the kernel of P. If we assume that

‖Pµ‖p→q . µd(
1
p−

1
q )−1, by the triangle inequality, we have

‖P‖p→q . kd(
1
p−

1
q )−1nd(

1
p−

1
q ).

This implies

(4.4) nd
∣∣∣∫∫ P (z, z′)f(n1/2z′)g(n1/2z) dz dz′

∣∣∣ . kd(
1
p−

1
q )−1‖f‖p‖g‖q′
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for f, g ∈ C∞c (R2d). Let f and g be supported in a ball of radius r.
If z′ and z are in the support of f(n1/2·) and g(n1/2·), respectively,
z− z′ is in a ball of radius 2rn−1/2, hence |z− z′| is small enough if n is
sufficiently large. Applying Hörmander’s theorem [7, Theorem 5.1] (see
also Theorem 3.6 of [9]), we see that

P (z, z′) = (2π)−2d
∫
kn≤|ξ|2≤(k+1)n

eiψ(z,z
′,ξ) dξ + E(z, z′, k, n),

where ψ(z, z′, ξ) = 〈(x − x′, y − y′), ξ〉 + O(|z − z′|2|ξ|) with z = x +
iy, z′ = x′ + y′, and E(z, z′, k, n) = O(|kn|(2d−1)/2). Thus, by rescaling
(z, z′)→ (n−1/2z, n−1/2z′) we see that the estimate (4.4) implies∣∣∣∣∫∫ (∫

k≤|ξ|2≤(k+1)

eiψ(n
− 1

2 (z,z′),n
1
2 ξ) dξ+O(k

2d−1
2 n−

1
2 )
)
f(z′)g(z) dz dz′

∣∣∣∣
. kd(

1
p−

1
q )−1‖f‖p‖g‖q′ .

Letting n tend to ∞, this yields∣∣∣∫∫ ∫
k≤|ξ|2≤(k+1)

ei〈(x−x
′,y−y′),ξ〉 dξf(z′)g(z) dz dz′

∣∣∣
. kd(

1
p−

1
q )−1‖f‖p‖g‖q′

for any f, g ∈ C∞c (R2d), which is equivalent to∥∥∥ 1

(2π)2d

∫
k≤|ξ|2≤(k+1)

ei〈(x,y),ξ〉f̂(ξ) dξ
∥∥∥
q
. kd(

1
p−

1
q )−1‖f‖p

for any f, g ∈ C∞c (R2d). After scaling and letting k →∞, we obtain the
2d-dimensional restriction-extension estimate

(4.5)
∥∥∥∫

S2d−1

f̂(ξ)e2πi(x,y)·ξ dσ(ξ)
∥∥∥
q
. ‖f‖p.

It was already known that (4.5) is true only if (1/p, 1/q) ∈ R3 (see [2],
[9, Theorem 3.6]).

Proof of the lower bounds (4.1) and (4.2): We prove the estimates (4.1)
and (4.2) by using a duality argument and the known sharpness result
obtained by Koch and Ricci [13]. In fact, we will use the fact that there
is a constant C > 0, independent of µ, such that for 2 ≤ q ≤ ∞

(4.6) ‖Pµ‖q′→q ≥ Cµ%(q
′,q),

which follows from (1.3) and the TT ∗-argument. Since we have %(p, q) =
max

{
− 1

2

(
1
p −

1
q

)
, d
(
1
p −

1
q

)
− 1, 2d−12 − d

(
1
p + 1

q

)
, d
(
1
p + 1

q

)
− 2d+1

2

}
, it is

enough to show that (4.1) on
(
1
p ,

1
q

)
∈ R1 and (4.2) on

(
1
p ,

1
q

)
∈ R3.
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We only show (4.1) since the same argument works for (4.2). We prove
(4.1) by contradiction. Suppose (4.1) fails for some p, q with p 6= q′ and
(1/p, 1/q) ∈ R1; then there are sequences ck and µk such that

‖Pµk‖p→q = ckµ
%(p,q)
k ,

µk → ∞, and ck → 0 as k → ∞. Then, by duality we also have

‖Pµk‖q′→p′ = ckµ
%(p,q)
k . By interpolation between these two estimates

we get

‖Pµk‖r→s ≤ ckµ
%(r,s)
k

for all r, s satisfying (1/r, 1/s) ∈ [(1/p, 1/q), (1/q′, 1/p′)] with 1/r −
1/s = 1/p − 1/q. In particular we get ‖Pµk‖r→r′ ≤ ckµ

%(r,r′)
k . This

contradicts (4.6) because ck → 0 as k →∞.

Proof of (4.3): We make use of the formula (1.2), where the twisted
kernel ςk is given by the Laguerre function. In fact, let Lαk (t), t ≥ 0,
denote the normalized Laguerre function of type α given by

Lαk (t) =
( k!

Γ(k + α+ 1)

)1/2
tα/2e−t/2Lαk (t).

We clearly have

ςk(z) = 2
d−1
2 (

k!

(k + d− 1)!
)−1/2|z|−(d−1)Ld−1k (|z|2/2).

There is a large body of literature concerning the asymptotic behavior of
the Laguerre functions. We refer the reader to [17, 6, 18] and references
therein. However, for our purpose we use the following relatively simple
asymptotic formula.

Lemma 4.2 ([15, p. 422]). Let α ≥ 0 and k ∈ N. Then

Lαk (t) =
( 2

π

)1/2 (−1)k

t1/4(ν − t)1/4
cos
(ν(2θ − sin 2θ)− π

4

)
+O

( ν1/4

(ν − t)7/4
+ (νt)−3/4

)
,

where ν = 4k + 2α+ 2, 0 < t < ν, and θ = cos−1(t1/2ν−1/2).
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Recalling µ = 2k + d, from Lemma 4.2 we have

ςk(z) = 2
d−1
2

( 2

π

(k + d− 1)!

k!

)1/2 (−1)k

|z|d−1

×
{

(|z|2(µ− 2−2|z|2))−1/4 cos g(|z|) +O(µ−3/2)
}(4.7)

for
√
µ/8 ≤ |z| ≤ √µ/2, where

g(s) =
µ

2
(2θ(s)− sin 2θ(s))− π

4
, θ(s) = cos−1

( s

2
√
µ

)
.

Note that g is monotone decreasing and {g(t) :
√
µ/8 ≤ t ≤ √µ/3} is

an interval of length ∼ µ. So, there exist
√
µ/8 < t1 < t2 < · · · < tN <√

µ/3, N ∼ µ, such that |cos g(tj)| = 1 for all j. Since |g′(t)| ∼ √µ,
tj+1 − tj ∼ 1/

√
µ for all j. Also, |cos g(t)| ≥ cos(π/4) > 0 whenever

|t− tj | ≤ π/(8
√
µ).

To prove (4.3), we set Dj := [tj , tj + π/(8
√
µ)], 1 ≤ j ≤ N , and

define f on Cd by

f(z) :=

N∑
j=1

χDj (|z|)ςk(z).

It is easy to see that |f(z)| ∼ µ−1/2, since (k+d−1)!
k! ∼ kd−1 ∼ µd−1 from

Stirling’s formula. Hence we have∫
Cd
|f(z)|p dz .

∫ √µ/2
√
µ/8

µ−p/2 r2d−1 dr . µ−p/2+d.

We now observe Pµf near the origin. For |z| ≤ π/(32
√
µ) and w ∈ Cd

satisfying |z − w| ∈ Dj , we have |w| ∈ [tj − π/(8
√
µ), tj + 5π/(32

√
µ)]

and |cos g(|w|)| ≥ c > 0 for some c > 0 independent of µ. This yields
ςk(z − w)ςk(w) > 0 on |z − w| ∈ Dj and |z| ≤ π/(32

√
µ) if k is large

enough. Also, |ςk(w)| ∼ µ−2 for |w| ∈ [tj − π/(8
√
µ), tj + 5π/(32

√
µ)].

Thus, if µ is large enough, for |z| ≤ π/(32
√
µ) we obtain

|Pµf(z)|≥(2π)−d
N∑
j=1

∣∣∣∣Re
(∫

Cd
χDj (|z − w|)ςk(z − w)ςk(w)ei

1
2 Im z·w dw

)∣∣∣∣
&

N∑
j=1

µ−1
∫ tj+

3π
32
√
µ

tj+
π

32
√
µ

r2d−1 dr ∼ µd−1,
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where the implicit constant is independent of µ. Therefore, for 1 ≤ p ≤ 2
and µ large enough, we get

‖Pµ‖p→q ≥ ‖Pµf‖q/‖f‖p ≥ ‖Pµf‖Lq(|z|≤π/(32√µ))/‖f‖p

& µ−d/q+d−1µ−d/p+1/2 ∼ µ
2d−1

2 −( dp+
d
q ),

which gives the lower bound (4.3).

5. Resolvent estimate for the twisted Laplacian

In this section, we prove the uniform resolvent estimates for L in
Theorem 1.3. Here we closely follow the argument for the Hermite re-
solvent estimate in [10], where the main ingredients were the uniform
bound for the Hermite spectral projection, a kind of mixed norm esti-
mate for the Hermite–Schrödinger propagator, and Lp-Lq boundedness
of the fractional Hermite operator. For the twisted Laplacian L, the
fractional integral operator L−s, s > 0, is given by

L−s =
∑
µ

µ−sPµ =
1

Γ(s)

∫ ∞
0

e−tLts−1 ds.

The Lp-Lq boundedness was already established by Nowak and Stem-
pak [16].

Theorem 5.1 ([16]). Let s > 0 and 1 ≤ p ≤ q ≤ ∞. If s > d, L−s is
bounded from Lp(Cd) to Lq(Cd) for any 1 ≤ p ≤ q ≤ ∞, and L−d is
bounded from Lp(Cd) to Lq(Cd) if and only if (p, q) 6= (1,∞). In addi-
tion, if s<d, then L−s is bounded from Lp(Cd) to Lq(Cd) if and only if

1

p
− s

d
≤ 1

q
and

(1

p
,

1

q

)
6=
( s
d
, 0
)
,
(

1,
d− s
d

)
.

We also need the mixed norm estimate for the Schrödinger propaga-
tor e−itL in a certain range of p, q as follows.

Proposition 5.2. Let d ≥ 2 and Q be the closed quadrangle with ver-
tices (1/2, 1/2), D′, F′, ((d + 1)/2d, (d − 1)/2d)) from which the two
points F′ and ((d + 1)/2d, (d − 1)/2d)) are removed. If (1/p, 1/q) ∈ Q,
then

(5.1)
∥∥∥∫ π/2

−π/2
|e−itLf | dt

∥∥∥
q
. ‖f‖p

and we also have restricted-weak type estimates if (1/p, 1/q) = F′ or
((d+ 1)/2d, (d− 1)/2d)).

From (2.3) it follows that

(5.2) ‖e−itLf‖∞ . |sin t|−d‖f‖1.



Lp-Lq Spectral Projection Estimate 851

Since d ≥ 2, combining this with (2.1), the standard argument [11] yields
the endpoint Strichartz estimate

(5.3) ‖e−itLf‖
L2
t ([−π2 ,

π
2 ];L

2d/(d−1)
z (Cd)) . ‖f‖2.

Proof: From (2.1) and (5.3) it is clear that (5.1) holds for (1/p, 1/q) =
(1/2, 1/2), (1/p, 1/q) = D′. Thus, in view of interpolation it suffices to
show the restricted-weak type estimate

(5.4)
∥∥∥∫ π/2

−π/2
|e−itLf | dt

∥∥∥
q,∞

. ‖f‖p,1

with (1/p, 1/q) = F′, ((d+ 1)/2d, (d− 1)/2d)).
To show (5.4), we set ψ0 = χ[−π2 ,

π
2 ] − ψ so that∑

j≥1

ψj(t) + ψ0(t) = 1 for t ∈ [−π/2, π/2].

Then from (2.1), (5.3), and (5.2) the estimate∥∥∥∫ |ψ0(t)e−itLf | dt
∥∥∥
q
. ‖f‖p

holds with (1/p, 1/q) = (1/2, 1/2),D′, (1, 0). By interpolation we see that
the above estimate holds for all p, q satisfying (1/p, 1/q) ∈ Q. Thus, to
show (5.4) we only have to show that

(5.5)
∥∥∥∫ |∑

j≥1

ψje
−itLf | dt

∥∥∥
q,∞

. ‖f‖p,1

with (1/p, 1/q) = F′, ((d+ 1)/2d, (d− 1)/2d)). We now claim that

(5.6)
∥∥∥∫ |ψje−itLf | dt∥∥∥

q
. 2(

d
p−

d
q−1)j‖f‖p

holds provided that (1/p, 1/q) is contained in the closed triangle with
vertices (1/2, 1/2),D′, and (1, 0). Once we have this, (iii) of Lemma 2.2
gives the desired estimate (5.5) with (1/p, 1/q) = F′, ((d + 1)/2d, (d −
1)/2d)). See Figure 1.

It remains to show (5.6). From (5.3) the estimate ‖ψj(t)e−itL‖
L2
tL

2d
d−1
x

.

‖f‖2 follows. Using this estimate, by Hölder’s and Minkowski’s inequali-

ties we obtain
∥∥∫ |ψje−itLf | dt∥∥ 2d

d−1

. 2−
1
2 j‖f‖2. Because of (2.3) we also

have
∫
‖ψje−itLf‖∞ dt . 2(d−1)j‖f‖1, and

∥∥∫ |ψje−itLf | dt∥∥2.2−j‖f‖2
from (2.1). Interpolation among these estimates gives (5.6) for (1/p, 1/q)
in the closed triangle with vertices (1/2, 1/2), D′, and (1, 0).
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Once we have the estimates in Proposition 5.2, the desired resolvent
estimates are established by following the argument used in [10]. For
completeness, however, we give a brief proof of Theorem 1.3. We refer
the reader to Section 3 of [10] for the details.

Proof of Theorem 1.3: The restricted-weak type estimates can be shown
in a similar manner, so we only show the estimate (1.10). Since the
adjoint operator of (L − z)−1 is (L − z̄)−1, which can be handled by
the same argument, we may also assume 1/p ≤ 1/q′ and furthermore
(1/p, 1/q) ∈ Q. In fact, we show that if the estimate (5.1) holds and
L−1 is bounded from Lp to Lq, then (1.10) holds.

For simplicity we only consider the case z ∈ C with <z > d − 1/2.
The other cases can be handled by the same argument as we use to show
the estimate for the term E below. Since dist(z, 2N + d) ≥ c◦ > 0, we
write z = 2n+d−2(a+ ib) for some n ∈ N0, a, b ∈ R satisfying |a| < 1/2
and |(a, b)| ≥ c◦/2. Using a smooth symmetric function ζ supported
in (−1, 1) and satisfying ζ(t) = 1 on (−1/2, 1/2), we decompose the
resolvent operator (L− z)−1 into two parts:

(L− z)−1f = If + Ef,

where

If :=
∑

|k−n|<n

ζ(k−nn )

2(k − n+ (a+ ib))
P2k+df,(5.7)

Ef :=
∑
k

1− ζ(k−nn )

2(k − n+ (a+ ib))
P2k+df.(5.8)

From the choice of ζ, I is written as

If = I1f + I2f + I3f,

where

I1f :=
1

2(a+ ib)
P2n+df,

I2f :=

n∑
k=1

(a+ ib)ζ(k/n)

(k + a+ ib)(−k + a+ ib)
P2(n−k)+df,

I3f :=

n∑
k=1

ζ(k/n)

2(k + a+ ib)
(P2(k+n)+df − P2(n−k)+df).

Then, for p, q satisfying (1/p, 1/q) ∈ Q, we obtain

‖I1‖p→q, ‖I2‖p→q . 1
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uniformly in n and a, b satisfying |(a, b)| ≥ c◦/2. Indeed, the estimate
follows from the uniform bounds for Pµ, which are a direct consequence
of Theorem 1.2 (or Proposition 5.2 with (2.2)). Using (2.2), we see that

I3f =

n∑
k=1

ζ(k/n)

2(k + a+ ib)

∫ π/2

−π/2
(e2itk − e−2itk)eit(2n+d)e−itLf dt

= i

∫ π/2

−π/2

n∑
k=1

ζ(k/n) sin(2kt)

k + a+ ib
eit(2n+d)e−itLf dt.

Note that
∣∣∑n

k=1
ζ(k/n) sin(2kt)

k+a+ib

∣∣ ≤ C uniformly in n and a, b obeying

|(a, b)| ≥ c◦/2. Combining this with Proposition 5.2, we get ‖I3‖p→q . 1
uniformly in n and a, b.

The term E is easier to deal with. Since Ef = mn(L) ◦ L−1f with

mn(t) = t

(
1− ζ

( t− 2n− d
2n

))
/(t− z), z = 2n+ d− 2(a+ ib),

and
∣∣ dl
dtl
mn(t)

∣∣ . (1 + t)−l for l = 0, 1, 2, . . . , d + 2 whenever t > 0, by
applying the Marcinkiewicz multiplier theorem [23, Theorem 2.4.1] and
Theorem 5.1, we obtain the desired result.

Remark 1. When d = 1, the uniform resolvent estimate (1.10) holds for
any 1 < p ≤ 2 ≤ q < ∞. Indeed, our proof of Theorem 1.3 works as
long as we have the mixed norm estimate (5.1) for e−itL. So, it suffices
to show (5.1) for 1 < p ≤ 2 ≤ q < ∞. Though the endpoint Strichartz
estimate (5.3) fails with d = 1, the estimate

‖e−itLf‖Lrt ([−π2 ,π2 ];Lsz(Cd)) . ‖f‖2

holds true for any r, s ≥ 2 satisfying 1
r + 1

s = 1
2 , (r, s) 6= (2,∞) (see [11]).

Hence, this estimate combined with the argument in the proof of Propo-
sition 5.2 yields (5.1) for 1 < p ≤ 2 ≤ q <∞.
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