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Abstract. In this paper, we solve the Cauchy problem for a hyperbolic system of first-order PDEs defined
on a certain Banach space X . The system has a special semilinear structure because, on the one hand, the
evolution law can be expressed as the sum of a linear unbounded operator and a nonlinear Lipschitz function
but, on the other hand, the nonlinear perturbation takes values not in X but on a larger space Y which is
related to X . In order to deal with this situationwe use the theory of dual semigroups. Stability results around
steady states are also given when the nonlinear perturbation is Fréchet differentiable. These results are based
on two propositions: one relating the local dynamics of the nonlinear semiflowwith the linearised semigroup
around the equilibrium, and a second relating the dynamical properties of the linearised semigroup with the
spectral values of its generator. The later is proven by showing that the Spectral Mapping Theorem always
applies to the semigroups one obtains when the semiflow is linearised. Some epidemiological applications
involving gut bacteria are commented

1. Introduction

The evolution law of many dynamical systems can be represented by a differential
equation of the form x ′(t) = f (x(t)) in which the dependent variable t refers to time.
Roughly speaking, it is said that the system is well posed if every initial condition
x0 moves unambiguously and continuously into the future in accordance with the
evolution law and if the trajectories described this way are continuous with respect to
x0. The well-posedness problem is usually referred as the Cauchy problem.
As it is well known, if the phase space X of the system is a Banach space, then

the system is well-posed if the function f : X → X is Lipschitz. In addition, if
f is differentiable, then the local dynamics around steady states can be studied in
terms of the linearised system around them. Such results are really useful if X is finite
dimensional, since in this case all linear functions from X into X are Lipschitz, which
implies that all linear systems are well posed. However, if X has infinite dimension,
there exist linear functions (or operators) that are not continuous from X into X and
fail to be defined on the whole X , such as those appearing in partial differential
equations. The main result characterizing the linear operators for which the initial
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value problem is well posed is the Hille–Yosida Theorem. Unfortunately, a general
nonlinear theory is still incomplete. Some work has been devoted to solve the Cauchy
problem for different classes of systems (see, for instance, the classical monographs of
Pazy [22] and Henry [13] for semilinear semigroups andMiyadera [21] for dissipative
systems). Similarly, different strategies exist to determine the asymptotic dynamics
around stationary points of these systems (e.g. [5,15,20,26]). This range of techniques
reflects the richness associated to differential equations in infinite dimension, as well
as the fact that some generality has to be lost in order to obtain more accurate results.
This article is a contribution to the program summarised above. We focus on a class

of dynamical systems (see (1.1) below) including the model treated in [2] to study the
propagation of pathogenic bacteria inhabiting the guts of animals. Whereas in [2] the
model is analysed in a rather formal way, the theoretical framework sustaining such
analysis is developed here. This is done using some results about dual semigroups and
their relations with evolution equations [6,7].

1.1. A class of first-order PDE systems

Let u and v be functions with domain [0, 1] × [0,∞) taking values in R
n and R

m

respectively. Let r be a R
k valued function with domain [0,∞). Let

g : [0, 1] × R
n × R

m → R
n

f : [0, 1] × R
n × R

m → R
m

h : R
m × R

k → R
k

be differentiable functions, and let c : [0, 1] → R
m be a bounded function such that

ci (x) ≥ 1 for all x ∈ [0, 1] and i ∈ {1, , . . . ,m}, where we use an index i to denote
the i th component of a vector valued function (such as u, v, r , g, f , h and c). Let �

be a m × k real matrix and let diag(c(x)) denote the m × m diagonal matrix whose
entries are given by vector c(x). Then consider the following system of first-order
partial differential equations with initial condition:

⎧
⎪⎪⎨

⎪⎪⎩

∂t u(x, t) = g(x, u(x, t), v(x, t)),
∂tv(x, t) = −diag(c(x))∂xv(x, t) + f (x, u(x, t), v(x, t))
r ′(t) = h(v(1, t), r(t))
u(x, 0) = u0(x), v(x, 0) = v0(x) and r(0) = r0,

(1.1)

with boundary condition

v(0, t) = �r(t). (1.2)

The problem above is said to be well posed if, at least for small times t , it deter-
mines unambiguously the trajectory of the system and such trajectories present some
continuity with respect to initial conditions. In order to prove that this is really the
case the problem can be interpreted as a semilinear evolution problem defined on a
certain Banach space X ,
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⎧
⎪⎪⎨

⎪⎪⎩

du
dt = G(u, v)
dv
dt = −diag(c)∂xv + F(u, v)
dr
dt = H(v, r)
(v(0), u(0), r(0)) = (v0, u0, r0) ∈ X

, (1.3)

and then try to proceed as in the case of ordinary differential equations. The first dif-
ficulty one encounters relates to the fact that the operator defining the right hand side
of (1.3) is not smooth enough (i.e. Lipschitz) to apply the Picard iterative scheme,
being the differential operator ∂x the reason of that. To overcome this problem Am-
mon Pazy’s book [22] develops a theory to treat the system composed only by the
“difficult” (but linear) principal part (i.e. the differential operator or whatever that
creates the loss in regularity) and after consider the whole system as a smooth per-
turbation of the system generated by just the principal part. The tool to link the
perturbed system with the unperturbed one is the variation of constants formula,
which makes possible to prove not only the well posedness of the problem but
also the principle of linearised stability. Although this is a typical procedure to deal
with semilinear partial differential equations, in our case some difficulties arise due
to the nonlinearities G and F involved, which take the form of Nemytskij opera-
tors defined by g and f , namely G(u(·, t), v(·, t))(x) = g(x, u(x, t), v(x, t)) and
F(u(·, t), v(·, t))(x) = f (x, u(x, t), v(x, t)). In fact, these difficultieswere also high-
lighted in [18] for a hyperbolic system similar, but not reducible, to (1.3).

First of all, we have to decide which Banach space X we should use in order to
study the system above. From a conceptual point of view, if u and v are densities
on the interval [0, 1], it would be natural to consider spaces based on L1 for these
variables. However, the Nemytskij operators G andF defined on a space of integrable
R-valued functions on [0, 1] are very often not well defined and more importantly,
they are Fréchet differentiable only if g and f are affine functions [17], which prevents
us from using well defined but truncated versions of G and F . This makes impossible
to linearise the system around steady states in order to study their stability properties.
Although this lack of differentiability does not invalidate the principle of linearised
stability per se, it makes necessary to use ad hoc techniques to analyse the behaviour
of the system around stationary points (see [10] for an example of that).
In order to avoid this lack of smoothness related to the Nemytskij operators on

L1, we may use spaces based on the sup norm. It is easy to prove that these operators
inherit the smooth properties of their associated functions in spaces with the sup norm.
In particular, if g is differentiable, then the Fréchet derivative of G at a point (ū, v̄) is
the operator

DG(ū, v̄)

(
u
v

)

= D2g(·, ū(·), v̄(·))u(·) + D3g(·, ū(·), v̄(·))v(·), (1.4)

and analogously for f . Specifically, the sup norm space X we are going to work with
is

X = X1 × X2 (1.5)
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with X1 = Ln∞ := (L∞(0, 1))n and

X2 = (Cm × R
k)b :=

{
(v, r) ∈ C([0, 1], R)m × R

k | v(0) = �r
}

.

Realise that the definition of (Cm × R
k)b comprises the boundary condition of the

system. The reason why we choose X to have this form rather than a simpler one such
as Ln∞ × C([0, 1], R)m × R

k or Ln∞ × Lm∞ × R
k is that the trajectories would not be

continuous on these spaces.
In order to follow the standard semilinear formulation of system (1.3) as it is de-

scribed in [22], we consider the linear principal part and the nonlinear Lipschitz per-
turbation separately. Thus, the operator A defined as

A

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
0

−diag(c(·))v′(·)
0

⎞

⎠ (1.6)

with domain

D(A) = {(u, v, r) ∈ X | (0, diag(c(·))v′(·), 0) ∈ X},
is the infinitesimal generator of a strongly continuous semigroup T . The prime symbol
′ in the previous expressions refers to the generalised notion of derivative. Being
the principal part of the system specified, the perturbation is the operator P that
sends elements (u, v, r) ∈ X into P(u, v, r) = (G(u, v),F(u, v),H(v, r)). At this
point, however, we encounter an obstacle that prevents us from applying the standard
semilinear formulation in a straightforward manner. It turns out that the range of the
perturbationP is not within X but contained in the bigger space Y = Ln∞ × Lm∞ ×R

k .
Since P is Lipschitz from X into Y , the problem is now not a lack of regularity but a
lack of definition of the semigroup T on the space Y , in the sense that the variation of
constants equation

⎛

⎝
u(·, t)
v(·, t)
r(t)

⎞

⎠ = T (t)

⎛

⎝
u0(·)
v0(·)
r0

⎞

⎠ +
∫ t

0
T (t − s)P

⎛

⎝
u(·, s)
v(·, s)
r(s)

⎞

⎠ ds

is ambiguous. To overcome this difficulty the semigroup T should be extended into Y ,
and the natural way to do that is to define the operator A in Y instead of X . However,
this procedure is not as easy as it could seem. In X some hypotheses are satisfied by
A that guarantee the existence of a strongly continuous semigroup whereas in Y such
hypotheses could not hold. In order to deal with semigroups that fail to be strongly
continuous we apply the sun-dual framework developed in [6,7]. This theory extends
the standard semilinear formulation by allowing perturbations that take values on
certain Banach space related to the phase space in which the system is defined. It is
worth pointing out that this theory has commonly been used to treat systems of delay
differential equations [8,11], whereas here it is applied to a system of PDEs (similarly
as in [18]).
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This article is organised as follows. In Sect. 2 the theory of sun-dual semigroups
is used to prove that the initial value problem (1.1) with boundary condition (1.2) is
well posed (Theorem 1). In Sect. 3 a criterion to infer the (local) stability behaviour
of a stationary solution of (1.1) is given (Theorem 4). This is done by showing that
the linearised semigroup around any stationary solution of (1.1) is eventually norm
continuous (Theorems 2 and 3), which implies that the behaviour of the linearised
semigroup can be summarised in terms of the dominant eigenvalues and eigenvectors
of its generator. In Section 4 we show that problem (1.1) and (1.2) can be used to
model the growth of microorganisms along the intestines of animals, a topic with
implications ranging from human health [23] to biodiversity [24]. The model is an
extended version of the one model formulated in [1] and treated in [14,25]. The
extension (first presented in [4] and later developed in [2]) includes environmental
microbes, which makes possible to study reinfection events and transmission between
hosts. In the same section we illustrate how the results of Sects. 2 and 3 are applied
to this particular model. In Appendix A we recall the most important results (for our
purposes) of the work done by Clement et al. [6,7], which can be used to study the
existence and uniqueness of solutions to our problem as well as the stability properties
of the steady states. Several definitions and results given in the appendix are used
widely in Sects. 2 and 3.

2. Semilinear formulation of the problem

To deal with problem (1.3) we first give a formula for the semigroup T generated
by A (see (1.6)) and then we show that T is indeed closed by�∗-integration on Y (see
Definition A2). This is done by checking that T has the structure of Example A1. Once
this property of T has been verified, the well posedness of the problem will be derived
as a consequence of Theorem A2. Finally, we show that the linearised semigroup S
around any stationary point of (1.3) is eventually norm continuous, so that Theorem
A7 gives a method to determine the stability of equilibria based only on the spectrum
of the infinitesimal generator AS of S.

2.1. Existence and uniqueness of solutions

The semigroup T on X generated by A can be obtained through the method of
characteristics, and acts in the following way:

T (t)

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
u(·)

ṽ(·; t, v, r)
r

⎞

⎠ (2.1)

where the i th component of ṽ(·; t, v, r) is

(ṽ(x; t, v, r))i = ṽi (x; t, vi , r)
= �i r1−(ϕi (−t, x)) + vi (ϕi (−t, x))1+(ϕi (−t, x)),

(2.2)
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being �i the i th row of � and ϕi (t, x) the unique function satisfying ∂tϕi (t, x) =
ci (ϕi (t, x)) and ϕi (0, x) = x (although function ci (x) is not necessarily Lipschitz,
the uniqueness property can be deduced because ci (x) ≥ 1 for all x). Functions 1−
and 1+ stand for the indicator functions on (−∞, 0) and [0,∞) respectively. To
give a meaning to ϕi (−t, x) for any −t < 0 is enough to assume that the function
ci is prolonged by any positive constant (for instance 1) for negative values of its
argument. Notice that ϕi (·, x) describes, as a function of t , the characteristic curve
passing through the point x at time 0, so that ϕi (−t, x) should be interpreted as the
position that a pointmovingwith velocity c had t units of times into the past. Therefore,
a point that at time t is at position x , was at position ϕi (−t, x) at time 0. In particular,
if ϕi (−t, x) < 0 then we deduce that the point was outside the interval [0, 1] at time
0, hence the value of vi at (t, x) is not given by the initial condition of v but by the
boundary condition.

Remark 1. In order to keep track of the following results we recommend to consider
the scalar case in which n = 1, m = 1 and k = 1. In this situation the subscript i
can be dropped (since function v has only one component) and matrix � becomes a
number. It may also help to consider function c to be constantly 1. Notice that in this
case the function ϕ introduced above becomes ϕ(t, x) = x − t .

Clearly, T is a diagonal semigroup on X = X1 × X2 = Ln∞ × (Cm × R
k)b (the

detailed definition of X is given in (1.5)). Let T1 and T2 be the associated semigroups
of T on X1 and X2 respectively. Since Y = Ln∞ × Lm∞ ×R

k , in order to show that T is
closed by �∗-integration on Y it is enough to verify that i) Lm∞ × R

k can be identified

with a subspace of X
�T2∗
2 and that ii) X2 is sun-reflexive with respect to T2 (as showed

in Example A1). Notice that here Y has not exactly the same meaning as in Appendix
A. There Y was a subspace of X�∗ whereas here Y is a representation of a subspace of
X�∗. We proceed in this way because then we can consider X as a subspace of Y and
avoid the use of the inclusion j : X → X�∗ in the formulation of the results. Next
we show that the two conditions mentioned above (i and ii) hold and, in addition, we
specify how T�∗

2 is defined on Lm∞ × R
k .

Proposition 1. Let X2 = (Cm × R
k)b and T2 be as above. Then

Lm∞ × R
k ∼= X

�T2∗
2 and X2 ∼= X

��T2
2 .

Moreover, T�∗
2 is the natural extension of T2 into Lm∞ × R

k , i.e.

T�∗
2 (t)

(
v

r

)

=
(

ṽ(·; t, v, r)
r

)

with ṽ exactly given as in (2.2).
As a consequence, the semigroup T defined on X fulfills the hypothesis of Exam-

ple A1 and hence is closed by �∗-integration on Y .
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Proof. The methodology of the proof is based on the one used in [11, Section II.5],
and hence we only expose the main ideas (a more detailed version of the proof can be
found in [3, Appendix B]). First the Riesz representation theorem is used to represent
X∗
2 as the space Mm

b × R
k , where Mb is the set of real Borel measures μ satisfying

μ({0}) = 0. Instead of μ({0}) = 0 other conditions could be imposed in order to
identifyBorelMeasures (seen as functionals onC([0, 1], R)m×R

k) that are equivalent
on X2 due to the boundary condition. The pairing between X∗

2 and X2 can be written
as

〈(
μ

q

)

,

(
v

r

)〉

=
m∑

i=1

∫ 1

0
vi (s)dμi (s) + 〈q, r〉.

In order to work with functions instead of with measures, an isometric isomorphism
between real Borel measures and normalised functions of bounded variation is used,
so that X∗

2 is represented as NBV
m
b ×R

k with η ∈ NBVb if η is a function of bounded
variation, right continuous in [0, 1] and satisfies η(0) = 0 (the norm in NBVb is the
total variation norm).
The next step consists in showing X

�T2
2

∼= L1(0, 1)m × R
k where the norm in

L1(0, 1)m is weighted by function c, in the sense that

‖ν‖ =
m∑

i=1

∫ 1

0

∣
∣
∣
∣
νi (s)

ci (s)

∣
∣
∣
∣ ds. (2.3)

This is done taking into account the result D(A∗
T2

) = X
�T2
2 (which is a particular case

of the equality D(A∗
T ) = X�T that holds for any strongly continuous semigroup T

generated by AT on a Banach space X , proved in [11, Proposition AII.3.8]). To apply
this result first D(A∗

T2
) is determined, which results in the pairs (η, q) ∈ NBVm

b × R
k

such that for all component of η there exists νi ∈ NBVb with νi (1) = 0 satisfying

ηi (s) =
∫ s

0

νi (σ )

ci (σ )
dσ ∀s ∈ [0, 1].

Then the closure of D(A∗
T2

) is shown to be isometrically isomorphic to

L1(0, 1)m × R
k

where the norm in L1(0, 1)m is weighted by function c as stated, i.e. in the sense (2.3).

To represent X
�T2
2 ⊂ X∗

2 as L1(0, 1)m × R
k , we must define a pairing between

L1(0, 1)m × R
k and X2. The natural pairing is the one defined by 〈(ν, q), (v, r)〉 :=

〈φ((ν, q)), (v, r)〉where φ is the isometric isomorphism between L1(0, 1)m ×R
k and

D(A∗
T2

) ⊂ NBVm
b × R

k , which results in

〈(
ν

q

)

,

(
v

r

)〉

=
m∑

i=1

∫ 1

0
vi (s)

νi (s)

ci (s)
ds + r · q.
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Finally it is proven that X
��T2
2

∼= X2. Indeed, using L1(0, 1)m × R
k as a represen-

tation of X
�T2
2 clearly implies X

�T2∗
2

∼= L∞(0, 1)m × R
k . In this case the norm of

L∞(0, 1)m is the standard one (i.e. is not affected by function c) if the pairing

〈(
v

r

)

,

(
ν

q

)〉

=
m∑

i=1

∫ 1

0

vi (s)

ci (s)
νi (s)ds + r · q

is used, as we do. On the other hand, the semigroup T�
2 on (L1(0, 1))m × R

k is
specified by

T�
2 (t)

(
ν

q

)

=
(

ν̃(·; t, ν)

q + ∑m
i=1

∫ 1
0

νi (s)
ci (s)

1−(ϕi (−t, s))ds �i

)

where �i must be interpreted as a vector of R
k and where the i th component of

ν̃(·; t, ν) is

ν̃i (·, t, ν) = ci (·)νi (ϕi (t, ·))
ci (ϕi (t, ·)) ∂2ϕi (t, ·)1+(ϕi (−t, 1) − ·).

Similarly, T�
2 is used to give an explicit formula for the semigroup T�∗

2 on Lm∞ × R
k ,

which results in the natural extension of T2 in Lm∞ × R
k .

Then, the infinitesimal generator of T�
2 on L1(0, 1)m × R

k is determined as

D(AT�
2

) =
{
(ν, q) ∈ L1(0, 1)m × R

k | ν is absolutely continuous and ν(1) = 0
}

and AT�(ν, q) = (cν′,
∑m

i=1 νi (0)�i ). By saying that ν is absolutely continuous we
mean that the condition is satisfied component-wise, i.e. for each component of ν. The
adjoint of AT�

2
is consequently determined as

D(A∗
T�
2

) =
{
(v, r) ∈ (L∞(0, 1))m × R

k | v is Lipschitz and v(0) = �r
}

(2.4)

and A∗
T�
2

(v, r) = (−cv′, 0). By using [11, Proposition AII.3.8] one more time, we

obtain X
��T2
2 as the closure of D(A∗

T�
2

).Whendoing sowe lose theLipschitz condition

on v but the continuity remains. Therefore,

X
��T2
2

∼=
{
(v, r) ∈ C([0, 1], R)m × R

k | v(0) = �r
}

= X2,

as desired. �

Once shown that T is closed by �∗-integration on Y , we can use Theorem A2 to
conclude that one and only one semiflow 	 associated to (1.3) exists. This result is
stated below in the form of a theorem.

Theorem 1. Problem (1.1) is well posed on X = X1 × X2 defined in (1.5), i.e. there
exists an open subset
 of [0,∞)× X (in the induced topology) and a unique function
	 from 
 to X satisfying the following:
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– for all initial condition x = (u0, v0, r0) ∈ X there exists tx ∈ (0,∞] such that
[0, tx ) × {x} is the intersection of 
 with [0,∞) × {x},

– for all x = (u0, v0, r0) ∈ X, function 	(·; x) from [0, tx ) to X is a mild solution
of (1.1) (in the sense of DefinitionA3). Thus,	 satisfies the semigroup property,
i.e. 	(t + s, x) = 	(t, 	(s, x)) for positive s and t with t + s < tx , whereas
function 	(t; ·) is locally Lipschitz in x.

2.2. Linearisation around steady states

Given a steady state (ū, v̄, r̄) ∈ X of the semiflow 	, Theorem A3 ensures that
there exists a strongly continuous linear semigroup S(t) on X such that S(t) =
D2	(t; (ū, v̄, r̄)). Moreover, using that (v, r) ∈ D(A∗

T�
2

) if and only if v is Lips-

chitz and v(0) = �r (see (2.4)), it follows that the domain of the generator AS of the
semigroup S(t) (see Theorem A1) can be written as

D(AS) =
⎧
⎨

⎩

⎛

⎝
u
v

r

⎞

⎠ ∈ X | v is Lipschitz and

⎛

⎝
0

−c · v′
0

⎞

⎠ + DH(ū, v̄, r̄)

⎛

⎝
u
v

r

⎞

⎠ ∈ X

⎫
⎬

⎭

and then

AS

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
0

−c · v′
0

⎞

⎠ + DH(ū, v̄, r̄)

⎛

⎝
u
v

r

⎞

⎠ for all

⎛

⎝
u
v

r

⎞

⎠ ∈ D(AS). (2.5)

Next, in order to study the asymptotic behaviour of 	 around (ū, v̄, r̄), we show that
S(t) is eventually norm continuous (see Theorem 3), so that Theorem A7 can be
applied and a characterization of the local dynamics around (ū, v̄, r̄) can be given in
terms of the eigenvalues of the operator AS (see Theorem 4 at the end of the section).
The proof is long and will occupy the rest of the section.
Let us start noticing that DH(ū, v̄, r̄) has the form

DH(ū, v̄, r̄)

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
B11u + B12v

B21u + B22v

K̃ (v, r)

⎞

⎠ .

where

B11 ∈ L∞((0, 1),Mn×n(R)),

B12 ∈ L∞((0, 1),Mn×m(R)),

B21 ∈ L∞((0, 1),Mm×n(R)),

B22 ∈ L∞((0, 1),Mm×m(R)),

and K̃ is a bounded linear operator from X2 intoR
k (for instance, B11(x) = D2g(x, ū(x),

v̄(x)). Thus, the generator AS can be formally written as

AS

⎛

⎝
u
v

r

⎞

⎠ = A

⎛

⎝
u
v

r

⎞

⎠ + B

⎛

⎝
u
v

r

⎞

⎠ + K

⎛

⎝
u
v

r

⎞

⎠ ,
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where B and K are bounded operators from X into X�T ∗. Their explicit expressions
are

B

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
B11u + B12v

B21u + B22v

0

⎞

⎠ and K

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
0
0

K̃ (v, r)

⎞

⎠ . (2.6)

Notice that K is a compact operator because it takes values in a finite dimensional
subspace of X�∗, namely {0} × {0} × R

k . Thus, in order to show that S is eventually
norm continuous it is enough to prove the eventually norm continuity of the simpler
semigroup generated by A+B. This is so because compact perturbations of eventually
normcontinuous semigroups are also eventually normcontinuous (see [12, Proposition
III.1.14] and Theorem A8 in the appendix).

The proof of the eventual norm continuity of the semigroup SB generated by A+ B
is based on the series formula for SB given in Theorem A1. From that theorem we
know that the series

∞∑

k=0

Sk,

with S0 = T and Sk = ∫ ·
0 T

�∗(· − s)BSk−1(s)ds for n > 1, converges uniformly
(on compact time intervals) towards SB . By the Uniform Convergence Theorem, we
know that if function Sk is continuous in [t0,∞) for each k, then so is SB . Therefore,
it is enough to prove that each term in the series defining SB is continuous on [1,∞)

in order to conclude that SB is norm continuous from 1 onwards.

The specific value at which the functions defining the series become continuous
is 1 due to the fact that ci (x) ≥ 1 for all i , which implies that ϕi (−t, x) < 0 for
all (t, x) ∈ (1,∞) × [0, 1]. The proof consists in showing that the operator norm of
(Sk(t + h)− Sk(t)) can be bounded as ‖(Sk(t + h)− Sk(t))‖ < Mt,k |h| for all k ∈ N,
t > 1 and |h| small enough, where Mt,k is a constant that only depends on t and k. In
order to do that the image of a point (u, v, r) by Sk(t + h) − Sk(t) is expressed as the
sum of several terms and each of them is properly bounded. Hence the methodology is
technical, though the tricks are mostly elementary. Unfortunately, we failed in giving
a proof by induction on the index k.

Next we are going to prove some intermediate steps that will lead to the result we
desire. First, let us recall that the norms of X and j (X) are equivalent (PropositionA.1),
so that there exists M > 0 such that

∥
∥
∥
∥
∥
∥
j

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X�∗

≤
∥
∥
∥
∥
∥
∥

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X

≤ M

∥
∥
∥
∥
∥
∥
j

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X�∗

. (2.7)
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Then, for all k ≥ 1 and h ∈ (0, 1) observe that the definition of Sk implies
∥
∥
∥
∥
∥
∥
(Sk (t + h) − Sk (t))

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X

� M

∥
∥
∥
∥
∥
∥

∫ t+h
0 T�∗(t + h − s)BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds − ∫ t
0 T�∗(t − s)BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds

∥
∥
∥
∥
∥
∥
X�∗

� M

∥
∥
∥
∥
∥
∥

⎛

⎝
û(·; t + h) − û(·; t)
v̂(·; t + h) − v̂(·; t)

0

⎞

⎠

∥
∥
∥
∥
∥
∥
X�∗

� M(‖û(·; t + h) − û(·; t)‖Ln∞ + ‖v̂(·; t + h) − v̂(·; t)‖Lm∞ )

(2.8)

where, defining the projection πu : Ln∞ × Lm∞ × R
m → Ln∞ so that πu(u, v, r) = u,

û(·; t) =
∫ t

0
πu BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds, (2.9)

and, defining the projection πv : Ln∞ × Lm∞ × R
m → Lm∞ so that πv(u, v, r) = v,

v̂(·; t) =
∫ t

0
πvT

�∗(t − s)BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds. (2.10)

From inequality (2.8) it follows that in order to obtain a bound of the form ‖(Sk(t +
h) − Sk(t))‖ < Mth one has to focus on the terms ‖û(·; t + h) − û(·; t)‖Ln∞ and
‖v̂(·; t + h) − v̂(·; t)‖Lm∞ . This is what is done in the following lemmas.

Lemma 1. For all t > 0 and h ∈ (0, 1), there exists M̃t > 0 such that the term
‖û(·; t + h) − û(·; t)‖Ln∞ defined in (2.8) can be bounded as

‖û(·; t + h) − û(·; t)‖Ln∞ < M̃t h ‖(u, v, r)‖X .

Proof. Since the operator norm of Sk−1(s) is uniformly bounded within bounded
intervals of time, using (2.9) one has

‖û(·; t + h) − û(·; t)‖Ln∞

�

∥
∥
∥
∥
∥
∥
πu

⎛

⎝

∫ t+h

0
BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds −
∫ t

0
BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠ ds

⎞

⎠

∥
∥
∥
∥
∥
∥
Ln∞

�
∫ t+h

t

∥
∥
∥
∥
∥
∥
BSk−1(s)

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X�∗

ds � h‖B‖ sup
s∈[0,t+1]

‖Sk−1(s)‖
∥
∥
∥
∥
∥
∥

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X

. (2.11)

�
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Let us focus now on the terms ‖v̂(·; t + h) − v̂(·; t)‖Lm∞ of (2.8). Notice that B
initially defined from X into X�∗ can be extended to a bounded operator from X�∗
into itself given by the same expression of B (see (2.6)). Thus, it is possible to enter
the operators T�∗(t − sk) and B inside the integral that defines Sk(s) in (2.10). That
is, v̂(·; t) can be written as

v̂(·; t) =
∫ t

0
πvT

�∗(t − sk)B
∫ sk

0
T�∗(sk − sk−1)BSk−2(sk−1)

⎛

⎝
u
v

r

⎞

⎠ dsk−1dsk

=
∫ t

0

∫ sk

0
πvT

�∗(t − sk)BT
�∗(sk − sk−1)BSk−2(sk−1)

⎛

⎝
u
v

r

⎞

⎠ dsk−1dsk,

and, inductively,

v̂(·; t) =
∫ t

0

∫ sk

0
· · ·

∫ s2

0

πvT
�∗(t − sk)BT

�∗(sk − sk−1)B · · · T�∗(s2 − s1)BT (s1)

⎛

⎝
u
v

r

⎞

⎠ ds1 · · · dsk−1dsk .

(2.12)

In order to simplify the above equation recall that X�∗ = Ln∞ × Lm∞ × R
m and

observe that the operators T�∗(sl+1 − sl)B : X�∗ → X�∗ for l ∈ {1, . . . , k} (setting
sk+1 = t) can be synthesised as matrices of operators:

T�∗(sl+1 − sl)B ∼
⎛

⎝
B11 B12 0

T̃ (sl+1 − sl)B21 T̃ (sl+1 − sl)B22 0
0 0 0

⎞

⎠ ,

where T̃ (s) : Lm∞ → Lm∞ is defined as

(T̃ (s)v)i = vi (ϕi (−s, ·))1+(ϕi (−s, ·)) ∀i ∈ {1, . . . ,m}. (2.13)

The product of operators

1∏

l=k

T�∗(sl+1 − sl)B = T�∗(t − sk)BT
�∗(sk − sk−1)B · · · T�∗(s2 − s1)B,

(with sk+1 = t) written as a matrix of operators, becomes:

J ∼
⎛

⎝
J11 J12 0
J21 J22 0
0 0 0

⎞

⎠
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where, for (i0, ik+1) ∈ {1, 2} × {1, 2},

Ji0ik+1 =
2∑

i1=1

2∑

i2=1

· · ·
2∑

ik=1

Ji0i1i2···ik ik+1(t − sk, sk − sk−1, . . . , s2 − s1)

with

Ji0i1i2···ik ik+1(t − sk, sk − sk−1, . . . , s2 − s1)

= (T�∗(t − sk)B)i0i1(T
�∗(sk − sk−1)B)i1i2 · · · (T�∗(s2 − s1)B)ik ik+1 .

(2.14)

In particular, using ṽ(·; s1, v, r)defined in (2.2) the integrand in (2.12) canbe expressed
as

πv

(
1∏

l=k

T�∗(sl+1 − sl)B

)

T (s1)

⎛

⎝
u
v

r

⎞

⎠ = J21u + J22ṽ(·; s1, v, r)

so that (2.12) becomes the sum

v̂(·; t) =
2∑

i1=1

2∑

i2=1

· · ·
2∑

ik=1

I2 i1i2···ik1(t, u) +
2∑

i1=1

2∑

i2=1

· · ·
2∑

ik=1

I2 i1i2···ik2(t, v, r)

(2.15)

where

I2 i1i2···ik1(t, u)

=
∫ t

0

∫ sk

0
· · ·

∫ s2

0
J2 i1i2···ik1(t − sk, sk − sk−1, . . . , s2 − s1)uds1 · · · dsk−1dsk

(2.16)

and

I2 i1i2···ik2(t, v, r)

=
∫ t

0

∫ sk

0
· · ·

∫ s2

0
J2 i1i2···ik2(t − sk , sk − sk−1, . . . , s2 − s1)ṽ(·; s1, v, r)ds1 · · · dsk−1dsk .

(2.17)

Clearly, from (2.15) it follows

‖v̂(·; t + h) − v̂(·; t)‖Lm∞
≤ ∑2

i1=1
∑2

i2=1 · · ·∑2
ik=1

∥
∥I2 i1i2···ik1(t + h, u) − I2 i1i2···ik1(t, u)

∥
∥
Lm∞

+∑2
i1=1

∑2
i2=1 · · ·∑2

ik=1

∥
∥I2 i1i2···ik2(t + h, v, r) − I2 i1i2···ik2(t, v, r)

∥
∥
Lm∞ .

(2.18)

In order to give a bound for ‖v̂(·; t + h) − v̂(·; t)‖Lm∞ , we show that each summand
on the right hand side in (2.18) can be bounded properly, i.e. by something of the
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form hM̃t‖(u, v, r)‖. This is done by performing a change of variables to the “shifted
integrals” (the ones evaluated at t + h) so that the new integrand coincides with the
integrand of the “unshifted integrals” (the ones evaluated at t). The equality between
integrands makes, on the one hand, that the difference between integrals vanishes
over the domain of integration that is common to both integrals. On the other hand,
the domains of integration that are specific to each integral have a Lebesgue measure
proportional to h. These statements are developed in the following. To do so we treat
separately the terms in the first summation from those in the second summation.

Lemma 2. Let I2 i1i2···ik1(t, u) be defined as in (2.16). For all t > 0 and h ∈ (0, 1),
there exists M̃t > 0 such that

∥
∥I2 i1i2···ik1(t + h, u) − I2 i1i2···ik1(t, u)

∥
∥
Lm∞ < M̃t h ‖(u, v, r)‖X .

Proof. Applying a translation τh to the integration variables so that

τh(s1, s2, . . . , sk) = (s1 + h, s2 + h, . . . , sk + h)

the integral I2 i1i2···ik1(t + h, u) becomes

∫ t

−h

∫ sk

−h
· · ·

∫ s2

−h
J2 i1i2···ik1(t − sk, sk − sk−1, . . . , s2 − s1)uds1 · · · dsk−1dsk .

Therefore, using ‖T�∗(s)‖X�∗ ≤ 1 for all s ≥ 0, one has
∥
∥I2 i1i2···ik1(t + h, u) − I2 i1i2···ik1(t, u)

∥
∥
Lm∞

=
∥
∥
∥
∥

∫ t

−h

∫ sk

−h
· · ·

∫ min{s2,0}

−h

J2 i1i2···ik1(t − sk, sk − sk−1, . . . , s2 − s1)u
∫ t

−h
ds1 · · · dsk−1dsk

∥
∥
∥
∥
Lm∞

≤ h(t + h)k−1‖B‖k‖(u, v, r)‖ ≤ h(t + 1)k−1‖B‖k‖(u, v, r)‖ (2.19)

as desired. �

Let us consider now the terms in (2.18) of the form
∥
∥I2 i1i2···ik2(t + h, v, r) − I2 i1i2···ik2(t, v, r)

∥
∥
Lm∞ .

In this case it is not clear whether it is possible to make a change of variables that
transforms the integrandof I2 i1i2···ik2(t+h, v, r) into the integrandof I2 i1i2···ik2(t, v, r)
as we did in the proof of the previous lemma. The problem is that the integration
variables do not only appear in the function that determines J2 i1i2···ik2, but they also
play a role in the term ṽ. Apparently, finding a change of variables that transforms the
integrand

J2 i1i2···ik2(t + h − sk, sk − sk−1, . . . , s2 − s1)ṽ(·; s1, v, r)
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into

J2 i1i2···ik2(t − σk, σk − σk−1, . . . , σ2 − σ1)ṽ(·; σ1, v, r)

amounts to solve the following system of k + 1 equations and k unknows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t + h − sk = t − σk

sk − sk−1 = σk − σk−1
...

s2 − s1 = σ2 − σ1

s1 = σ1

, (2.20)

which is impossible. However, the fact is that one of the equations in the system above
is unnecessary to find the desired change of variables. To justify this let us distinguish
the case I2 22···22 from the cases I2 i1i2···ik2 in which at least one index is 1.

Lemma 3. Let I2 i1i2···ik2(t, v, r) be defined as in (2.17). Let il = 1 for some l ∈
{1, . . . , k}. For all t > 0 and h ∈ (0, 1), there exists M̃t > 0 such that

∥
∥I2 i1i2···ik2(t + h, v, r) − I2 i1i2···ik2(t, v, r)

∥
∥
Lm∞ < M̃t h ‖(u, v, r)‖X .

Proof. Since il = 1, the term (T�∗(sk − sk−1)B)il il+1 appearing in (2.14) is

(T�∗(sk−l+1 − sk−l)B)il il+1 = (T�∗(sk−l+1 − sk−l)B)1il+1 = B1il+1,

so that J2 i1i2···ik2 is independent of the difference sk−l+1 − sk−l . Thus, the desired
change of variables can be obtained without imposing the equality

sk−l+1 − sk−l = σk−l+1 − σk−l .

This means that this equation can be removed from system (2.20) so that it becomes
compatible. The solution of the reduced system is the desired change of variables,
which is a translation τh given by

τh(s1, s2, . . . , sk) = (s1, . . . , sk−l , sk−l+1 + h . . . , sk + h).

By using this transformation on the “shifted integral” one has

I2 i1i2···ik2(t + h, v, r)

=
∫ t

−h

∫ sk

−h
· · ·

∫ sk−l+2

−h

∫ sk−l+1+h

0

∫ sk−l

0
· · ·

∫ s2

0

J2 i1i2···ik2(t − sk, . . . , s2 − s1)ṽ(·; s1, v, r)ds1 · · · dsk,
and, similarly as done in (2.19), one concludes

∥
∥I2 i1i2···ik2(t + h, v, r) − I2 i1i2···ik2(t, v, r)

∥
∥
Lm∞

≤ h(t + 1)k−1‖B‖k‖(u, v, r)‖. (2.21)

�
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The previous proof cannot be applied to give an analogous bound for the terms of
the form

‖I222···22(t + h, v, r) − I222···22(t, v, r)‖Lm∞ .

The problem is that, in this case, the term J222···22 depends on all the differences
sl+1 − sl with l ∈ {1, . . . k}, so that all the first k rows of system (2.20) have to be
imposed. The bound, however, can be proven by showing that the last equation of
(2.20) is not needed to give a suitable change of variables.

Lemma 4. Let di = si+1 − si for i ∈ {1, . . . , k} and sk+1 = t . If t > 1, the functions

1+(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·))
and

1−(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·))
seen as elements of L∞(0, 1) are the constant functions 0 and 1 respectively.

Proof. Notice that for all x ∈ [0, 1] and t > 1 one has

ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·) < 0.

Indeed, using that ∂tϕ j (t, x) ≥ 1 for all j ∈ {1, . . . ,m}, which implies ϕ j (−d, x) ≤
ϕ j (0, x) − d = x − d for all d > 0, we deduce

ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)(x)
≤ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)(x) − s1
≤ ϕl3(−d2, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)(x) − d1 − s1 ≤ · · · ≤
≤ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)(x) − ∑k−2

i=1 di − s1
≤ ϕi (−dk, x) − ∑k−1

i=1 di − s1 ≤ x − ∑k
i=1 di − s1

= x − ∑k
i=1(si+1 − si ) − s1 = x − t < 0

since t > 1 and x ∈ [0, 1]. �
Lemma 5. Let J222···22(t − sk, sk − sk−1, . . . , s2 − s1) be defined as in (2.14). For all
t > 1 the following holds

J222···22(t − sk, sk − sk−1, . . . , s2 − s1)ṽ(·; s1, v, r)

= J222···22(t − sk, sk − sk−1, . . . , s2 − s1)�r. (2.22)

Proof. Recall the definition of T̃ given in (2.13). Denoting dl = sl+1 − sl , the i th
component of J222···22(dk, . . . , d1)v is

(J222···22(dk, . . . , d1)v)i = (T̃ (dk)B22T̃ (dk−1)B22 · · · T̃ (d1)B22v)i

=
m∑

lk=1

· · ·
m∑

l1=1

T̃i (dk)B22,ilk T̃lk (dk−1)B22,lk lk−1 · · · T̃l2(d1)(B22,l2l1vl1)

=
m∑

lk=1

· · ·
m∑

l1=1

(T̃i (dk)B22,ilk T̃lk (dk−1)B22,lk lk−1 · · · T̃l2(d1)B22,l2l1)

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)vl1). (2.23)
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In the last equalitywe have used that, for all i ∈ {1, . . . ,m} and for all f, g ∈ L∞(0, 1),
the operator T̃i (d) satisfies

T̃i (d)( f g) = f (ϕi (−d, ·))g(ϕi (−d, ·))1+(ϕi (−d, ·))
= ( f (ϕi (−d, ·))1+(ϕi (−d, ·)))(g(ϕi (−d, ·))1+(ϕi (−d, ·)))
= (T̃i (d) f )(T̃i (d)g), (2.24)

so that for all triad b, f, g ∈ L∞(0, 1) (for instance b = B22,l3l2 , f = B22,l2l1 and
g = vl1 ) one has

bT̃i (d)( f g) = (bT̃i (d) f )(T̃i (d)g).

In particular, the i th component of J222···22(dk, . . . , d1)ṽ(·; s1, v, r) is

(J222···22(dk, . . . , d1)ṽ(·; s1, v, r))i = SUMv + SUMr

with

SUMv = ∑m
lk=1 · · ·∑m

l1=1(T̃i (dk)B22,ilk T̃lk (dk−1)B22,lk lk−1 · · · T̃l2(d1)B22,l2l1)

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)(vl1(ϕl1(−s1, ·))1+(ϕl1(−s1, ·))))
and

SUMr = ∑m
lk=1 · · ·∑m

l1=1(T̃i (dk)B22,ilk T̃lk (dk−1)B22,lk lk−1 · · · T̃l2(d1)B22,l2l1)

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)(�l1r1−(ϕl1(−s1, ·)))).

Since the operators T̃i (d) satisfy

T̃i (d)( f g) = f (ϕi (−d, ·))g(ϕi (−d, ·))1+(ϕi (−d, ·)) = (T̃i (d) f )g(ϕi (−d, ·)),

for all f ∈ L∞(0, 1) and g ∈ L∞(R) (and agreeing that the product of a function f
in L∞(0, 1) with a function g in L∞(R) is the product of f with the projection of g
in L∞(0, 1)), the factors in each summand of SUMv that depend on v, i.e. the terms
of the form

T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)(vl1(ϕl1(−s1, ·))1+(ϕl1(−s1, ·))),

can be written as the product

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)vl1(ϕl1(−s1, ·)))
1+(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)),

whereas the factors in each summand of SUMr that depend on r can be written as

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)�l1r)
1−(ϕl1(−s1, ·) ◦ ϕl2(−d1, ·) ◦ · · · ◦ ϕlk (−dk−1, ·) ◦ ϕi (−dk, ·)).
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Now, by Lemma (4) we conclude that SUMv is zero whereas SUMr equals

∑m
lk=1 · · ·∑m

l1=1(T̃i (dk)B22,ilk T̃lk (dk−1)B22,lk lk−1 · · · T̃l2(d1)B22,l2l1)

(T̃i (dk)T̃lk (dk−1) · · · T̃l2(d1)�l1r),

which clearly coincides with the i th component of J222···22(dk, . . . , d1)�r if one uses
the expression (2.23). That is, for all i ∈ {1, . . . ,m} one has

(J222···22(dk, . . . , d1)ṽ(·; s1, v, r))i = (J222···22(dk, . . . , d1)�r)i ,

which implies the equality stated in (2.22). �

Lemma 6. Let I222···22(t, v, r) be defined as in (2.17). For all t > 1 and h ∈ (0, 1),
there exists M̃t > 0 such that

‖I222···22(t + h, v, r) − I222···22(t, v, r)‖Lm∞ < M̃t h ‖(u, v, r)‖X .

Proof. Lemma 5 implies that, if t > 1, function ṽ in the integrand of I222···22(t, v, r)
can be replaced by the constant �r . Then, the solution of system (2.20) with the last
equation removed gives a change of variables, namely τh(s1, s2, . . . , sk) = (s1 +
h, s2 + h, . . . , sk + h), such that the integral I222···22(t + h, v, r) transforms into

∫ t

−h

∫ sk

−h
· · ·

∫ s2

−h
J222···22(t − sk, sk − sk−1, . . . , s2 − s1)�rds1 · · · dsk−1dsk .

Finally, similarly as it is done in (2.19) and taking into account �r = v(0), one
concludes

‖I222···22(t + h, v, r) − I222···22(t, v, r)‖Lm∞
≤ h(t + 1)k−1‖B‖k‖(u, v, r)‖. (2.25)

�

Lemma 7. For all t > 1 and h ∈ (0, 1), there exists M̃t > 0 such that the term
‖v̂(·; t + h) − v̂(·; t)‖Lm∞ defined in (2.8) can be bounded as

‖v̂(·; t + h) − v̂(·; t)‖Lm∞ ≤ M̃t h ‖(u, v, r)‖X .

Proof. By using the bounds (2.19), (2.21) and (2.25) in inequality (2.18) it follows

‖v̂(·; t + h) − v̂(·; t)‖Lm∞ ≤ 2k+1h(t + 1)k−1‖B‖k
∥
∥
∥
∥
∥
∥

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥
X

. (2.26)

�
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Theorem 2. Let T and T�∗ be defined by (2.1) on X and X�T ∗ respectively. Let B
be defined by (2.6). The functions

S0(t) = T (t),
Sk(t) = j−1

∫ t
0 T

�∗(t − s)BSk−1(s)ds, ∀k ∈ N

from [0,∞) to L(X) (the Banach space of the bounded linear operators on X with
the operator norm) are continuous on [1,∞).

Proof. The case k = 0 follows immediately from the definition of T (·) in ( 2.1).
Indeed, let t > 1 and h > 1 − t . Then

∥
∥
∥
∥
∥
∥
(T (t + h) − T (t))

⎛

⎝
u
v

r

⎞

⎠

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

⎛

⎝
u − u
r − r
r − r

⎞

⎠

∥
∥
∥
∥
∥
∥

= 0,

that is ‖T (t + h) − T (t)‖ = 0 for all h > 1 − t , and in particular the limit as h tends
to zero is also zero.
The general case k > 0 is a consequences of the previous lemmas. If h ∈ (0, 1) and

t > 0, then Lemmas 1 and 7 applied to inequality (2.8) yield

‖(Sk(t + h) − Sk(t))‖ ≤ hMt (2.27)

with

Mt = M(‖B‖ sup
s∈[0,t+1]

‖Sk−1(s)‖ + 2k+1(t + 1)k−1‖B‖k).

If t > 1 and h ∈ (max{1 − t,−1}, 0), then inequality (2.27) can be applied as

‖(Sk(t + h) − Sk(t))‖ = ‖(Sk(t + h + |h|) − Sk(t + h))‖ ≤ kt+h |h| ≤ Mt |h|,
since, on the one hand, t + h is still bigger than 1 and, on the other hand, the constant
Mt is increasing as a function of t .
By combining the results for positive and negative h, one finally concludes that for

t > 1 and h ∈ (max{1 − t,−1}, 1) there exists a constant Mt (which depends on t)
such that

‖Sk(t + h) − Sk(t)‖X ≤ |h|Mt .

�

As a corollary of Theorem 2 and the uniform convergence of the series defining SB ,
it follows that

Theorem 3. The semigroup SB generated by A + B (in the sense of Theorem A1) is
eventually norm continuous. Moreover, since K is a compact operator from X into
X�∗, the semigroup S generated by A + B + K (in the sense of Theorem A1, using
either A+ (B+K ) or (A+ B)+K) is eventually norm continuous (as an application
of Theorem A8).
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Finally, the eventual norm continuity of the linearised semigroup S makes possible to
apply Theorem A7, so that the following result on linearisation specific to problem
(1.1) can be stated:

Theorem 4. Let (ū, v̄, r̄) ∈ X be a steady state of the semiflow 	 associated to (1.1)
and let AS be the operator defined in (2.5). Then,

(i) (ū, v̄, r̄) is locally asymptotically stable if s(AS) < 0,
(ii) (ū, v̄, r̄) is unstable if there exists ω > 0 such that the spectrum of AS within

the region {λ ∈ C | Re(λ) > ω} is non-empty and is composed only by a finite
number of eigenvalues with finite algebraic multiplicity.

3. Applications and discussion

The system presented in Sect. 2 was originally inspired by an epidemiological
problem involving pathogens spreading through the oral-fecal route [2,4] (see also
[1,14]). Specifically, in [2]we analysed a biological system involving n hosts (animals)
and m species of microorganisms living in their intestines, either as free particles in
the lumen or attached to the epithelial wall. By calling uh,s(x, t) and vh,s(x, t) the
densities of attached and luminal microbes of type s in the host h respectively, and
rs(t) the density of microbes s in the soil, all of them at time t , the dynamical equations
are

⎧
⎨

⎩

∂t uh,s(t, x) = gh,s(x, uh(t, x), vh(t, x)),
∂tvh,s(t, x) = −∂x (ch(x)vh,s(t, x)) + fh,s(x, uh(t, x), vh(t, x)),
drs (t)
dt = ms(r(t)) + ∑

h∈H ch(lh)vh,s(t, lh) − ∑
h∈H λh,srs(t),

(3.1)

with h ∈ {1, . . . , n} =: H and s ∈ {1, . . . ,m} =: S. In the above equations the
notation uh = (uh,1, . . . , uh,m), vh = (vh,1, . . . , vh,m) and r = (r1, . . . , rm) is used.
The parameter lh is the intestine length of host h (thus, the spatial domain of both uh
and vh is [0, lh]) and ch(x) stands for the velocity of its intestinal flow (notice that
it is implicitly assumed that advection dominates diffusion). The functions gh,s and
fh,s take into account the ecological processes happening locally at the position x of
the intestine. Besides replication and mortality of bacteria, these functions may also
reflect migration between epithelium and lumen, competition interactions or whatever
we are interested in. Similarly, the function ms describes the ecology in the external
media of the population of type s. Finally, we assume that microbes enter the intestine
in a rate which is proportional to their amount in the soil. Thus, λh,s represents a kind
of ingestion rate of particles of type s by host h. Consequently, a boundary condition
for vh,s must be incorporated relating such reinfection term, which is

ch(0)vh,s(0, t) = λh,srs ∀(h, s) ∈ H × S. (3.2)

The diversity in gut lengths across hosts makes that, a priori, system (3.1) has not
the form of system (1.1). Fortunately, we can perform a change in the spatial variables
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to rewrite (3.1) properly in the form of a system as (1.1). Such a change is possible
because microbes within a host do not affect what happens in a different host. Indeed,
by defining ṽh(x, t) := vh(lh x, t) and ũh(x, t) := uh(lh x, t), we have, on the one
hand, that the spatial domain of ũh,s and ṽh,s is the interval [0, 1] for all (h, s) ∈ H×S
and, on the other hand, that system (3.1) transforms into

⎧
⎨

⎩

∂t ũh,s(t, x) = gh,s(lh x, ũh(t, x), ṽh(t, x)),
∂t ṽh,s(t, x) = −∂x (ch(lh x)ṽh,s(t, x)) + fh,s(lh x, ũh(t, x), ṽh(t, x)),
drs (t)
dt = ms(r(t)) + ∑

h∈H ch(lh)ṽh,s(t, 1) − ∑
h∈H λh,srs(t).

(3.3)

with the boundary condition

ṽh,s(0, t) = λh,s

ch(0)
rs(t) ∀(h, s) ∈ H × S.

In particular, by considering vectors ũ and ṽ to be indexed by one number instead of
two, for example by writing ũm(h−1)+s instead of ũh,s (analogously for ṽ), then the
initial value problem associated to (3.3) has the form of problem (1.1). Thus, in order
to apply Theorems 1 and 4 to system (3.3) the phase space we have to work on is the
Banach space

X = X1 × X2

with X1 = L∞(0, 1)n×m and

X2 =
{

(ṽ, r) ∈ C([0, 1],R)n×m × R
m | ṽm(h−1)+s(0) = λh,s

ch(0)
rs ∀(h, s) ∈ H × S

}

.

In [2] problem (3.1) was analysed formally more than theoretically. In the present
paperwehaveproved thatTheorems1and4apply to problem (3.3) (which is equivalent
to system (3.1)), so that, as a corollary, we can state that the procedures followed in
[2] are well supported by the theory of dual semigroups. In addition, Theorem 4 also
implies that the conjecture used in [2] about the asymptotic dynamics of the system
around steady states is true.
To illustrate the theory developed in this paper let us consider the simplest case of

the ones treated in [2]: problem (3.1) and (3.2) with a single host, a single bacterial
strain and assuming that the intestinal flow velocity is constant at all points (i.e. that
c(x) is constant). In this case, and using g(u, v, x) = uγ1(u)−αu+ δv, f (u, v, x) =
vγ2(v) + αu − δv and m(r) = −μr the equations reduce to

⎧
⎪⎪⎨

⎪⎪⎩

∂t u(t, x) = u(t, x)γ1(u(t, x)) − αu(t, x) + δv(t, x),
∂tv(t, x) = −c∂x (v(t, x)) + v(t, x)γ2(v(t, x)) + αu(t, x) − δv(t, x),
dr(t)
dt = −μr(t) + cv(t, l) − λr(t),

cv(t, 0) = λr(t).

(3.4)

Here α and δ represent attachment and detachment rates (to and from the intestinal
epithelium), μ is a mortality rate of the bacteria found in the environment (outside



   58 Page 22 of 33 C. Barril and À. Calsina J. Evol. Equ.

the host) and γ1 and γ2 are per capita reproduction rates in the epithelium and in the
lumen of the intestine. In [2] it is shown that if γ1 and γ2 are decreasing and negative
for large arguments, then (3.4) has at most one positive stationary solution. Such a
positive equilibrium exists if and only if

• γ1(0) ≥ δ, or
• γ1(0) < δ and

λ

λ + μ
e

l
c

(
γ2(0)−α+ αδ

δ−γ1(0)

)

> 1.

The local behaviour of this equilibria, denoted by (ū(·), v̄(·), r̄), can be determined
applying Theorem 4. To do this first we specify the generator AS of the linearised
semigroup around this equilibria (see (2.5) and also (1.4)), which is

AS

⎛

⎝
u
v

r

⎞

⎠ =
⎛

⎝
a1(·)u(·) + αv(·)

−c · v′(·) + a2(·)v(·) + δu(·)
cv(l) − λr − μr

⎞

⎠ for all

⎛

⎝
u
v

r

⎞

⎠ ∈ D(AS),

where

a1(·) = γ1(ū(·)) − δ + γ ′
1(ū(·))ū(·),

a2(·) = γ2(v̄(·)) − α + γ ′
2(v̄(·))v̄(·). .

Then the spectral values of AS are determined by studying which operators AS − ηId
defined on D(AS) fail to have a continuum inverse. This leads to the characteristic
equation whose solutions are the eigenvalues of AS and which can be used to give
the spectral bound of AS (see Lemma 3.5 in [2] for more details). For this particular
example it turns out that the positive stationary solution, when does exist, is always
locally asymptotically stable.
Beyond the model treated in [2], problem (1.3) can also be applied to determine if

coexistence scenarios exist in the chemostat model of [1,14] and, in general, to any
system of living beings inhabiting networks where advection is much more intense
than diffusion. In the particular case of gut microogranisms, however, the coexistence
of different bacteria has implications not only on the microbial ecology, but also on the
host development. Indeed, physiological diversity between microbes may create dis-
tinguished biofilm patterns along the intestine which, in turn, could play a role during
tissue differentiation. A “pathogenic” pattern would result in intestines more vulnera-
ble to infections or in microbiomes unable to supply essential nutrients. In this sense,
improving our understanding about stable gastro-intestinal ecosystems will be help-
ful for therapists dedicated to reshape the microbiome of patients with dysfunctional
microbial patterns.
In addition to the biological implications of the model proposed above, the present

work has motivated some mathematical questions. Recall that in Sect. 3 we proved
that a certain semigroup was eventually norm continuous. This property implied the
Spectral Mapping Theorem, which essentially gives a one to one relation between the
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spectrum of the semigroup evaluated at t and the spectrum of its generator. The proof,
however, relied on the particular structure of the system we considered and, from our
point of view, this was not optimal. By studying alternative ways to treat the problem,
we realised that the kindof semigroupwewere analysingwasobtainedbyperturbing an
eventually continuous semigroup by a bounded operator (in fact, the bounded operator
was atypical in the sense that it was defined from the base space X to X�T ∗, with T
being the unperturbed semigroup, but let us set aside this particularity now). A natural
question at this point iswhether the perturbation of an eventually continuous semigroup
by a bounded perturbation is also eventually norm continuous. As Nagel and Engel
show in their book, this is not true in general (see [12, Example III.1.15], in which
the unperturbed semigroup is even nilpotent), although if the bounded perturbation is
also compact, then the perturbed semigroup does inherit the eventual continuity of the
unperturbed semigroup (see Theorem A8). Since in our case the compactness of the
perturbation was not something we could assume, deducing the eventual continuity of
the perturbed semigroup by means of general results seemed unfeasible. However, our
final goal was not to show that the perturbed semigroup was eventually continuous, we
wanted to prove the Spectral Mapping Theorem for the perturbed semigroup, which
is something weaker. In this sense, we would need a general result as the following.

Conjecture 1. Let X be a Banach space. Let T be an eventually norm continuous
semigroup on X generated by A. Let B be a bounded operator on X. Then the Spectral
Mapping Theorem holds for the semigroup S generated by A+ B, i.e. σ(S(t))\ {0} =
et σ(A+B) holds for all t ≥ 0.

Similarly, a weaker version of the above conjecture that, if proved to be true, would
also imply Theorem 4 as a corollary is the following.

Conjecture 2. Let X be a Banach space. Let T be an eventually norm continuous
semigroup on X generated by A. Let B be a bounded operator on X. Then the growth
bound of the semigroup S generated by A + B is equal to the spectral bound of the
operator A + B, i.e.

ω0(S) = s(A + B).

Our attempts to prove or disprove any of these two conjectures were unfruitful, but
since we have not found any reference to these questions in the specialised literature
[12,26], we present it here for those with more expertise.
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Appendix

A Sun-dual formalism and evolution equations

In this appendix an introduction of the work done by Clement et al. [6,7] on sun-
dual semigroups is given. Although similar brief summaries exist written by the same
authors [8], we include our own in order to present a more comprehensible work and
because slight variations are introduced to dealwith non-sun-reflexive spaces forwhich
the variation of constants formula is well defined (see [9] for another reference where
this semilinear formulation is undertakenwithout the sun-reflexivity hypothesis). Thus
some of the theorems stated below are not exactly the same as the ones found in [6,7],
even though the arguments to prove them can be applied essentially in the same way.

A.1 Linear theory

Let X be a Banach space, and denote by X∗ its dual space. An element x∗ ∈ X∗ is,
by definition, a linear continuous operator from X to R. We denote the image of an
element x ∈ X by x∗ with the bracket 〈x∗, x〉.

Given a closed operator C on X , its adjoint operator C∗ is a linear operator from
X∗ to X∗ with domain

D(C∗) = {x∗ ∈ X∗ | ∃ζ ∗ ∈ X∗ such that 〈x∗,Cx〉 = 〈ζ ∗, x〉 ∀x ∈ D(C) ⊂ X}.
It turns out that if x∗ ∈ D(C∗) then only one ζ ∗ ∈ X∗ exists satisfying 〈x∗,Cx〉 =
〈ζ ∗, x〉 for all x ∈ D(C), so that the image of x∗ by C∗ is defined unequivocally
as C∗x∗ = ζ ∗. In particular if C is a bounded operator, then C∗ is also a bounded
operator and satisfies 〈C∗x∗, x〉 = 〈x∗,Cx〉 for all x∗ ∈ X∗ and x ∈ X .
Given a strongly continuous semigroup T on X , the sun-dual space of X relative to

T is a subspace of the dual space X∗ defined by:

X�T := {
x∗ ∈ X∗ | ‖T ∗(t)x∗ − x∗‖ → 0 as t ↓ 0

}
,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where T ∗(t) is the adjoint of the operator T (t). We denote by T�(t) the restriction
of T ∗(t) to X�T , so that T� is, by construction, a strongly continuous semigroup on
X�T whose infinitesimal generator is denoted as AT� . Repeating this procedure on
the pair (T�, X�T ) we define the double-sun-dual of X relative to T as:

X��T := (X�T )�T� .

The canonical injection j : X ↪−→X�T ∗ := (X�T )∗ is determined by the pairing

〈 j (x), x�〉 = 〈x�, x〉 ∀x� ∈ X�T .

In [6] it is shown that

‖ j (x)‖X�T ∗ ≤ ‖x‖X ≤ M‖ j (x)‖X�T ∗ , (A.1)

where M is a constant which depends on T . Among other things, this implies that

j (X) ⊂ X��T (A.2)

since it is easily checked that T�∗(t) j (x) = jT (t)x and then

‖T�∗(t) j (x) − j (x)‖X�T ∗ ≤ ‖T (t)x − x‖X −→ 0 as t ↓ 0.

The canonical injection makes possible to introduce two important concepts for the
development of the theory.

Definition A1. X is said to be sun-reflexive relative to a strongly continuous semi-
group T on X if j (X) = X��T .

Definition A2. Let T be a strongly continuous semigroup on X . Let Y be a subspace
of X�T ∗. We say that T is closed by �∗-integration on Y if, for all f ∈ C([0,∞),Y )

and for all t ≥ 0,
∫ t

0
T�∗(t − s) f (s)ds ∈ j (X). (A.3)

The integral in (A.3) must be understood as an element of X�T ∗, and specifically
(due to Bochner integral properties) as the functional satisfying

〈∫ t

0
T�∗(t − s) f (s)ds, x�

〉

=
∫ t

0
〈T�∗(t − s) f (s), x�〉ds.

Notice that a semigroup T is always closed by �∗-integration on j (X) since

∫ t

0
T�∗(t − s) f (s)ds = j

∫ t

0
T (t − s) j−1 f (s)ds.

A well-known result of the theory states that the kind of integrals given by (A.3) take
values not in the whole space X�T ∗ but in the subset X��T .
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Proposition A1 ([6, Theorem 3.2]). Let T be a strongly continuous semigroup on X
and f ∈ C([0,∞), X�T ∗). Then

∫ t

0
T�∗(t − s) f (s) ∈ X��T ∀t ≥ 0.

Taking into account this proposition together with inclusion (A.2) it follows:

Corollary A1. If X is sun-reflexive relative to T , then T is closed by �∗-integration
on X�T ∗.

As already commented, most propositions in the series of papers [6,7] as well as
in the book [11] assume that a given Banach space X is sun-reflexive relative to a
semigroup T . However, it is possible to prove similar results by means of analogous
arguments assuming the closedness of T by �∗-integration on a subspace Y of X�T ∗.
Let us give the reformulated statements we need for the present thesis.

Theorem A1 ([6, Theorem4.2]). Let T be a strongly continuous semigroup generated
by A and closed by�∗-integration on Y ⊂ X�T ∗. Let B be a bounded linear operator
from X into Y . Then the equation

S(t)x = T (t)x + j−1
∫ t

0
T�∗(t − s)BS(s)xds (A.4)

uniquely defines a strongly continuous semigroup S on X. The partial sums of

∞∑

k=0

Sk,

with S0 = T and

Sk+1(t) = j−1
∫ t

0
T�∗(t − s)BSk(s)ds ∀t ≥ 0,

converge towards S uniformly on compact intervals, i.e.

lim
n→∞ sup

t∈[0,τ ]
‖S(t) −

n∑

k=0

Sk(t)‖ = 0 ∀τ > 0.

The generator of S is AS with domain

D(AS) = {x ∈ X | j (x) ∈ D(A∗
T�) and A∗

T� j (x) + Bx ∈ j (X)}
and images ASx = j−1(A∗

T� j (x) + Bx).

The semigroup implicitly defined by equation (A.4) makes natural to ask for its sun-
dual spaces, that is for X�S and X��S . The following result shows that these spaces
are determined just by the generator A, so they do not depend on the perturbation B.
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Proposition A2 ([6, Lemma 4.3]). Let T , A, B and S be as in Theorem A1. Then
X�S = X�T and X��S = X��T .

Not only the sun-dual spaces are invariant with respect bounded perturbations from
X to Y . The property of being closed by �∗-integration on Y is also satisfied by the
perturbed semigroup S. Notice that this makes sense since Proposition A2 ensures
that Y is a subspace of X�S∗. This is stated formally in the following proposition. The
same proposition relates the evolution family obtained when T is perturbed by B + f
with the evolution family obtained when S is perturbed by f , where f is a continuous
function of time from [0,∞) to Y .

Proposition A3 ([7, Proposition 2.5]). Let T , A, B and S be as in Theorem A1. Then
S is closed by �∗-integration on Y . Moreover, for every x ∈ X and every function
f ∈ C([0,∞),Y ), u(t; x) defined as

u(t; x) = S(t)x + j−1
∫ t

0
S�∗(t − τ) f (τ )dτ

is the only solution of

u(t; x) = T (t)x + j−1
∫ t

0
T�∗(t − τ)(Bu(τ ; x) + f (τ ))dτ.

Corollary A2. Let T , A, B and S be as in Theorem A1. Let B1 and B2 be bounded
operators from X into Y ⊂ X�T ∗ such that B = B1 + B2, and let S1 be the semigroup
obtained when T is perturbed by B1. Then S is equal to the semigroup obtained when
S1 is perturbed by B2 (in the sense of Theorem A1).

The above reformulation of the perturbation theory for dual semigroups is useful
when, on the one hand, the unperturbed semigroup T is defined on a non-sun-reflexive
space X , but, on the other hand, T is closed by �∗-integration on some subspace Y
bigger than j (X) (so that the standard semilinear formulation is not enough to solve
the problem). At this point it is mandatory to show that semigroups satisfying these
properties do exist.

Example A1. Let X1 and X2 be Banach spaces. Consider X = X1×X2 with the usual
norm, and let T = diag(T1, T2) be a strongly continuous semigroup with a “diagonal”
structure, i.e. T (t)(x1, x2) = (T1(t)x1, T2(t)x2) for all t ≥ 0. Let X2 be sun-reflexive

with respect T2. For i ∈ {1, 2} let ji be the canonical inclusion from Xi into X
�Ti ∗
i

and define Y = j1(X1) × X
�T2∗
2 . Then T is closed by �∗-integration on Y .

Proof. Take f ∈ C([0,∞),Y ) arbitrary, and define f1 and f2 the component func-

tions of f in j1(X1) and X
�T2∗
2 respectively. On the one hand, since j1 is a linear

bounded operator and j1T1(t) = T�∗
1 (t) j1, then

∫ t

0
T�∗
1 (t − s) f1(s)ds = j1

(∫ t

0
T1(t − s) j−1

1 f1(s)ds

)

∈ j1(X1).
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On the other hand, since f2 is norm continuous from [0,∞) to X
�T2∗
2 , Proposition A1

implies
∫ t

0
T�∗
2 (t − s) f2(s)ds ∈ X

��T2
2 ,

and this is enough because X
��T2
2 = j2(X2) due to the sun-reflexivity condition. �

Notice that the subspace Y in the previous example is in general bigger than j (X)

because X
�T2∗
2 is in general bigger than X

��T2
2 . Notice also that X could be non-sun-

reflexive if, for example, T1(t) = Id for all t ≥ 0 and X1 were non-reflexive. Arguably
one could say that the example above is very degenerate due to the diagonal structure
of the semigroup T . However, Proposition A3 allows us to take any perturbation of T
by a bounded linear perturbation from X to Y , which give a collection of less trivial
examples.

A.2. Semi-linear theory

Consider the initial value problem
⎧
⎨

⎩

dv(t)
dt = AT v(t) + j−1 (H(v(t)))

v(0) = x ∈ X
, (A.5)

where AT is the generator of a strongly continuous semigroup T which is closed by
�∗-integration on Y (see Definition A2) and H : X → Y ⊂ X�T ∗ is a Lipschitz
function.
Since H takes values in Y ⊂ X�T ∗, system (A.5) is a non-standard initial value

problem which even fails to be well defined because in general j (X) � Y (notice that
a classical solution v(·) of (A.5) must satisfyH(v(t)) ∈ j (X) for all t ≥ 0). However,
such a problem admits a generalised version of the variation of constants equation,
which takes the form

v(t) = T (t)x + j−1
(∫ t

0
T�∗(t − s)H(v(s))ds

)

, (A.6)

thanks to the fact that T is closed by �∗-integration on Y .
The functions v : [0,∞) → X satisfying this integral equation are their solutions.

A classical solution of (A.5) (if any) is a solution of (A.6), which motivates the notion
of mild solution:

Definition A3. A function v : [0,∞) → X is a mild solution of (A.5) if it is contin-
uous and it satisfies the integral equation (A.6).

Two fundamental properties of mild solutions are given in the following theorem.

Theorem A2 ([7, Theorem 3.1]). For every x ∈ X there exists a unique mild solution
v(·; x)of (A.5).Moreover,v satisfies the semigrouppropertyv(t+s; x) = v(t; v(s; x))
and v(t; ·) is Lipschitz. We refer to v(·; ·) as the semiflow of (A.5).
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When H is Fréchet differentiable, a result on the differentiability with respect to
initial conditions around a steady state can be given. Here, by steady state we mean
an element x̄ ∈ X such that

x̄ = T (t)x̄ + j−1
(∫ t

0
T�∗(t − s)H(x̄)ds

)

∀t ≥ 0.

As it occurs in the standard semilinear formulation, the steady states satisfying the
above integral conditions coincide with the equilibrium points of system (A.5), i.e.,
the points x̄ ∈ X such that

x̄ ∈ D(A), H(x̄) ∈ j (X) and Ax̄ + j−1 (H(x̄)) = 0.

Theorem A3. ([11, Proposition VII.5.6]) Let x̄ be a steady state of (A.6). AssumeH
is Fréchet differentiable in x̄ and define B := H′(x̄) ∈ B(X,Y ). Then the semiflow
v(·; ·) given by (A.6) is uniformly Fréchet differentiable at x̄ , i.e. for all t1 > 0 and
all ε > 0 there exists δ > 0 such that if ||x − x̄ || < δ and t ∈ [0, t1] then

||v(t; x) − x̄ − Dxv(t; x̄)(x − x̄)|| < ε||x − x̄ ||.
The family of linear operators S defined as S(t) := Dxv(t; x̄) : X −→ X for all
t ≥ 0, is given implicitly by

S(t)x = T (t)x + j−1
(∫ t

0
T�∗(t − s)BS(t)xds

)

∀t ≥ 0, (A.7)

and explicitly by the series

S =
∞∑

n=0

Sn (A.8)

with S0 = T and

Sn(t) = j−1
(∫ t

0
T�∗(t − s)BSn−1(s)ds

)

∀t ≥ 0.

Moreover, the partial sums in (A.8) converge uniformly on compact intervals.

Notice that S(t) is well defined because, since T is closed by �∗-integration on Y
and B is continuous and takes values in Y , Theorem A1 ensures the existence of a
unique strongly continuous semigroup S which is solution of (A.7). The generator of
S is also given by Theorem A1.
From the previous theorem it follows that, for all fixed t > 0, v(t; x) can be

approximated by x̄ + S(t)(x − x̄) for those x close enough to x̄ . It seems a good
strategy to infer the behavior of v(·; x) close to x̄ by means of the stability properties
of S. However, wemust justify carefully the validity of this procedure because, a priori,
the asymptotic behavior of S could not determine the stability of the equilibrium x̄ .
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To our knowledge, it is yet an open question if it could exist nonlinear semiflows
with an asymptotically stable equilibrium for which the linearised system around it
is unstable. Fortunately, some results in the literature can be applied to our system
in order to discard this pathological possibility. Before exposing them let us recall a
couple of concepts.

Definition A4. The growth bound of a strongly continuous linear semigroup T on a
Banach space X is defined as

ω0(T ) := inf{ω ∈ R | ∃M ≥ 1 such that ‖T (t)‖ ≤ Meωt ∀t ≥ 0}.
Definition A5. A strongly continuous linear semigroup T is said to be exponentially
stable if its growth bound is strictly negative. Similarly, T is said to be exponentially
unstable if its growth bound is strictly positive.

If S is exponentially stable (i.e. there exists M ≥ 1 and ω > 0 such that ‖S(t)‖ ≤
Me−ωt ), it can be shown that x̄ is a locally asymptotically stable equilibrium (the
continuity of v(·; x) makes possible to apply essentially the same argument used in
the theory of ODEs [19]).

Theorem A4 ([7, Theorem 4.2]). Let x̄ , v and S as in TheoremA3. If ω0(S) < 0 then
x̄ is locally asymptotically stable in the Lyapunov sense. More precisely, there exist
ω > 0 and δ > 0 such that if ‖x − x̄‖ < δ,

eωt (v(t; x) − x̄) → 0 as t → ∞.

In order to give an instability result someadditional hypotheses other thanω0(S) > 0
have to be assumed.

Theorem A5 ([7, Theorem 4.3]). Let x̄ , v and S as in Theorem A3, and denote AS

the generator of S. Assume ω0(S) > 0 and that X admits a decomposition

X = X1 ⊕ X2 (A.9)

into S-invariant subspaces with X1 finite-dimensional. For i ∈ {1, 2} let Si be the
restriction of S to Xi and let ASi be the corresponding generators. If

ω0(S2) < min{Reλ | λ ∈ Spectrum(AS1)}
then x̄ is unstable, i.e. there exist M > 0 and a sequence {xn, tn}n≥1 ⊂ X × R

satisfying xn → x̄ and tn → ∞ such that ‖(v(tn, xn) − x̄‖ ≥ M.

The above results are useful provided we have a method to study the dynamics
of S. In general this cannot be done in a straightforward manner because S is given
either implicitly or as a series. To overcome this problem the generator AS can be
used, since its expression is usually simpler than S and some relations are known
between the growth bound of a semigroup T and the spectral bound of its infinitesimal
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generator AT , denoted by s(AT ). In general one can only say that s(AT ) ≤ ω0(T ),
since counterexamples exist in which the strict inequality holds (see [12, Chapter 5]
and [26] for a review on asymptotics of semigroups). However, if T is eventually norm
continuous, the relation s(AT ) = ω0(T ) as well as a mapping linking the spectrum of
T (t) with the spectrum of AT does hold.

Theorem A6 ([12, Theorem IV.3.10]). Let T be an eventually norm continuous semi-
group on a Banach space X with generator AT . Then T satisfies the Spectral Mapping
Theorem: for all t ≥ 0, the spectrum of T (t) and the spectrum of AT , denoted by
σ(T (t)) and σ(AT ) respectively, satisfy the following set relation

σ(T (t)) \ {0} = etσ(AT ).

In particular the equality ω0(T ) = s(AT ) holds.

Taking this into account, Theorems A4 and A5 can be modified in terms that they
only involve information about the spectrum of AS .

Theorem A7. Let x̄ , v and S as in Theorem A3, and denote AS the generator of S. If
S is eventually norm continuous then

(i) x̄ is locally asymptotically stable if s(AS) < 0,
(ii) x̄ is unstable if there exists ω > 0 such that the spectrum of AS within the region

{λ ∈ C | Re(λ) > ω} is non-empty and is composed only by a finite number of
eigenvalues with finite algebraic multiplicity.

Proof. Statement (i) follows directly from Theorem A4 and the relation s(AS) =
ω0(S) due to the eventually norm continuity of S. To prove statement (ii) we use the
decomposition theorem [16, Theorem 6.17] by taking a Jordan curve enclosing the
eigenvalues to the right of ω. For full details see [3, Theorem 1.2.21]. �

As in the standard theory of perturbation semigroups, the property of being even-
tually norm continuous is preserved under compact perturbations. Specifically:

Theorem A8. Let T be an eventually norm continuous semigroup generated by the
linear operator A and closed by �∗-integration on Y ⊂ X�T ∗. Let K be a compact
operator from X into Y . Then the semigroup S generated by A + K (in the sense of
Theorem A1) is eventually norm continuous.

Proof. The same arguments as in [12, Proposition III.1.14], where this result is stated
in the standard case (i.e. when the perturbation K is defined from X to X ) can be
applied in the sun-dual framework. For full details see [3, Theorem 1.2.22]. �
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