
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04588-z

1 3

Scalable performance analysis method for SPMD
applications

Felipe Tirado1,2 · Alvaro Wong1 · Dolores Rexachs1 · Emilio Luque1

Accepted: 1 May 2022
© The Author(s) 2022

Abstract
The analysis of parallel scientific applications allows us to understand their compu-
tational and communication behavior. One way of obtaining performance informa-
tion is through performance tools. One such tool is parallel application signatures
for performance prediction (PAS2P), based on parallel application repeatability,
focusing on performance analysis and prediction. The same resources that execute
the parallel application are used to perform its analysis, creating a machine inde-
pendent model of the application and identifying its common patterns. However, the
analysis is costly in terms of execution time due to the high number of synchroniza-
tion communications performed by PAS2P, degrading performance as the number
of processes increases. To solve this problem, we propose a model that reduces data
dependency between processes, reducing the number of communications performed
by PAS2P in the analysis stage and taking advantage of the characteristics of single
program, multiple sata applications. Our analysis proposal allows us to decrease the
analysis time by 29 times when the application scales to 256 processes, while keep-
ing error levels below 11% in the runtime prediction. It is important to mention that
the analysis time is not considerably affected by increasing the number of applica-
tion processes.

Keywords Performance prediction · Application performance analysis · MPI
parallel application · Application signature

 * Felipe Tirado
 felipeleonardo.tirado@autonoma.cat; ftirado@ucm.cl

 Alvaro Wong
 alvaro.wong@uab.es

 Dolores Rexachs
 dolores.rexachs@uab.es

 Emilio Luque
 emilio.luque@uab.es

1 Computer Architecture and Operating System Department, Universidad Autónoma de
Barcelona, Barcelona, Spain

2 Departamento de Computación e Industrias, Universidad Católica del Maule, Talca, Chile

http://orcid.org/0000-0003-2001-658X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04588-z&domain=pdf

 F. Tirado et al.

1 3

1 Introduction

Over the past few years, high-performance computing (HPC) systems have signifi-
cantly increased the number of processing units (CPUs) [2]. Today, these systems
have enormous computing power, and there is every indication that this trend will
continue to increase in the coming years due to constant technological improve-
ments. However, the gap between the theoretical maximum performance and the
performance achieved in scientific applications running in parallel has widened con-
siderably in recent years, mainly due to incorrect application programming or inef-
ficient system resource management.

Performance Tools are available [12, 15, 25] that collect and display relevant
information about application performance at a high level of abstraction, so that
developers can quickly identify and determine the causes that affect the efficiency
and performance of applications.

On the other hand, it is essential to determine which system is more appropriate
to execute a scientific algorithm and predict its execution time. Therefore, accurate
performance estimates are critical to helping a system resource scheduler efficiently
schedule user jobs. For example, if system resource administrators know how many
resources are requested and how long they are requested, they can make an efficient
queued plan.

As presented in Fig. 1, the PAS2P Tool [13, 24] instruments and analyzes MPI
parallel applications on a cluster A (base machine) to create a signature that charac-
terizes the behavior of the application in phases. A phase is a parallel code segment
delimited by MPI communications repeated (Weight) throughout the execution. The
signature will be executed on a target machine (cluster B or cluster C), where each
phase’s time will be measured to predict the execution time on the target machine.

Fig. 1 Overview of parallel PAS2P. The generation of the application signature is performed on the base
machine (Cluster A). Then, the signature is executed in the target machines, cluster B and cluster C,
where the time of each phase is measured and multiplied by its weight, predicting the execution time of
the application

1 3

Scalable performance analysis method for SPMD applications

It is essential to mention that the application will not be fully executed on the target
machines to obtain its execution time. Only the relevant sections of the application
will be measured in order to apply the prediction equation. The prediction equation
multiplies the execution time of each relevant section by the number of times it is
repeated. Adding all previous times, we obtain a prediction of the parallel applica-
tion’s execution time (PET).

Due to the PAS2P parallel analyzer [21] model, which includes several inter-
process synchronization mechanisms, represented with red arrows in Fig. 1, the per-
formance of the PAS2P analysis is inefficient because of the high time required. This
performance problem occurs more significantly when the application scales due to
increased MPI communications. This performance problem can cause the execu-
tion time in the PAS2P analysis stage to exceed the time of the application to be
analyzed.

We propose to improve the performance of the PAS2P analysis module, consid-
ering the behavior of the SPMD application. To do so, we generate an independent
model for each process, where each process has its own set of phases, thus minimiz-
ing the communications performed by PAS2P. Furthermore, this model is adjusted
to the characteristics of the SPMD applications since all the processes have similar
behavior.

Figure 2, exposes a comparison between the parallel analysis version and our
analysis proposal. The parallel analysis approach performs a global analysis for all
processes, having to communicate the events of each process to build a global logic
clock that allows us to order the events, looking for similar patterns that characterize
the parallel application and then create a single phase that represents all applica-
tion processes. On the other hand, our proposal performs a horizontal analysis of
the SPMD application. Each process builds its model independently and analyzes
similarity patterns, eliminating PAS2P communications. The information obtained
is stored by each process independently.

To evaluate the quality of our proposal, we performed experiments with different
applications, BT, SP, LU of NPB [3] and N-Body, with different workload sizes,
increasing the number of processes to verify the behavior of the analyzer and the
quality of the prediction. We were able to obtain a speedup measure of the analyzer
higher than 24 times compared to the parallel analyzer and an execution time predic-
tion with an average error of less than 6%.

In the following section, we present related work. In Sect. 3, we provide an over-
view of the PAS2P toolkit. Section 4 presents the proposed methodology for SPMD
applications. Section 5 deals with experimental results, and in Sect. 6, we present
our conclusions and future work.

2 Related work

This section presents performance analysis tools that also seek to optimize their
post-mortem analysis because it is essential to have a fast and simple analyzer that
allows the extraction of relevant performance information to obtain the parallel
application’s behavior.

 F. Tirado et al.

1 3

There are parallel application analysis tools such as Scalasca [6]. Scalasca is an
open-source toolkit that can analyze parallel applications’ performance behavior and
identify optimisation opportunities. Although Scalasca can be used on 294K cores,
version 1.3.0 and the underlying versions showed scalability limitations during the
collection and display of analysis reports. Scalasca v2 [25] is based on the commu-
nity instrumentation and measurement infrastructure Score-P, improving the scal-
ability limitations and adding new features.

Periscope [12] is a performance analysis tool which analyzes parallel applications
to detect performance problems and their causes. This tool overcomes the scalability
barrier by performing an automatically distributed online analysis on thousands of
processors. The main drawback of Periscope is that the application must be executed
entirely to see the optimizations applied.

Paraver [11] uses the CEPBA-tools [9] environment to scale the applicability of
the Paraver trace visualization and analysis tool to systems with up to several thou-
sand processors. Its analysis power is based on two main pillars. First, its trace for-
mat has no semantics; extending the tool to support new performance data or new

Fig. 2 Comparison of PAS2P analysis proposals. The parallel analysis proposal presents a vertical analy-
sis model where all the application processes interact. Our proposal performs a horizontal analysis model
where each process analyzes the application independently

1 3

Scalable performance analysis method for SPMD applications

programming models requires no changes to the visualizer, it just captures such data
in a Paraver trace. The second pillar is that the metrics are not hardwired on the tool
but programmed. To compute them, the tool offers a large set of time functions and
a filter module.

MUST [7] is a framework for creating a runtime infrastructure for scalable MPI
correctness checking. The main goal is to offer a full set of correctness features for
1,000 processes at a runtime overhead of less than 10%, and a restricted set of cor-
rectness features for 10,000 processes at the same runtime overhead.

The Cray performance analysis tools [5] provide an integrated infrastructure for
measurement and analysis of computation, communication, I/O, and memory utili-
zation. It is composed of a CrayPat Performance Collector for data capture, and a
Cray Apprentice2 Performance analyzer to a post processing data visualization. The
Cray performance analysis tools have been used on a large scale Cray XT system
with more than 30,000 processors.

TAU [17] and Vampir [22] have focused their efforts on improving the analysis of
data on a large scale. To efficiently achieve this analysis, TAU uses the ParaProf Par-
allel Performance analyzer [18], which was specifically built for the analysis of large
scale data. The analysis takes place in memory for fast access and to support global
aggregation and analysis views. TAU provides a compressed normalized packed
data format as a container for profile data from any supported measurement tool.
This makes the reading of parallel profiles significantly more efficient in ParaProf.
Vampir provides efficient access to trace files. This layout allows us to distribute
the data in several files, each one storing a ”frame” of the execution data. Frames
can correspond to a single CPU or to a cluster of CPUs. The frames belonging to
a single execution are tied together by means of an index file, thus providing better
performance.

On the other hand, Jayakumar [8] developed a prediction framework for per-
formance predictions of HPC applications using a single small-scale application
execution. The framework employs a strategy of matching execution profiles of the
different phases of the parallel applications to parallel reference kernels stored in
a kernel database. The framework provides a suite, an RK-suite, implementations,
execution profiles and performance models of reference kernels. Specifically, the
RK-suite consists of a collection of these reference kernel implementations. Execu-
tion profiles, an RK-profile, including cache hits and misses, an instruction mix, etc.,
were all obtained using benchmarking runs of the reference kernels for a finite set
of problem sizes and a number of processors. A performance model, the RK-model,
can predict execution times of the kernel implementations for other problem sizes
and processors.

PAS2P [24] characterize the behavior of message-passing applications on differ-
ent target machines. To achieve this, it develops a method called parallel application
signature for performance prediction, which describes an application in terms of its
behavior. Based on the message passing activity of the application, representative
phases are identified and extracted, with which a parallel application signature is
created to predict the performance of the application.

Table 1 summarizes the main performance analysis tools, giving a critical view,
in our opinion, of each of the papers. All the works presented seek to improve their

 F. Tirado et al.

1 3

Ta
bl

e
1

 S
um

m
ar

y
of

 p
ap

er
s r

ef
er

en
ce

d

A
na

ly
si

s t
oo

ls
D

es
cr

ip
tio

n
C

rit
ic

al
 v

ie
w

Sc
al

as
ca

Th
e

Sc
al

as
ca

 to
ol

ki
t i

s a
 p

or
ta

bl
e

so
ftw

ar
e

pa
ck

ag
e

th
at

 su
pp

or
ts

 p
er

fo
r-

m
an

ce
 o

pt
im

iz
at

io
n

of
 p

ar
al

le
l a

pp
lic

at
io

ns
 b

y
m

ea
su

rin
g

an
d

an
al

yz
in

g
th

ei
r d

yn
am

ic
 b

eh
av

io
r a

t r
un

tim
e.

 A
 d

ist
in

ct
iv

e
fe

at
ur

e
of

 S
ca

la
sc

a
is

 it
s

au
to

m
at

ic
 tr

ac
e

an
al

ys
is

, w
hi

ch
 id

en
tifi

es
 p

ot
en

tia
l p

er
fo

rm
an

ce
 b

ot
tle

-
ne

ck
s,

pa
rti

cu
la

rly
 th

os
e

re
la

te
d

to
 c

om
m

un
ic

at
io

n
an

d
sy

nc
hr

on
iz

at
io

n

Sc
al

as
ca

 m
us

t c
om

pl
et

el
y

an
al

yz
e

th
e

ap
pl

ic
at

io
n

tra
ce

 to
 id

en
tif

y
po

te
nt

ia
l

pe
rfo

rm
an

ce
 p

ro
bl

em
s,

so
 th

e
tim

e
re

qu
ire

d
to

 o
bt

ai
n

pe
rfo

rm
an

ce
 m

ea
s-

ur
em

en
ts

 w
ill

 fu
nc

tio
n

th
e

ap
pl

ic
at

io
n’

s e
xe

cu
tio

n
tim

e

Pe
ris

co
pe

Th
e

Pe
ris

co
pe

 to
ol

 a
llo

w
s a

na
ly

zi
ng

 p
er

fo
rm

an
ce

 is
su

es
 o

f M
PI

-b
as

ed

pa
ra

lle
l a

pp
lic

at
io

ns
 a

nd
 e

va
lu

at
in

g
th

e
pe

rfo
rm

an
ce

 o
f a

 si
ng

le
 n

od
e.

In

 a
dd

iti
on

, i
t p

er
fo

rm
s a

n
au

to
m

at
ic

 se
ar

ch
 fo

r p
re

de
fin

ed
 p

er
fo

rm
an

ce

pr
op

er
tie

s w
hi

le
 e

xe
cu

tin
g

th
e

ap
pl

ic
at

io
n

Th
e

an
al

ys
is

 o
f M

PI
 a

pp
lic

at
io

ns
 o

nl
y

lo
ok

s f
or

 th
e

pr
op

er
tie

s o
f e

ac
h

pr
o-

ce
ss

 a
nd

 d
oe

s n
ot

 c
on

si
de

r t
he

 re
la

tio
ns

hi
ps

 o
f s

ev
er

al
 p

ro
ce

ss
es

TA
U

TA

U
 (T

un
in

g
an

d
an

al
ys

is
 u

til
iti

es
) a

dd
re

ss
es

 p
er

fo
rm

an
ce

 te
ch

no
lo

gy

is
su

es
 a

t t
hr

ee
 le

ve
ls

: i
ns

tru
m

en
ta

tio
n,

 m
ea

su
re

m
en

t,
an

d
an

al
ys

is
. I

n
ad

di
tio

n,
 th

e
TA

U
 fr

am
ew

or
k

su
pp

or
ts

 th
e

co
nfi

gu
ra

tio
n

an
d

in
te

gr
at

io
n

of
 th

es
e

la
ye

rs
 to

 a
dd

re
ss

 sp
ec

ifi
c

pe
rfo

rm
an

ce
 p

ro
bl

em
-s

ol
vi

ng
 n

ee
ds

.
To

 th
is

 e
nd

, t
he

 T
A

U
 p

er
fo

rm
an

ce
 sy

ste
m

 o
ffe

rs
 su

pp
or

t f
or

 p
er

fo
rm

an
ce

an

al
ys

is
 in

 a
 n

um
be

r o
f w

ay
s

Eff
ec

tiv
e

pe
rfo

rm
an

ce
 e

xp
lo

ra
tio

n
w

ill
 re

qu
ire

 c
ar

ef
ul

 se
le

ct
io

n
fro

m
 th

e
ra

ng
e

of
 m

et
ho

ds
 o

ffe
re

d
by

 T
A

U
 to

 a
ss

em
bl

e
m

ea
ni

ng
fu

l p
er

fo
rm

an
ce

ex

pe
rim

en
ts

Va
m

pi
r

Va
m

pi
r i

s a
n

ev
en

t t
ra

ck
in

g
an

al
ys

is
 to

ol
 fo

r p
ar

al
le

l a
pp

lic
at

io
ns

. I
t s

up
-

po
rts

 th
e

an
al

ys
is

 o
f a

 n
um

be
r o

f i
m

po
rta

nt
 p

er
fo

rm
an

ce
 p

ro
pe

rti
es

, s
uc

h
as

 fu
nc

tio
n

ca
lls

, h
ar

dw
ar

e
pe

rfo
rm

an
ce

 c
ou

nt
er

s,
co

m
m

un
ic

at
io

n,
 I/

O

be
ha

vi
or

, a
nd

 m
em

or
y

al
lo

ca
tio

n

Th
e

an
al

ys
is

 is
 re

so
ur

ce
-in

te
ns

iv
e

as
 it

 d
oe

s n
ot

 h
av

e
a

re
du

nd
an

t e
ve

nt

re
co

gn
iti

on
 m

ec
ha

ni
sm

, l
oa

di
ng

 a
ll

ap
pl

ic
at

io
n

ev
en

ts
 in

to
 m

em
or

y,
 w

hi
ch

is

 a
 g

re
at

 in
co

nv
en

ie
nc

e
w

he
n

th
e

ap
pl

ic
at

io
n

sc
al

es

R
K

-s
ui

te
R

K
-S

ui
te

 is
 a

 su
ite

 fo
r p

er
fo

rm
an

ce
 p

re
di

ct
io

ns
 o

f H
PC

 a
pp

lic
at

io
ns

 u
si

ng
 a

si

ng
le

 sm
al

l-s
ca

le
 a

pp
lic

at
io

n
ex

ec
ut

io
n.

 T
he

 su
ite

 e
m

pl
oy

s a
 st

ra
te

gy
 o

f
m

at
ch

in
g

th
e

ex
ec

ut
io

n
pr

ofi
le

s o
f d

iff
er

en
t p

ha
se

s o
f p

ar
al

le
l a

pp
lic

at
io

ns

to
 p

ar
al

le
l b

en
ch

m
ar

k
ke

rn
el

s s
to

re
d

in
 a

 k
er

ne
l d

at
ab

as
e.

 T
he

 b
en

ch
m

ar
k

ke
rn

el
s a

re
 st

an
da

rd
 b

en
ch

m
ar

ks
 o

f v
ar

io
us

 a
pp

lic
at

io
n

do
m

ai
ns

In
 o

rd
er

 to
 p

re
di

ct
 th

e
pe

rfo
rm

an
ce

 o
f a

n
ap

pl
ic

at
io

n,
 R

K
-S

ui
te

 c
on

su
lts

 a

da
ta

ba
se

 o
f k

er
ne

ls
. T

he
 m

ai
n

dr
aw

ba
ck

 is
 th

at
 if

 th
e

ap
pl

ic
at

io
n’

s b
eh

av
io

r
to

 b
e

pr
ed

ic
te

d
is

 n
ot

 fo
un

d
w

ith
in

 th
e

sto
re

d
ke

rn
el

s,
its

 p
re

di
ct

io
n

w
ill

 n
ot

be

 p
os

si
bl

e

PA
S2

P
Th

e
PA

S2
P

m
et

ho
do

lo
gy

 a
llo

w
s u

s t
o

ge
ne

ra
te

 a
 m

od
el

 o
f a

 p
ar

al
le

l
ap

pl
ic

at
io

n
an

d
au

to
m

at
ic

al
ly

 e
xt

ra
ct

 it
s m

os
t s

ig
ni

fic
an

t p
ha

se
s t

o
cr

ea
te

a

si
gn

at
ur

e
w

ho
se

 e
xe

cu
tio

n
le

ts
 u

s p
re

di
ct

 th
e

ap
pl

ic
at

io
n’

s p
er

fo
rm

an
ce

on

 d
iff

er
en

t p
ar

al
le

l c
om

pu
te

rs

D
ue

 to
 th

e
la

rg
e

nu
m

be
r o

f c
om

m
un

ic
at

io
n

ev
en

ts
 c

ap
tu

re
d

in
 th

e
in

str
um

en
-

ta
tio

n
st

ag
e

of
 P

A
S2

P,
 tr

ac
e

an
al

ys
is

 is
 c

om
pl

ex
 a

nd
 c

os
tly

, e
ve

n
m

or
e

so

w
he

n
th

e
ap

pl
ic

at
io

n
sc

al
es

 to
 a

 m
or

e
si

gn
ifi

ca
nt

 n
um

be
r o

f p
ro

ce
ss

es

1 3

Scalable performance analysis method for SPMD applications

analysis stage, some to identify performance problems and others to characterize the
application better, improving prediction quality.

Previous work exists, such as the PAS2P parallel analyzer module [21], which
defines a parallel analysis for the PAS2P tool. The main drawback of this analy-
sis model is its complexity and the large number of MPI messages resulting from
communication due to PAS2P event synchronisation. Given the high number of
MPI messages, the performance of the analysis performed by PAS2P is low, in some
cases exceeding the execution time of the application to be analyzed. This is why it
is convenient to propose a less complex analysis model that reduces the MPI mes-
sages to increase performance.

3 PAS2P overview

The PAS2P tool is based on the repeatability of the parallel application, focusing on
the performance analysis and prediction of the MPI application using its signature.

Figure 3 presents an overview of the PAS2P methodology. It is important to note
that creating the signature of the parallel application is performed on a base machine
(cluster A). This signature represents the performance characterization of the appli-
cation. Next, to obtain the performance prediction on a target machine (cluster B and
cluster C), the signature is executed on these machines by measuring the execution
time of each sequence of more relevant events (phases). This time also includes the
computation and communication time of each phase. Finally, the prediction equation
is applied to obtain the predicted execution time on the target machines.

PAS2P allows the application to be instrumented when running on a paral-
lel machine. By executing the instrumented application, a trace is obtained and

Fig. 3 Stages of the PAS2P methodology. The PAS2P methodology has two stages. The first is the gen-
eration of the parallel application signature in the base cluster (Cluster A). The second is predicting the
application’s execution time in a target cluster (Cluster B and Cluster C), executing the application sig-
nature

 F. Tirado et al.

1 3

used for data collection. The collected data is used to analyze and characterize the
computational and communication behavior of the application.

To obtain a machine-independent model of the application, it is necessary,
once the trace has been obtained, to analyze it and assign a global logic clock
according to the relationships between the communication events through an
algorithm based on Lamport [10]. In this way, a unified trace is obtained by a
logical clock for the whole distributed system.

Once a logical trace is obtained, the most relevant event sequences (phases)
are identified and extracted, assigning them a weight defined by the number of
times they occur. Subsequently, the application’s signature is created, defined by
a set of phases selected for their importance according to their weight (number of
times they are repeated), or to the duration of the phase (its execution time). The
created signature is used for executing in different clusters, which allows us to
measure the execution time of each phase, thus predicting the execution time of
the entire application in each of these target systems.

As shown in Fig. 4, two approaches for PAS2P have been developed, the serial
analysis method and the parallel analysis method, detailed below.

• The serial analyzer approach [24] processes data from all application processes
into a single collection structure to create a logical global clock and maintain
precedence between communication events. When the application runs with a
large number of processes, it may result in insufficient memory on the node.
Thereby, having to load these data from the swap memory considerably increases
the analysis execution time, or in many cases, it is not even possible to execute it
due to the restrictions of the target machine.

• The parallel analyzer approach [21] has been developed using message pass-
ing to take advantage of distributed memory. This module allows us to use the
PAS2P toolkit on a large scale, achieving an efficient analysis, since it divides the
data analysis among all the resources and it executes using the same number of
resources as the application uses for its execution.

Fig. 4 Approaches to the method of analysis. On the left is the serial analysis approach. The analysis
module is performed by a single process, limited to only one machine’s available resources. On the right
side is the parallel analysis approach. The analysis module is performed in several processes, sending and
receiving messages for correct synchronization

1 3

Scalable performance analysis method for SPMD applications

Both versions (serial analysis approach and parallel analysis approach) have draw-
backs when scaling the parallel application to a high number of processes. Perfor-
mance is degraded due to communications (parallel analysis approach) or cannot
guarantee a result (serial analysis approach) because of the restrictions of HPC
systems.

Our proposal consists of modeling a new approach to the analyzer module, reduc-
ing the cost of communication between events of different processes due to the inde-
pendent analysis mechanic for each process that runs the application, thus enabling
a less complex analysis module that achieves an improvement in the performance of
the PAS2P analysis module of the SPMD application.

4 Proposed methodology

Applications typically possess highly repetitive behavior, and parallel applications
are no exception [16, 19]. To characterize the computational-related and communi-
cation-related behavior of parallel applications, we identify these repetitive portions
of an application. We use this information to create a signature that, when executed,
allows the prediction of the execution time for the machine on which the signature
is run.

The signature is associated with the behavior of a specific application [4]. For
example, if we want to predict another parallel application’s execution time or
change the data set, the signature must be generated again. Therefore, the applica-
tion analysis must be carried out in a reduced time to generate the signature quickly.

Previous PAS2P approaches [21] optimize the analysis stage but have a drawback
of dependencies between events, thus reducing its performance. The dependencies
between events occur due to the communication effected by constructing a global
clock that orders the events by precedence. In addition, the similarity algorithm
needs communication synchronization steps to find a global repetitive structure for
all application processes. Therefore, we propose an extension to the parallel analy-
sis approach for solving this problem, eliminating the data dependencies between
SPMD applications processes, which we defined as "Extension of Parallel Analysis
to SPMD" (EPAS).

As shown in Fig. 5, we designed a proposal called EPAS that eliminates the
dependence of events between processes in the SPMD applications, allowing us to
reduce the communication for synchronisation reasons. Our proposal is divided into
two sections: An Application model and Pattern identification.

1. The model of the application: The model is built by assigning timestamps to each
process independently according to communication events’ precedence relation-
ships, using an algorithm inspired by Lamport [10]. Thus, we obtain a single
logical trace for each process, eliminating the dependencies of events between
processes since the application’s global clock is not generated.

2. Pattern identification: Once the logical times have been assigned to the events,
an identification of communication patterns is carried out, grouping them into
phases and assigning them their respective repetitive frequencies (weights). This

 F. Tirado et al.

1 3

identification is carried out independently for each process, eliminating the com-
munication of events between processes due to identifying patterns at the global
level for all processes.

In this section, we describe each stage of our EPAS proposal. Section 4.1,
namely data collection, describes the application instrumentation. Section 4.2
describes the modeling of the application, which is performed independently by
each process. Finally, Sect. 4.3 describes how the phases and weights are identi-
fied for each process running the SPMD application.

4.1 Data collection

To instrument the applications, we must collect their communication and com-
putation times. We use the dynamic library libpas2p to produce a trace of the
application. To instrument the application with libpas2p, it will be necessary
to compile it with a dynamically linked library libpas2p, which intercepts MPI
functions before the MPI library executes them, capturing the communication
instructions performed by the parallel application in real-time.

As shown in Fig. 5, during instrumentation, each process generates informa-
tion related to the communication and computational information involved in the
process. In this way, the instrumentation module extracts information by using
the same process number of the application.

To obtain the computational behavior of the application’s processes, the
PAS2P tool is integrated with the PAPI library [20] to obtain the hardware coun-
ters, such as the number of instructions and cache misses.

All the information extracted from the parallel application is stored in diverse
trace files, as shown in Fig. 6. The number of trace files is related to the num-
ber of processes running the application, i.e.,the instrumentation and the other
stages of PAS2P use the same processes as the parallel application.

Fig. 5 Overview extension of parallel analysis to SPMD. It consists of three stages: data collection,
application model, and pattern identification. Each process performs each stage independently, reducing
the communication of events between processes

1 3

Scalable performance analysis method for SPMD applications

4.2 Application model

The generation of an abstract model of parallel applications requires detecting the
computational intervals, the communication events and the logical order that this
communication must perform, independent of the machine. Therefore, a logical
ordering of events is necessary that takes into account these singular aspects.

The logical ordering of the events uses an implementation based on Lamport’s
[10]. Lamport defined the relationship of precedence between two events a and b,
where a occurs before b as the physical clock of the process a is smaller than the
physical clock of process b.

The implementation of Lamport’s algorithm is based on the assignment of Logi-
cal Time (LT) [23] to all the events of the parallel application, which uses a queue
structure starting from the initial events and searching for all the related events to
assign their logical time.

Fig. 6 Storage of application performance information. The instrumentation is performed by each pro-
cess running the parallel application, capturing information from the MPI primitives, and storing it in the
”Tracefile” created by each process

 F. Tirado et al.

1 3

Algorithm 1: Logical time allocation by process.
Input:
Q: Event queue (POP and PUSH)
CE: Current event
FE: Next event
BE: Previous event
//All events start with an logical time of zero
//The first events are inserted in the queue Q
while (Q != empty) do

C ← Q.POP
Q.PUSH(FE)
if BE = 0 then

CE ← 0
else

CE.LT ← BE.LT + 1 � TL is the logical time of the event

Our proposal uses Lamport’s algorithm to assign the Logical Times (LT) to the
events. Logical Time is obtained by analysing the trace file generated in the data col-
lection stage. We take advantage of SPMD applications characteristics [1], assigning
the LTs for each process independently, without considering communications due to
data dependency between events due to the non-existence of a global LT for all pro-
cesses. The allocation of logical times is illustrated in the Algorithm 1, executed by
each process independently. For a better understanding, Fig. 7 is presented.

Our proposal differs from the implementation of the parallel analyzer [21]
because we have designed a new model of the application where each process is
independent from any other. This allows us to assign LT, without replicating the
communication pattern of the application to send the information of the logical
times of each event, as can be observed in Fig. 8, as well as using collective MPI to
synchronise all processes. This new application model allows us to reduce the com-
munication between processes, reducing the analyzer’s execution time.

When all events have been assigned an LT, we use the concept of Tick as a
Logical Time Unit [24]. For this purpose, a structure is created for each as a pro-
cess, where the events are inserted in ascending order by LT, as can be observed
in Fig. 9. The proposed ordering method is not affected by the change in the
order of events due to delays in the interconnection network because the assign-
ment of LT and orders will be carried out in each process independently.

4.3 Identification pattern

The objective of this section is to find the repetitive behavior of a parallel appli-
cation. The application is analyzed by identifying similar sections in computation
time, communication time and communication type. We call these relevant sec-
tions phases.

There are two similarity algorithms, the serial similarity method and the paral-
lel similarity method [21]. In both cases, the concept is the same, the identifica-
tion of phases in parallel applications, extracting directly from the logic trace. For

1 3

Scalable performance analysis method for SPMD applications

the serial version, the logical trace is loaded into the memory of a cluster node.
Therefore, we have a global view of the logical trace that allows us to search for
a pattern for all the application events, while in the parallel version, each process
has its local logical trace.

Fig. 7 Logical time insertion scheme per process independently. The following steps are presented: 1.
All events start with an LT of zero. 2. A queue is created, and the first events are inserted. 3. The first
event, CurrentEvent, is extracted from the queue. 4. The next consecutive event of the same process, For-
wardEvent, is inserted in the queue. 5. The CurrentEvent Logical Time is the Logical Time of BackEvent
plus one (BackEvent +1). 6. The procedure is completed when the queue is empty

Fig. 8 Comparison of ordering methods. The right side shows the logical ordering method of PAS2P,
where all the processes running the application jointly perform the ordering of PAS2P events, having to
perform numerous synchronization communications. On the left side, we present our proposal, which
orders the events independently by each process, eliminating the communications between PAS2P events

 F. Tirado et al.

1 3

The parallel PAS2P approach, as shown in Fig. 10, performs a vertical anal-
ysis of the trace, performing for each tick calls to collective instructions, with
the objective of grouping the repeatability patterns (phases) in all the processes,
according to specific similarity criteria.

The parallel similarity method, illustrated in Fig. 10, requires constant syn-
chronisation of the processes through communication collectives to know if an
event is repeated, as shown in Fig. 10, which causes performance degradation due
to the high number of communications when the number of processes increases.

Due to the above problem, we propose an extension of the parallel similarity
method, which manages to minimise the communications caused by the synchro-
nisation of events between processes.

Our proposal, illustrated in Fig. 11, looks for similarity of events in the logi-
cal trace of each process independently, isolating the analysis of the ticks in each
process, analysing communication and computation events without the need to
generate communications for the detection of similar patterns between processes.

Our approach performs local similarities in each process, thus avoiding a global
similarity search, reducing the number of communications. The analysis of the simi-
lar characteristics between each event is performed tick by tick independently for
each process. As shown in Fig. 11, when two events have a different communication
type, it is stored in a temporary structure by assigning a phase identifier. When two
events have the same type of communication, it is analyzed that they have a simi-
lar percentage of the number of instructions. This is a parameter that the user can
modify. For this case, the similarity parameter must be greater than or equal to 85%.
When this requirement is met, the weight of the phase is increased. Therefore we
define the Weight Vector as the frequency with which each phase is repeated.

Fig. 9 Local logical trace.
According to their logical time
obtained, the events are inserted
into an independent structure in
each process

1 3

Scalable performance analysis method for SPMD applications

It is important to note that the procedure described above is performed using the
non-dependency of SPMD application processes. We describe our proposal in the
following steps:

Fig. 10 Parallel similarity algorithm. The algorithm analyzes the trace vertically, i.e., all the processes
perform the analysis of events simultaneously and jointly. When analyzing the events in search of a pat-
tern, it is necessary to use some synchronization mechanism, which increases the number of communica-
tions between them

Fig. 11 Extension parallel similarity algorithm. The trace analysis is performed horizontally; each pro-
cess analyzes its trace independently in search of a repeatability pattern. The proposed analysis mecha-
nism reduces the communication between PAS2P events

 F. Tirado et al.

1 3

1. A startpoint and endpoint is created with the event of the first tick of the logical
trace, storing it in a phase structure.

2. Each event of the phase structure is compared with the next tick of the logical
trace, verifying that the phase exists, following these criteria:

(a) If the event does not occur with the same type of communication, the event
is added to the phase structure by advancing one tick on the logical trace
and returning to step 1.

(b) If the event occurs with the same type of communication, the following
criteria must be met for a phase to exist:

i. The number of instructions between the two events must be similar (85% similar-
ity or more).

• If it is similar, the phase weight increases and it advances one tick in
the logic of the process.

• If it is not similar, it is saved as a new phase in the phase structure and
it advances one tick in the logic of the process.

3. We go back to step 1 to create a Startpoint from the tick at which the last saved
phase ends

Once the temporary phase structure and the temporary weight structure have been
created, the relevant phases must be defined. A phase is relevant when the weight
vector multiplied by the execution time of the phase represents the execution time of
the entire application. This representativeness is considered to be given if the phase
represents at least 1% of the total execution time of the entire application. The user
will determine this value.

Each process stores the information of its relevant phases in the time structure
stored in the main memory. This stored information will allow us to predict the exe-
cution time of the application preliminarily. Equation 1 is used to predict the execu-
tion time (PET) of the application in each process. When we multiply the execution
time of each significant phase (PhaseET

i
) by its weight (W

i
) (defined as the number

of times significant phases which are repeated), we obtain the application’s execu-
tion time.

4.4 Method of selection of the representative process of the SPMD application

At the end of the pattern identification stage, we obtain relevant phases with their
respective weights. With this information, we can make a preliminary prediction of

(1)PET =

n
∑

i=1

(PhaseET
i
) ∗ (W

i
), n is the number of phases.

1 3

Scalable performance analysis method for SPMD applications

the application’s execution time. The prediction is made by applying Eq. 1 to each
process independently.

The preliminary prediction made by each process will allow us to select the pro-
cess that obtains the lowest degree of error concerning the real execution time of
the application. The proposed mechanism is based on the characteristics of SPMD
applications, where each process has similar computational behavior. To clarify the
selection mechanism, we present Fig. 12 with the realized strategy.

When selecting the process with the lowest degree of error in the preliminary
prediction, the information of the relevant phases with their respective weights is
stored in a file named Phase_Table.

The Phase_Table is the result of our analysis proposal. Figure 13 shows an exam-
ple of the content of the Phase_Table file obtained when executing an application
with 64 processes. The content of the Phase_Table file is given by rows, represent-
ing phases, whose starting point and endpoint are represented by the first and sec-
ond columns defined by the number of sends where the phase occurs. The third and
fourth columns represent the phase ID. Finally, the fifth column represents the phase
weight of the SPMD application.

To construct the signature, we use the libpas2p library. This library interacts with
the application, as well as with the external libraries. An issue is how to detect rel-
evant phases during the execution of the application. So, to build the signature, we
re-run the application by loading the libpas2p library and Phase_Table phase file for
instrumenting and measuring the occurrences of the relevant phases of the SPMD
application.

Once the signature is created, we can run the signature on the target machines.
This is done by measuring from the point where a phase begins to the point where it
ends. Then, we repeat this method and proceed to execute all the constituent phases.
Once we have the execution time of each phase and the weights of each phase, in

Fig. 12 Selection of the representative process of the application. Each process performs a preliminary
prediction by comparing its prediction time with the execution time of the real application. Then, the
process with the lowest margin of error is selected

 F. Tirado et al.

1 3

order to predict the execution time of the whole application, we multiply the execu-
tion time of each phase by its weight, as shown in Eq. 1.

5 Experimental results and validation

In this section, we validate our SPMD application analysis proposal, improving the
analysis time against the parallel PAS2P model proposed in [21], obtaining a predic-
tion in a bounded time (signature execution time). The experimental methodology
consists of running a set of applications and increasing the number of processes to
validate our analysis proposal by scaling the applications in order to compare with
the parallel analysis version of PAS2P.

The set of experiments we carried out allowed us to obtain the time of our pro-
posed extension of the parallel analysis (EPAS), the number of events obtained from
the analysis stage, and the size of the trace file generated by application instrumen-
tation. We ran the signature of each application to predict its execution time and
evaluate the prediction quality of each signature.

To evaluate the prediction quality and validate the proposed methodology,
we performed an experimental evaluation on the target machines described in
Table 2. We present the results for the SP, BT, and LU applications of NPB [3].
For the first set of tests executed on DELL cluster, the SP application was com-
piled for 36 to 441 processes, using class D as the workload with 1000 itera-
tions. The BT application was compiled for 36 to 441 processes, using class C as
workload with 5000 iterations. The LU application was compiled for 32 to 256
processes, using class D as workload with 600 iterations. Finally, the NBODY
application was compiled for 32 to 256 processes, using 5000 particles with 500
iterations. For the second set of tests executed on the BEM production cluster, the
BT application was compiled for 256 to 900 processes, using class D as workload
with 3000 iterations. The SP application was compiled for 256 to 1024 processes,
using class E as the workload with 1000 iterations.

Fig. 13 Contents of the phase file, Phase_Table. The selected process stores the information of its repre-
sentative phases, startpoint, endpoint, phase identification, and weight in a file named Phase_Table

1 3

Scalable performance analysis method for SPMD applications

To obtain the results, we use the experimental methodology illustrated in
Fig. 14. As shown in this figure, we run the application on a base machine and
then extract its signature. Next, the signature is executed on a target machine to
predict the execution time (PET). Finally, we run the entire application on the tar-
get machine to compare the predicted execution time with the effective execution
time of the application, obtaining predicted execution time error (PETE).

5.1 Performance of the analysis stage

The analysis stage of the parallel approach is complex and costly due to the con-
stant communications between the processes making the analysis time increase as
the application scales. This is why we present the EPAS proposal and validate it
with a set of SPMD applications, increasing the processes in each execution and
comparing it with the parallel analysis of PAS2P [21], as shown in Table 3.

Table 3 presents different SPMD applications executed on the DELL cluster,
with their respective execution time ‘AET’, presented in the third column. The
trace file generation in the instrumentation stage generates a certain number of
events presented in the fifth and eighth columns, which are proportionally related
to the application’s behavior. Some applications, such as BT, increase the number
of events when scaling, whereas others do not. Finally, the ‘TFAT’ corresponding

Table 2 Cluster characteristics

Cluster Characteristics Software

DELL AMD OpteronTM 6200 1.60GHz, 8 nodes (512
cores), 64 GB RAM per node, Interconnection
Infiniband QDR

Linux versión 2.6, Open
MPI 1.6.5, gcc 4.4.7,
PAPI 5.4

BEM 2× 12 Intel Haswell 2.30 MHz, 720 node (17280
cores), 64 GB RAM per node, Interconnection
Infiniband FDR

Fig. 14 Experimental methodology. First, the MPI parallel application is executed on a base machine,
jointly, PAS2P instruments the application to obtain its signature. Then, the signature, which corresponds
to representative segments of the application, is executed on a target machine predicting its execution
time. Finally, the real execution time of the application on a target machine is compared with the predic-
tion time, obtaining the associated prediction error

 F. Tirado et al.

1 3

to the sixth and ninth columns shows the time required for PAS2P to perform the
application analysis, i.e., create the application model and extract the phases.

On the other hand, in Table 3, it can be observed that the analysis times are
proportional to the size of their trace files. With the EPAS method, the analysis
times (TFAT) are considerably shorter than the parallel approach observed in the
’TFAT SpeedUp’ column. The gain is due to the independent analysis model of
each process, which reduces communication for event synchronization purposes.
In the ’Parallel approach TFAT’ column, we observe an increase in the execution
time of the analysis when the application is executed with 64 processes; this is
because the Dell machine has 64 cores per node and starts using the Infiniband
network. The time of our proposal, observed in column ’EPAS TFAT‘, does not
present a considerable increase in the analysis time when the application uses the
network because our method reduces the PAS2P communications between pro-
cesses, improving its performance.

When analyzing the results of Table 3, it is observed that the analysis time of
our EPAS proposal is less in all the tests than the parallel analysis time, managing
to decrease the analysis time on average by 93% and reaching a speedup of 29 for
the NBODY application executed with 256 processes. Furthermore, When ana-
lyzing the variation of the analysis time when the application grows in the num-
ber of processes, we can calculate the coefficient of variation of each of the test
applications, achieving for the EPAS proposal an average coefficient of variation
of 42% compared to 98% of the parallel approach, this means that our proposal
presents a better behavior when the application scales.

Complementing the behavior of our proposal in relation to the scalability
effect, in Fig. 15 we present the execution time of the SP application’s analysis
executed on the DELL cluster, using the parallel approach versus our proposed
Extension of the Parallel Analysis for SPMD applications. We observe a flatten-
ing of the EPAS proposal curve as the number of processes increases, compared
to the parallel analysis curve, which shows an accelerated growth rate as the num-
ber of processes increases. Our proposal does not consider PAS2P communica-
tion between events, which favors its performance. However, the maximum scal-
ability achieved was for 441 processes due to hardware limitations. To evaluate
scalability on a larger scale, we can use the P3S methodology [14], which allows
us to predict the scalability of message passing applications on a target system.

Table 4 presents the BT and SP application executed in the BEM production clus-
ter, with a higher workload. The application was executed from 256 to 1024 pro-
cesses. It is important to mention that several users are running applications in the
cluster, which can interfere with the measurements, mainly when the application
scales to a high number of processes due to the intensive use of the network. Nev-
ertheless, in these measurements, we can observe that when increasing the number
of processes, the analysis time of the EPAS proposal does not present significant
alterations.

1 3

Scalable performance analysis method for SPMD applications

Ta
bl

e
3

 C
om

pa
ris

on
 o

f p
er

fo
rm

an
ce

 m
ea

su
re

s o
f p

ar
al

le
l a

na
ly

si
s v

er
su

s E
PA

S
pr

op
os

al
, e

xe
cu

te
d

on
 th

e
D

EL
L

cl
us

te
r

A
ET

, a
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e;
 E

PA
S,

 e
xt

en
si

on
 o

f t
he

 p
ar

al
le

l a
na

ly
si

s t
o

SP
M

D
; T

FA
T,

 tr
ac

efi
le

 a
na

ly
si

s t
im

e

A
pp

l.
N

um
be

r
pr

oc
es

se
s

A
ET

EP
A

S
tra

ce

si
ze

 (G
B

)
EP

A
S

nu
m

be
r

of
 e

ve
nt

s
EP

A
S

TF
A

T(
Se

c)
Pa

ra
lle

l a
pp

ro
ac

h
tra

ce
 si

ze
 (G

B
)

Pa
ra

lle
l a

pp
ro

ac
h

nu
m

be
r o

f e
ve

nt
s

Pa
ra

lle
l a

pp
ro

ac
h

TF
A

T
(S

ec
)

TF
A

T
sp

ee
du

p

LU
32

54
40

.3
2.

9
97

9,
68

0
15

.2
1

2.
8

97
9,

68
0

45
.1

8
2.

97
64

24
83

.1
9

6.
1

97
9,

68
0

25
.3

6
5.

9
97

9,
68

0
68

.3
9

2.
70

12
8

11
67

.2
5

12
.5

97
9,

68
0

25
.6

5
12

.1
97

9,
68

0
19

3.
87

7.
56

25
6

61
6.

16
25

.8
97

9,
68

0
28

.5
6

24
.9

97
9,

68
0

34
2.

16
11

.9
8

N
BO

D
Y

32
21

71
.6

4
8.

0
5,

02
5,

00
3

52
.6

5
7.

7
5,

02
5,

00
3

40
6.

28
7.

72
64

14
56

.2
0

16
.0

5,
02

5,
00

3
79

.8
1

16
.0

5,
02

5,
00

3
55

0.
87

6.
90

12
8

82
0.

97
33

.0
5,

02
5,

00
3

92
.8

7
32

.0
5,

02
5,

00
3

15
74

.8
5

16
.9

6
25

6
43

5.
30

67
.0

5,
02

5,
00

3
10

3.
58

64
.0

5,
02

5,
00

3
30

00
.2

1
28

.9
7

B
T

36
31

19
.8

3
1.

1
54

0,
13

9
6.

24
1.

1
54

0,
13

9
23

.2
5

3.
73

64
17

75
.9

2.
5

72
0,

17
5

9.
60

2.
5

72
0,

17
5

37
.8

5
3.

94
12

1
99

8.
74

6.
3

99
0,

22
9

14
.2

2
6.

3
99

0,
22

9
16

8.
03

11
.8

2
25

6
62

0.
41

19
.9

14
4,

03
19

25
.6

7
19

.9
1,

44
0,

31
9

42
7.

50
16

.6
5

44
1

46
8.

74
45

.1
1,

89
0,

40
9

41
.4

1
45

.1
1,

89
0,

40
9

10
33

.8
0

24
.9

6

 F. Tirado et al.

1 3

5.2 Evaluation of the prediction quality in target machine

To evaluate the quality of the EPAS prediction, we have obtained the application’s
signature on a base machine. Then, the signature is executed on a target machine
to perform the execution time measurements of each phase, and we multiply it by
its weights, obtaining a prediction of the SPMD application execution time. As is
shown in Table 5, we run the applications by incrementing the number of processes
to verify the Prediction Execution Time when SPMD applications scale.

Table 5 shows the Application Execution Time (AET), the prediction time of the
EPAS and the Prediction Time of the Parallel Approach. We also present the PETE
Predicted Execution Time Error obtained when executing the signature of each
application. Finally, we present the SET that corresponds to the sum of the execu-
tion time of all the phases that constitute the application’s signature.

The results in Table 5 show that our EPAS approach has an average prediction
quality of 97.2%, compared to the parallel approach, which achieved an average pre-
diction quality of 98.6%. In addition, we observe that the Signature Execution Time

 0

 50

 100

 150

 200

 250

36 64 121 256 441

E
xe

cu
tio

n
tim

e
(s

ec
.)

Processes

Parallel Approach TFAT.
EPAS TFAT.

Fig. 15 Evaluation of EPAS performance in the SP application when increasing the number of processes

Table 4 TFAT of our proposed
EPAS executed on the BEM
production cluster

AET, application execution time; EPAS, extension of the parallel
analysis for SPMD; TFAT, tracefile analysis time

Application Number
processes

AET (seg.) EPAS TFAT (Sec)

BT 256 2590.76 17.25
529 1304.10 25.82
900 3344.95 34.40

SP 256 10,798.99 14.22
512 6521.59 18.81

1024 6224.42 35.56

1 3

Scalable performance analysis method for SPMD applications

Ta
bl

e
5

 A
ET

 p
re

di
ct

io
n

fo
r t

he
 p

ar
al

le
l a

pp
ro

ac
h

an
d

pr
op

os
ed

 E
PA

S
im

pl
em

en
ta

tio
n,

 u
si

ng
 th

e
D

EL
L

cl
us

te
r

AE
T

A
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e,
 E

PA
S

Ex
te

ns
io

n
of

 th
e

pa
ra

lle
l a

na
ly

si
s

fo
r S

PM
D

, P
ET

 P
re

di
ct

io
n

ex
ec

ut
io

n
tim

e,
 P

ET
E

Pr
ed

ic
te

d
ex

ec
ut

io
n

tim
e

er
ro

r,
SE

T
Si

gn
at

ur
e

ex
ec

ut
io

n
tim

e

A
pp

l.
N

um
be

r
pr

oc
es

se
s

A
ET

EP
A

S
PE

T
(S

ec
)

EP
A

S
PE

TE
 (%

)
EP

A
S

SE
T

(S
ec

)
Pa

ra
lle

l a
pp

ro
ac

h
PE

T
(S

ec
)

Pa
ra

lle
l a

pp
ro

ac
h

PE
TE

(%
)

Pa
ra

lle
l

ap
pr

oa
ch

 S
ET

(S

ec
)

SP
36

42
52

.6
3

43
16

.7
8

1.
5

58
.8

7
42

95
.9

7
1.

0
58

.7
1

64
33

42
.2

2
34

16
.3

1
2.

2
49

.6
3

34
02

.2
3

1.
8

49
.1

6
12

1
23

81
.4

0
24

24
.6

2
1.

8
40

.8
5

23
94

.3
4

0.
5

39
.5

7
25

6
12

03
.0

4
12

44
.9

5
3.

4
30

.3
9

12
36

.2
2

2.
7

28
.1

6
44

1
71

0.
97

74
9.

42
5.

1
28

.0
3

72
8.

90
2.

5
23

.3
7

B
T

36
31

19
.8

3
31

65
.0

5
1.

4
26

.1
1

31
48

.8
5

0.
9

25
.2

8
64

17
75

.9
0

18
25

.9
8

2.
7

21
.8

0
17

96
.5

7
1.

2
20

.9
8

12
1

99
8.

74
10

73
.7

9
7.

0
21

.0
8

10
25

.2
8

2.
6

18
.8

2
25

6
62

0.
41

68
0.

76
8.

9
21

.2
4

65
1.

12
4.

7
19

.1
6

44
1

46
8.

74
52

5.
76

10
.8

20
.5

4
51

7.
47

9.
4

18
.2

7

 F. Tirado et al.

1 3

(SET) is similar in both approaches, achieving a significant reduction compared to
AET, reaching values lower than 1% of the Application Execution Time (AET).

Table 6 presents the prediction quality using the BEM production cluster. The
BT and SP applications have a higher workload than the same applications running
on the DELL cluster. The EPAS proposal has an average prediction quality of 97%
for the BT application and 94% for the SP application. We can also observe that the
error remains stable as the application’s number of processes increases. The BT and
SP applications have difficulties when scaling to a high number of processes, mainly
due to the intensive use of the production cluster, but despite that, PAS2P detects it
and delivers an execution time prediction with an error of 5%. Finally, the execution
time of the signature (SET) does not present great alterations when the application is
executed with a high number of processes.

We must point out that the construction of the signature is created only one time
on the base machine. Then, to predict the performance, we migrate the signature to
the target machines without analysing the application again.

6 Conclusion and future work

The PAS2P methodology allows us to generate a model of a parallel application
and automatically extract its most significant phases to create a signature whose
execution allows us to predict the application’s performance on different parallel
machines. However, the analysis performed by PAS2P to generate the application
model is costly in terms of execution time due to the high communication between
PAS2P events, which degrades performance as the number of processes increases.

For this reason, we propose a new model for the analysis stage of PAS2P, based
on the behavior of SPMD applications. The proposal minimizes the communications
between PAS2P events, reducing the execution time of the analysis stage by 84.63%,
compared to the parallel approach, obtaining a prediction quality below 6% on aver-
age. In addition, we propose to use the same resources used in the execution of the
application to analyze the application independently for each process.

Table 6 AET prediction for the parallel approach and proposed EPAS implementation, using the BEM
production cluster

AET Application execution time, EPAS Extension of the parallel analysis for SPMD, PET Prediction exe-
cution time, PETE Predicted execution time error, SET Signature execution time

Application Number
processes

AET (seg.) EPAS PET (seg.) EPAS
PETE (%)

EPAS SET (Sec)

BT 256 2590.76 2479.46 4 29.32
529 1304.10 1293.16 1 22.28
900 3344.95 3532.16 5 33.96

SP 256 10798.99 11538.61 6 133.34
512 6521.59 7035.25 7 86.55

1024 6224.42 6550.59 5 92.08

1 3

Scalable performance analysis method for SPMD applications

When executing the application signature, which consists of the relevant phases
extracted from the MPI application, we measure the time of each phase on a tar-
get machine and multiply it by its weight to predict the application execution time.
Our approach keeps the prediction error rates similar concerning the PAS2P parallel
approach and keeps the signature execution time (PET) similar when the application
scales.

As future work, we will focus on applications with irregular behavior. The inde-
pendent analysis to extract the phases per process can help us characterize irregular
applications’ behavior, where each process can have different behavior from the rest.

Acknowledgements This research has been supported by the Agencia Estatal de Investigacion (AEI),
Spain and the Fondo Europeo de Desarrollo Regional (FEDER) UE, under contract PID2020-112496GB-
I00 and partially funded by the Fundacion Escuelas Universitarias Gimbernat (EUG). Appreciation
to The Wroclaw Centre for Networking and Supercomputing, Poland for access to its supercomputing
resources.

Funding Open Access Funding provided by Universitat Autonoma de Barcelona.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Atallah MJ, Blanton M (2009) Algorithms and theory of computation handbook, volume 2: special
topics and techniques. CRC press

 2. Attig N, Gibbon P, Lippert T (2011) Trends in supercomputing: the European path to exascale.
Comput Phys Commun 182(9):2041–2046

 3. Bailey DH, Barszcz E, Barton JT (1991) The nas parallel benchmarks. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, Supercomputing, vol 91, pp 158–165

 4. Canillas JM, Wong A, Rexachs D, Luque E (2011) Predicting parallel applications performance
using signatures: the workload effect. In: 2011 9th IEEE/ACS International Conference on Com-
puter Systems and Applications (AICCSA). IEEE, pp 299–300

 5. DeRose L, Homer B, Johnson D, Kaufmann S, Poxon H (2008) Cray performance analysis tools. In:
Tools for high performance computing. Springer, pp 191–199

 6. Geimer M, Saviankou P, Strube A, Szebenyi Z, Wolf F, Wylie B (2012) Further improving the scal-
ability of the scalasca toolset. Appl Parallel Sci Comput 463–473

 7. Hilbrich T, Schulz M, de Supinski BR, Müller MS (2010) Must: a scalable approach to runtime
error detection in mpi programs. In: Tools for high performance computing 2009. Springer, pp
53–66

 8. Jayakumar A, Murali P, Vadhiyar S (2015) Matching application signatures for performance pre-
dictions using a single execution. In: 2015 IEEE International Parallel and Distributed Processing
Symposium. IEEE, pp 1161–1170

 9. Labarta J (2010) New analysis techniques in the cepba-tools environment. In: Tools for high perfor-
mance computing 2009. Springer, Berlin, pp 125–143

 10. Lamport L (1978) The ordering of events in a distributed system. Commun ACM 21(7):558–565

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 F. Tirado et al.

1 3

 11. Mantovani F, Calore E (2018) Multi-node advanced performance and power analysis with paraver.
In: Parallel computing is everywhere (serie: advances in parallel computing), vol 32. IOS Press, pp
723–732

 12. Mijaković R, Firbach M, Gerndt M (2016) An architecture for flexible auto-tuning: the periscope
tuning framework 2.0. In: 2016 2nd International Conference on Green High Performance Comput-
ing (ICGHPC). IEEE, pp 1–9

 13. Panadero J, Wong A, Rexachs D, Luque E (2013) A tool for selecting the right target machine for
parallel scientific applications. In: ICCS, pp 1824–1833

 14. Panadero J, Wong A, Rexachs D, Luque E (2017) P3s: a methodology to analyze and predict appli-
cation scalability. IEEE Trans Parallel Distrib Syst 29(3):642–658

 15. Parker S, Mellor-Crummey J, Ahn DH, Jagode H, Brunst H, Shende S, Malony AD, DelSignore D,
Tschuter R, Castain R et al (2017) Performance analysis and debugging tools at scale. Exascale Sci
Appl Scalabil Perform Portabil 17–50

 16. Perelman E, Polito M, Bouguet JY, Sampson J, Calder B, Dulong C (2006)Detecting phases in par-
allel applications on shared memory architectures. In: Parallel and Distributed Processing Sympo-
sium, International, p 68

 17. Shende S, Malony A, Allen G, Carver J, Choi S, Crick T, Crusoe M (2016) Using tau for perfor-
mance evaluation of scientific software. In: Workshop on sustainable software for science: practice
and experiences, p 1686

 18. Shende S, Malony A, Morris A (2012) Improving the scalability of performance evaluation tools.
Appl Parallel Sci Comput 441–451

 19. Sherwood T, Perelman E, Calder B (2001) Basic block distribution analysis to find periodic behav-
ior and simulation points in applications. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp 3–14

 20. Terpstra D, Jagode H, You H, Dongarra J (2010) Collecting performance data with papi-c. In: Tools
for high performance computing 2009. Springer, pp 157–173

 21. Tirado F, Wong A, Rexachs D, Luque E (2019) Analyzing the data behavior of parallel applica-
tion for extracting performance knowledge. In: 2019 International Conference on High Performance
Computing and Simulation (HPCS). IEEE, pp 249–256

 22. Weber M, Brendel R, Wagner M, Dietrich R, Tschüter R, Brunst H (2017) Visual comparison of
trace files in vampir. In: Programming and performance visualization tools. Springer, pp 105–121

 23. Wong A, Rexachs D, Luque E (2010) Parallel application signature for performance prediction. In:
PDPTA 2010: Proceedings of the 2010 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (Las Vegas NV, July 12–15, 2010), pp 408–414

 24. Wong A, Rexachs D, Luque E (2015) Parallel application signature for performance analysis and
prediction. IEEE Trans Parallel Distrib Syst 26(7):2009–2019

 25. Zhukov I, Feld C, Geimer M, Knobloch M, Mohr B, Saviankou P (2015) Scalasca v2: back to the
future. In: Tools for high performance computing 2014. Springer, pp 1–24

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Scalable performance analysis method for SPMD applications
	Abstract
	1 Introduction
	2 Related work
	3 PAS2P overview
	4 Proposed methodology
	4.1 Data collection
	4.2 Application model
	4.3 Identification pattern
	4.4 Method of selection of the representative process of the SPMD application

	5 Experimental results and validation
	5.1 Performance of the analysis stage
	5.2 Evaluation of the prediction quality in target machine

	6 Conclusion and future work
	Acknowledgements
	References

