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LIMIT CYCLES OF A PERTURBATION OF A POLYNOMIAL HAMILTONIAN
SYSTEMS OF DEGREE 4 SYMMETRIC WITH RESPECT TO THE ORIGIN

JAUME LLIBRE, PAULINA MARTINEZ, AND CLAUDIO VIDAL

ABSTRACT. We study the number of limit cycles bifurcating from the origin of a Hamiltonian system of degree
4. We prove using the averaging theory of order 7, that there are quartic polynomial systems close these
Hamiltonian systems having 3 limit cycles.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

One of the main open problems in the qualitative theory of planar differential systems is the determination of
limit cycles. Closely related to the Hilbert’s 16th problem is the study of the limit cycles from planar differential
systems when we vary the parameters bifurcating from a center, or from its periodic solutions, and has been
exhaustively studied in the last century. However there is no general method to solve completely this problem,
the averaging theory as being largely studied in recent years in order to analyze the problem of the bifurcation
of limit cycles, see for instance [4, 2, 7, 9, 8, 10, 13, 14, 17, 18, 15, 23]. For details about the averaging theory
see the book of Sanders, Verhults and Murdock [21].

In this work we deal with polynomial differential systems in R? of the form
(1) .’L':P(.’L',y), Z/ZQ(%IU),
where the dot denotes derivative with respect to an independent real variable ¢, usually called the time. Assume
that the origin O is an equilibrium point of system (1). When all the orbits of system (1) in a punctured

neighborhood of the equilibrium point O are periodic, we say that the origin is a center. The study of the
centers remain open in the present days and was started by Poincaré [20] and Dulac [6].

We focus on a polynomial differential system (1) having a center at the origin of linear type, i.e. after a
linear change of variables and a scaling of the time variable, it can be written in the form:

$:7y+P2(xay)a y:x+Q2(I7y)v
where Py(z,y) and Q2(z,y) are polynomials without constant and linear terms.

This paper is a natural continuation of the work “Linear type centers of polynomial Hamiltonian systems
with nonlinearities of degree 4 symmetric with respect to the y-axis” [16] where we consider the Hamiltonian
systems

(2) i =—y—a* —3b2%y® — 5eyt, G =ax+ 423y + 202y,
of degree 4 with Hamiltonian function

1
(3) H(z,y) = 52 +y?) + 2y + ba’y® + ey,

and are classify all the phase portraits of these Hamiltonian systems in the Poincaré disk, see Figure 1.
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In this work we perturb the Hamiltonian systems (2). Thus we consider these class of all polynomial differ-
ential systems of degree 4, i.e.

7

&= —y—a*—3bx%y? —5cyt + Z epi(zx,y),
) ; i=1

y = x+4x3y+25$y3+25i%($,y)>

i=1

pi(x,y) = aé —0—2a’ix + aéy +,a§’>‘§2 + qixg + ang 42_ %éxs + aéx;y—l—( )
5) aéxy + aéy' + a’loxz + ailz y+ a;m:v Yy ;— a‘lax% + al.y°,
gz, y) = by + bl + bhy + bya® + biay + biy® + ba® + biay+
kry® + bhy® + bloat + 0f 2’y + bior®y? + biszy® + bigyt

Our objective is to study the number of limit cycles bifurcating from the origin of system (4) using the
averaging theory up to order 7. Our main result is the following one:

Theorem 1. For ¢ > 0 sufficiently small the mazimum number of small limit cycles of the differential system
(4) bifurcating from the center (0,0) obtained using the averaging theory of order

(a) one and two is 0;

(b) three and four is 1;
(¢c) five and siz is 2;
(d)

seven is 3.

Theorem 1 is proved in Section 3. All the computations of this paper have been revised with the help of the
algebraic manipulator Mathematica.

Thus the two main objectives of this paper are: First to illustrate how to use the averaging theory up to
order 7 for compute periodic solutions, and second how to use the averaging theory for studying the periodic
solutions which are born in a Hopf bifurcation. We note that if the objective of this paper was to estimate the
bound of the maximum number of periodic solutions of the differential system (4), this can be done using the
techniques of the papers [11, 12].

In section 2 we provide the notations, basic definitions and results which will allow to do this study.

2. PRELIMINARY RESULTS
We consider the center at the origin of system (2), the global phase portraits of this system was detailed
studied and the results are summarize in the next theorem proved in [16].

Theorem 2. The phase portrait in the Poincaré disk of a linear type center of a polynomial Hamiltonian system
with nonlinearities of degree 4 symmetric with respect to the y-azis is topologically equivalent to one of the 30
phase portraits of Figure 1.

The averaging theory is fundamental to our study, so we introduce the main result for applying it, see [17].
Consider the system

(6) & =Y e'F(t )+ Rt 2 0),
i=1

where F; : R — R" for i = 1,2,...,k and R: R x I X (—¢&g,0) — R™ are continuous functions and T-periodic
in the first variable, I being an open subset of R™.
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For i =1,...,k we define the averaging function f; : I — R"™ of order i as
Yi Ta <
™ i) = B2,
where y; : R x I — R" i =1,...,k — 1 are defined recurrently by the following integral equation

yilts) =il /0 [Fi(s, (s, 2))+

i l
1 L b;
ZZ bl!b2!2!b2”'bl!l!bla Fi*l(‘S?SO(s’Z))Hyj(S?Z) ! ds
j=1

=1 S

(8)

where OXG (u, v) denote the derivative of order L of a function G with respect to the variable u, and S; is the set
of all I-tuples of non-negative integers (by, b, ..., b;) satisfying by +2by+---+1b; =1, and L = by + ba +-- -+ b;.
The explicit expressions of the average functions for s = 1,...,7 are given in the appendix A.

Now we can enunciate the following result, proved in section 3 of [17].
Theorem 3. For the functions of (6) we assume the following conditions.

(1) For each t € R, Fy(t,-) € C*~* fori = 1,---k,0"*F; is locally Lipschitz in the second variable for
i=1,---,k and R is a continuous function locally Lipschitz in the second variable.

(2) Assume that f; = 0,4 =1,---,r —1 and f, # 0,r € {1,--- ,k}. Moreover suppose that for some
a € I with f.(a) = 0 there exists a neighborhood V. C I of a such that f.(z) # 0, V2 € V \ a and
dp(fr(2),V,0) # 0 (here dp(fr(2),V,0) denotes the Brouwer degree of f, at a).

Then for sufficiently small |e| > 0 there exists a T-periodic solution x(-,€) of (6) such that ©(0,e) — a when
e — 0.

We note that when f,. is C! then the Brouwer degree of f, at a is non-zero if the determinant of the Jacobian
matrix D f,(a) is non-zero. For more details see [3, 19].

Another important tool is the Descartes Theorem about the number of zeros of a real polynomial (see [1]).

Theorem 4 (Descartes Theorem). Consider the real polynomial p(x) = a;,xis + a;,xiz + -+ - + a;,xi, with
0 <iyp <idg <--+ <ip and a;; # 0 real constants for j € {1,2,--+ ,r}. When ai;a;, ., <0, we say that a;; and
a;, ., have a variation of sign. If the number of variations of signs is m, then p(x) has at most m positive real
roots. Moreover it is always possible to choose the coefficients of p(x) in such a way that p(z) has exactly r — 1
positive real roots.

Gauss showed later on that the number of allowable positive roots is m,m —2,m —4,--- given that the sign
changes m times.

3. PROOF OF THEOREM 1

We shall use the averaging theory up to order seven for studying the number of small limit cycles of system
(4) which can bifurcate from the origin of system (4) with ¢ = 0 when this system is perturbed with ¢ # 0
and small. First we do the rescaling of the variables (z,y) — (X,Y) with © = ¢X, y = €Y, then the initial
differential system (4) becomes a differential system of the form

7 7
(9) X=-Y+) rn(XY)+0(E®), Y=X+> es(XV)+O0().

i=1 i=1
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After we pass to polar coordinates (X,Y) — (r,0) given by X = rcosf, Y = rsin6, and the previous differential
system writes
7 . . 7 .
(10) 7= Ze‘Ri(r, 0) +0(®), =1+ ZelSi(r, ) + O(c%).
i=1 i=1
Finally we take as independent variable the variable # and the differential system becomes the differential
equation

7
(11) % = &'Ti(r,0) + O(").

This differential equation is in the normal form for applying the averaging theory described in [14], which is
summarized in section 2.

Thus we apply the averaging theory from order 1 to 7 in € and we shall obtain the number of periodic
solutions indicated in Theorem 1 for the different orders. More precisely, let

r(0,e) =1+ O(e),
be a periodic solution of the differential equation (11) obtained from the averaging theory of order k, being r*
a simple zero of the averaged function of order k. Then this periodic solution provides the periodic solution
(r(t,e),0(t,e)) = (r*,1) + O(e),
of the differential system (10). And this last periodic solution gives place to the periodic solution
(X(t,e),Y(t,e)) = (r*cost,r*sint) + O(e),
of the differential system (9). Finally, we get the periodic solution
(z(t,€),y(t,e)) = (er* cost,er sint) + O(e?),
of system (1).
In summary, all the periodic solutions r(6,e) obtained applying the averaging theory to the differential
equation (4) provide periodic solutions (z(t,¢),y(t,€)) of the differential system (1) which tends to the origin

(i.e. to the center localized at the origin of coordinates) when ¢ — 0. Therefore are periodic solutions bifurcating
from the origin in a Hopf bifurcation.

By doing a Taylor expansion truncated at the 7th order in ¢ we obtain an expression in the form (6) for
dr/df with k = 7. The explicit expansion is

d

dfz = Kie + KQEQ + K3€3 + K4€4 + K5€5 + K656 + K7€7 + -,

where considering C' = cosf and S = sin 6 the first three coefficients are:
K1 =1r(a}C? + (a} + b})CS + b3 S5?),

Ky =1r(a3C? +adC3r 4+ a3CS + b3CS + alC?rS + biC?rS + b3S? + atCrS? + bCrS? + birS3 + (—b1C? +
S(alC —biC +adS))(atC? + S((ad + b})C +bLS))),

and

K3 =1(a3C? + d3C3r + a{C*r? — O3 + a3CS + b3CS + a3C?rS + b3C?rS + a2 C3r2S + biC3r2S + 6352 +
azCrS? + b3CrS? + afC?r2S? + brC?r2S% + 4C31r352 + 3bC31r352 + b2rS3 + afCr?S3 + biCr2S83 + byr2S* +
20C735* + 5c0r35% + (—b2C% + (b1)2C* — bIC3r + a2CS — b3CS + adC?rS — bLC?rS + a3S? + (al)?C2%5? —
2a1b3C2S% + (b3)2C2S% + alCrS? — biCrS? + 2a1ad CS® — 2a3b3C'S3 + atrS® + (ad)25* — 2b1C2S(alC — bIC +
a38))(alC? 4+ S(asC +biC +b19)) + (—=b1C? + S(aiC — b3C + a3 9))(a2C? + alC3r + S(a2C + b3C + alC%r +
biC?r + b3S + aiCrS + biCrS + birS?))).

(12)
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The other coefficient are too longer and we do not provide them here.

In this work we consider the center at the origin. Our system (4) is a polynomial differential system so the
functions F; and R; are analytic, and the variable 6 is 27-periodic because appear through sinus and cosinus.
Therefore we can apply Theorem 3 setting the interval I = {r : 0 < 7}, for some 7 > 0.

Applying Theorem 3 we obtain the average function of first order

fi(r) = w(a} + bd)r.

Clearly f1(r) has no solution in I. Therefore the averaging method of first order does not provide any small
limit cycle bifurcating from the origin.

We set bl = —al and obtain f;(r) = 0. So we can apply the averaging theory of second order and we obtain
the averaging function of order two:

fa(r) = w(a? + b3)r.

Newly the averaging function has not solution in I. Thus, the statement (a) of Theorem 1 is proved.

Doing b2 = —a? we have fo(r) = 0 and we can apply the averaging method of thirst order, the averaging
function of order three is

fd(?") = T’(Al + 1437“2)7

where
Ay =m(a3 +03), Az = (3al +ai + bl + 3bd)m/4.

Thus f3(r) has one positive real root r* = y/—A;/Az in I if 0 < —A; /A3 and in this case it holds that
(dfs/dr)(r*) # 0. Hence, applying the averaging theory of order three we can detect one limit cycle bifurcating
from the center at the origin of system (4) with ¢ = 0.

In order to apply the averaging method of fourth order we set b3 = —a3 and b = —ai — al/3 — b}/3. So the
averaging function of fourth order is

fa(r) =r(B1 + Byr?),
where By = m(af + b3) and Bs = (—a}a} — ajat + 3alal — 3a% — 2a}al — a2 + 3alb} + 2alb} + bib] — 2aibl +
bibt + albt + bibt — b2 — 2a;1b% — 3b3)7 /4. Thus f4(r) has one positive real zero in I if 0 < —B;/Bs. Hence
applying the averaging theory of order fourth we know that one small limit cycle bifurcates from the origin of

system(4) with e = 0. So statement (b) of Theorem 1 is proved.

To apply the averaging method of fifth order we first set b3 = —af and b3 = (—aja} — ala} + 3alal — 3a2 —
2atal — a2 + 3abt + 2aibl + bib) — 2aibl + bibl + albl + b1l — b2 —2aibl)/3 and then f4(r) = 0. We continue
applying the averaging method of fifth order where the averaging function is

f5(r) =r(Cy + Csr? + Csrt),
where

C1 = (af +b3)m,

Cs = (2al(a})? + adal + a}(a})? + aia? + 2alalal + alalal + a3al + ala? — 3a3al — 3ala? + 3ad + 2a%at +
2aia2 +a3 —alaibl +3adaibl —3adbl —2aiatb + 3al(b1)? —3aib? +2alalbl —2a3bt —alajbl +4alblbl —2aib3 —
ataibl +alalbl +albibl +2b1bib} — b3b) — af (b))? — bib3 +alalbl + 2a§a{%b% + 2a2bi — 2aibibl + bibibl — b3t —
2ai(b)? + 2alb? — bib2 — a3bl + albibl + (b})?bL — b3bE — adb2 — b1bZ + b3 + 2a3b} — 2a1bibi + 2albZ + 3b3)7 /4,
and

Cs = (—aj + ajb — 4bb} — 2b} — 10bb} + 5alc + 10bic) /8.
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The averaging function f5(r) can have at most 2 positive real zeros in I because Cy, C3 and Cj5 are linearly
independent since C; depends only on af and b3, Cs only depends on al, b} and b} and C3 depends of these
coefficients and on other more, for example only C3 present the coefficient a3, and by the Descartes Theorem
4 the averaging function f5 can present two change of sing so almost there is two positive simple roots for f5.
We prove through the averaging method of fifth order that at most 2 limit cycles can bifurcate from the origin
of system (4) with e = 0 using this averaging theory.

At this moment we separate the study in three cases: b # 0, or b=0and ¢ #1/5, or b=0 and ¢ = 1/5.

3.1. Case b # 0. Setting b3 = —a3, b} = (—=2b1(1 + 5b — 5¢) + a41(—1+ b+ 5¢))/(4b) (here we use that b # 0)
and solving C3 for b3 we can apply the averaging method of sixth order. The sixth averaging function is

fG(T) = ’I‘(D1 + D3T2 —+ D57‘4),
where
Dy = (a$ +bS)7,

D3 = w(2(a})?alal —2a3alal — 2a2a3a4 +2a3al +a?(a})? +alala? +8a?(al)*b+ 16aiaia3b +10(al)?alalb +
2a2a3a}1b+ 2a3a3aib+2a3aib+3a3(a})?b+4atal(a})?b+4a3a3b+ Tatala3b+4alalb+ 8aalatb+ 8atalalalb +
8alaZal b+4(a1)2a4a%b+4(a2)2a4aéb+4a2a4alb+4a2a4a5b+4a4a%b+8a1a3a§b+4a2a}1a§b+4a4a§b+4a4a§’b—
12a3ab — 12a3a2b — 12a3adb + 12a¢b + 8a1a7b + 8a%a b+ 8atadb + 4aib + 4a2a§a}1b1 4a3aibt — 2a1 (a})?bl —
16a}(al)?bbl —dalalalbbi — Qa%(aél)zbbl 4ala3bbl —8aialalbbl +12a3albbl +12ala2bbi —12a3bb — 8aZalbbl —
8aia2bbi +6aial(b1)? —2aialb(bi)?—12atalb(bl)? +12a%b(b%)2+8a}a%b(bl) —12alb(b1)3 —4alaib? +12aatbb? —
12a2bb? — 8alalbb? + 24aibbib? — 12abb3 + 8alaibb3 — 8aibb — dalalbb3 + 16aibbibi — 8aibbs + (ai)aibl —
afaibl—4a3aibb} —4ala3bb] — (ai)?albbl+a3aibbi +4aatbbl+4atalalbbl+4ala2bbl +2adaibivl +8atalbbibl —
2a}a}bbiby —4a1aébblb4+3a4(b1)2bl 3a1b(b1)2b1 2a4bzb4+2a}lbb2bl+4a§bb261+86b1b2b1 4bb3by —4a3b(b})* +
8aibbi (b))? — alaib? — 4atalbb? + adaibbi + 4aiatbb? — 2aibib? + 2a;bbib — 4bb3b3 — 8aibbib] + a}lb‘3 —ajbb} +
4(ai)?aibl — 4a3albl — daladbl + 4a3bl + 4a3albl + 2ala3bl + 20(al)za bb5 20a2a3bbé — 20a3a?bb} + 20a3bb} +
12a%a}lbbé + 4afalaibbt + 14aia?bbt + 8(at)?albbl + 8(al)?atbbi + 8aZalbbi + 8ata2bbt + 8a3bbl + 8aalbib —

a3bibi —8aiajbibl +40aialbblvl —40a3bbibi —20aiaibblvl + 12a3(b1)2b5 +60a b(bl)Qbé —8aib3bi —40aibb3bl —
80leb2b1 +2(at)?bibl —2a2bib —2(al)?bbibt — 10a3bbibi +4alblbibl + 20a§bb%b}lb% +6(b1)2bibt +26b(b})?bibL —
AB2bLbL —16bb2YbL —2aLb2b —10albbbl — bbb — 16bbIb2bL+2b3bL +6bb3b: +4a2 (b))2+12a2b(bh)2 —8at abb(bl)?—
8albl(bl)?—32aibbl (bt)2+2alalb?+2aiaibb2+8alatbb2+8a2bbZ+4bbibib2 —4bbib2+4alblib? +4albbibZ+8aibb3 —
AbbLbE — 4a3bbl+4a2bbibh — 4alb(bt)2bL — 4b(b))3bL + 4aLbb2bL + 8bbLb2bL — 4bbIbL — 4a2bbZ + albbl b2 +4b(b})2b2 —
4bb3b2 — 4a2bb3 4bb1b3 4 4bb% + 8abb — 8albblb1 + Sa%b(bl)le 8a1bl)2b1 +8a2bb3 —8a}bb}bi +8albb3 + 12bb4
10(a})%a a4c+10a§a§a}lc+10a2a3a4c 10a3a4c 5a2(a})?c—5ata}alc—20aialalblc+20a3aibic+10ai (al)? b%c—
30a§a}1(b1) c+20a3a}1bfc 5(al)?albict+5adaiblc—10aiaibibic—15ak (b1)2blc+10alb2b)c+-5ataib2c+10a)blbZc—
5ajbic — 20(al)?a b5c + 20a3aibic + 20a2a§b5c —20a3bic — 20aZajbic — 10aia3bic — 40alalbibic + 40a2bibte +
40aialbibic — 60al(b})?bic + 40aib3bic — 10( D2bibie + 10a2bibic — 20aibibibic — 30(b1)%bibie + 20b3bibic +
10a3b3bic + 20b1b4b5c — 10b3bte — 20a% (b})2c + 40albl (bt)%c — 10atalbic — 20aibib3c)/(16b),

and

D5 = 7r(20a10a4+2a12a4 120a1a§b+36a11a§b+28a13a§b 40aiaib+2aiaib+12at,alb—12a3b+12ai,atb+
20&13a5b + 12a6a7b + 8a7a§b — 36aga3,b + 312a1a§b2 + 12a3akb® + 12a3b? + 240ataid? — 24aibbl, + 12a1b%b} +

aibl, — 13ajbbl, + 16aibbl, + 8albbl, + 3albls — 3aibbls + 88albbl, +80agbb}4 —48b2b§ —60a}bbi + 8aj;bb} —
60&}1;21)}1 - 12bb%0b}1 - 4bb%2b4 + 20bb1 4b4 + 40a10b5 + dal,bl + 112al,bbt + 4al,bbl + 24al,bbt — 120a3b?b} —
1206%b1bt + 10b}, b} + 22bbi, b} + 6b] 3b5 6bb1 3b5 — 24bb% — 120622 — 36aibbi — 4albbl — 12abbs — 12bbibE +
12abb} + 8aibby — 4bbibi — 100atjalc — 10ai,alc + 120a1a§bc + 120a2a}1bc + 60a%bc + 120aibbic — 25a3bi c —
15a}blsc + 60aibbic — 200aibic — 20al,bie + 240albbic + 240bbibic — 50b1,bic — 30bi4btc + 120bbZc)/(96b).
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Therefore fg(r) can have two positive real zeros in I following the arguments used for fs. Note that Dy,
D3 and Dj are linearly independent functions. In fact Dy only present the coefficients af and bS, only D3 has
the coefficients a3, a3, a2 and b?, and Djs is the only with the coefficients b},, bi; and b},. So applying the
averaging theory of order 6 we can detect that at most two small limit cycles bifurcating from the center at
the origin of system (4) with ¢ = 0 and this number can be reached. Thus, the statement (c¢) of Theorem 1 is
proved in the case b # 0.

We do bS = —af, and solving D3 for b3 and D5 for b2 we can apply the averaging theory of seven order.
The averaging function of order 7 is
f7(r) =r(E1 + E3r? + Esr* + EqrF),
where
By = (af +b)m,
Er7 = (—15a}; — 3a}3 — 180aib + 9al,b+ 13al3b + 36a}b? — 12bbi, — 10b1, — 6bbi, — 12b}, — 8bbi, + 15a};c+
35ai4c + 420albe + 10bi,c + 14001 ,c)7 /64,
and we do not provided the explicit expressions of F3 and Es because they are huge.

The averaging function f7(r) can have at most 3 positive real zeros in I. This because E1, E3, E5 and F;
are linearly independent, since E; depends on a] and b3, only E3 has the coefficients (for example) a3, b} and
b, the coefficient a5 only appear in E5 and E; depends of al, al,, als, biy, bly and bl,, and using Descartes
Theorem 4 we can affirm that f7; can has three changes of sing so the averaging function of seven order can has
three different positive real zeros. Therefore we can detect through the averaging method of order seven that
at most 3 limit cycles can bifurcate from the origin of system (4) with ¢ = 0. Hence statement (d) of Theorem
1 is proved for averaging function of order 7 in the case b # 0.

3.2. Case b =0 and c # 1/5. Under these conditions system (4) becomes

7 7

(13) i=—y—a' =5yt + ) cpilwy), g=a+4%y+> alay).
i=1 i=1

The averaging function until order four are the same that before. So following the previous elections of
coefficient, we continue applying the averaging method of fifth order where the averaging function is

fs(T) =7r(Cy + Csr? + C~'57’4)7
where C and C3 are the same that before and
Cs = Cs|,_o = (aj + 2b%)(—1 + 5¢)m /8.

Since Cy, Cs and Cs are linearly independent because C; depends on aj and b3, Cs only depends on a} and
b} and C3 depends of these coefficients and other more, for example only C3 present the coefficients b3, b3 and
a? and using Descartes Theorem 4 we have that the averaging function f5(r) can have at most 2 positive real
zeros in I. We can detect through the averaging method of fifth order that at most 2 limit cycles can bifurcate
from the origin of (2).

Note that if ¢ = 1/5 the coefficient Cs vanish, in this case the averaging function f5(r) can have at most one
positive real root in I. This situation will we studied in detail in the next case.

Setting b3 = —af, bi = a}/2 and solving C5 for b3 we can apply the averaging method of sixth order. The
averaging function of order six when b = 0 is

fo(r) = 7(D1 + D3r? + Dsrt),
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where

D3 = (4a3(a})? +8alaia3 + 6(a})2alal + 2a3al +2a3a3 + 3alala3 + 2a3a3 4 4a3akal + 4alalalal + 4aladal +
2a3a3at + 2a3al + dalala? +2a3a? — 6a3al — 6a3a? — 6aad + 6ag + 4atal + 4a?a? + 4atad + 2a — 8ai (a)?b1 —
2a3aibl —2aiaibl —4atalaibl +6a3aibl+6atadbl —6a3bl —4ataibi —4ala?bl+2alal(bi)? —6aial(bl)?+6a(b1)?+
4alal(b})? —6ad(b})3 —2aialb? +6aaib? —6a2b? —datalb? +12aibib? —6aib3 —4(at)?albl +4a3aibl +4ada3bl —
4a3bl — 2alaibl — 8alalbibl + 8a3bibl — 12a3(b])?b3 + 8alb?bl + 4adald3 — 4a3b3 + 8albibd — 4alb3 — 2aalb) —
2aia3b} +3(al)?aibi +2a3albl +2aladalbl + 2ata2bl +4atalblbl —2alalblvl + al(b1)?b) — aib?bl —2(ai)?bibi +
2a3b3by —4adbibibi —6(b1)2bibi +4b3bibs +2a5b3by +4b1b3b; — 20301 —2a3 (b)) +4aibi (b})? — 2aiaib) +2aiaib —
aibibi + 2adbib3 + 4bibib: — 20203 — 4aibib3 + ajbi — 2b3b3 + 6alald? + 4atatb? + 4aZb? — 4aibib? + 2b1bibE —
20302 + 4albd — 2163 — 2a3bt + 2a3bibt — 2ad (b1)2b1 — 2(b1)3bE + 2adb2bE + 4b1030L — 2b3bL — 2a3b2 + 2aibib2 +
2(b})%b2 — 20302 — 2alb3 — 2b1b3 + 2b% +4a3by — 4atbibl +4ai (b1)?bL — 4aib?bl +4a3bi — 4aibib? +4albi +6b3) /8,

and

Ds = (—60alal +18al,al + 14atzal + 12al,a} + 6alyal — 6a3 + 6ai,at + 10at;a} + 6atat + 4atal — 18atad —
12a3bl, + 3albly + 8albly +4atbly +9aibly + 44albl, +40albl, — 40aib} — 4aly b — 1061, b3 — 661563 — 30aib) +
dalybt — GbLobl — 2bLobE 4+ 1061 b — 1252 — 18albl — 2albl — Galbl — GbibL + Galbl + dalbl — 26161 + 60alabe +
30a%c + 30aibic + 60b2c)m/48.

As before (in the case b # 0) fs(r) can have two positive real zeros in I, because the coefficients of the
averaging function of order 6, D1, Ds and Dj, are linearly independent functions, and then we can apply the
Descartes Theorem 4. So applying the averaging theory of order 6 we can detect at most two small limit cycles
bifurcating from the center at the origin and this number can be reached.

Solving D; for b, Ds for bl and Dj for b2, we can apply the averaging theory of seventh order and the
averaging function of order seven is

f~7(7") = T(El + E3T2 + E5T4 + E7’I”6),
where
E; = (—15a}, — 3al; — 10bt, — 12b, 4 15a}, ¢ + 35al 3¢ + 10bl ¢ + 1400 ,¢) 7 /64.

again we do not provide the explicit expressions of Es and E5 because are very big. Under the hypothesis b = 0
and ¢ # 1/5 the averaging function of order 7 associated to system (13) has at most three positive real zeros,
becausethe coefficients of f(r) are linearly independent and we can apply the Descartes Theorem.

Thus we can detect through the averaging method of order seven that at most 3 limit cycles can bifurcate
from the origin of (4) with e = 0. S o the statement (d) is proved when b =0 and ¢ # 1/5.

3.3. Case b =0, ¢=1/5. In this case the averaging function of fifth order f5(r) is
fs(r) = r(Cy + Car?).

The averaging function fg,(r) can have only at most 1 positive real zero in 1. We detect through the averaging
method of fifth order that at most 1 limit cycle can bifurcate from the origin of system (2) with ¢ = 0.

Solving C; for b3 and C3 for b3. We can apply the averaging method of sixth order. The averaging function
of order six is

fG(T) = T(Dl + ﬁg’l‘2 + D5T4),

where Dy = Ds + (al + 20%)(2(ad)?al + 2a2al + 2a3a2 + 2a2 + (a})?(2at — 3b}) — (b1)2b} + b3} + b1b3 — b3 +
2a3(aj — by — bt) + ai(2ala} + a — 2ajbl + 4bjbl — 2b3 — 2albi + 2b1b — 4b2))7/8,

and
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Ds = —(24aial — 9ai,a} — Talzad + Salgal — alqal — 3a14a4 6asa; — 3ai,a} — Salsat — 3a6a7 2atai +
9aiad + 6aibl, — 6aibl + 2aibl, — 4aibl, — 2albl, — 22aibl, — 20aibl, + 20aibl + 2al,b8 + 5bi 6L + 3b1,b3 +
12a1b} — 2ai;b} + 3bi bk + biybl — 5b1, b1 +22ad bl +4a%2bg 76@41); —12a3b} — 12b1bk + 701, b} +9b%3bé +9aibg +
atbl + 3aibt 4 3bibt — 3aiby — 2aibl + bib)m/24.

As for the previous cases (b # 0, and b = 0 with ¢ 7& 1/5) the averaging function of sixth order fs(r) can
have two real positive zeros in I, because D1, D3 and Ds are linearly independent functions and we can apply
Descartes Theorem 4. Therefore, through the averaging theory of order 6 we can detect that at most two small

limit cycles bifurcating from the center at the origin and this number can be reached. So statement (c) is proved
in the case b =0 and ¢ = 1/5.

Solving D; for bS, Dy for bs and Dy for b%, we can apply the averaging theory of seven order and the averaging
function is

f?(T) =r(E + Esr? + Esrt + E7T6)’
where

By = (af + b])m,

By = —(1/16)(3a}; — als + 2b}, — 4b})7.

we do not provide the explicit expressions of E5 and Fs because they are very long. Thus f7(r) can have
three positive real roots in I since the coefficients of f7(T) are linearly independent and we can apply Descartes
Theorem. So, applying the averaging theory of order 7 we can detect that at most three small limit cycles
can bifurcate from the center at the origin and this number can be reached. This prove the statement (d) in
Theorem 1.

In summary, for the averaging theory of order 1 and 2 we can not detect the existence of small limit cycles
bifurcating from the center at the origin. For the averaging theory of order 3 and 4 we can detect that at most
one small limit cycle bifurcating from the origin of system (4) with ¢ = 0. For the averaging theory of order 5
and 6 we can detect at most two small limit cycles bifurcating from the center at the origin and this number
can be reached. Finally for order seven we detect trough the averaging theory at most three limit cycles. This
complete the proof of Theorem 1.
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APPENDIX A. AVERAGING FUNCTIONS

We present explicitly the averaging function until order 7.

yl(tvz) =
y2(t72) =
y3(t72) =

ya(t, z) =

y5(t7 Z) =

Ye (t’ Z)

y?(tv Z) =

fot Fi(s,¢(s,2))ds,

fot 2F5(s,¢(s,2)) + 20F1 (s, o(s, 2))y1 (s, z))ds,

i (6Fals, (5. ) + 60Fa(s, (s, 2D (. 2)

+302F1 (s, (8, 2))y1(s, 2)2 + 30F1 (s, (s, 2)) ya(s, z))ds,

fg (24F4(s, ©(s,2)) + 240F5(s, (s, 2))y1(s, 2)
+120%F (s, (s, 2))y1 (8, 2)* + 120F(s, (s, 2))y2(s, 2)
+1202Fy (s, (s, 2))y1(s, 2)ya(s, 2)

+403Fy (s, 0(s, 2))y1(s, 2)3 + 40F (s, o(s, 2))ys (s, z))ds7

fg (120F5(s, ©(s,2)) + 1200F, (s, ¢(s, 2))y1 (s, 2)

+6002 F3(s, (s, 2))y1(s, 2)? + 600F3(s, (s, 2))y2(s, 2)
+6082F2(57 90(57 Z))yl(s, Z)Z/Q(Sv Z) + 2083F2(57 90(57 Z))yl (57 2)3
+208F2(8’ 50(3’ z))y3(s, Z) + 2082Fl (3’ 90(3’ Z))y1(57 z)y3(s, Z)
+1562F1(57 90(57 Z))yQ(S, Z)2 + 3083F1(S, 90(5’ Z))yl(sv Z)2y2(37 Z)
+50Fy (s, ¢(8,2))y1(s, 2)* + BOF1 (s, p(s, 2))ya(s, z))ds,

— Jo (720F5(s, (5, 2)) + T200F5 (s, o5, ) (5, 2)

+36002Fy (s, (s, 2))y1(s, 2)% + 3600 F4 (s, o(s, 2))ya(s, 2)

+12003 F3(s, o(s, 2))y1(s, 2)% + 36002 F3(s, (s, 2))y1 (s, 2)y2(s, 2)
+1200F5(s, o(s, 2))ys(s, 2) +3064F2(s o(s,2))y1(s,2)*
+18003 Fy (s, o(s, 2))y1(s, 2)%ya(s, 2) + 12002 Fy (s, (s, 2))y1 (s, 2)ys(s, 2)
+900%Fa (s, (s, 2))y2(s, 2)? + 300F (s, (s, 2))ya(s, 2)

+600* Fy (s, (s, 2))y1 (s, 2)3ya(s, 2) + 600> Fy (s, 0(s, 2))y1 (s, 2)%y3(s, 2)
+9083F1 (5’ 90(5’ Z))y (8 Z)yZ(Sv Z)Q + 3082Fl (5’ 90(5’ Z))yl(57 Z)y4(57 Z)
+600%Fy (s, p(s, 2))y2(s, 2)y3(s, 2) + 605 Fy (s, (s, 2))yi (s, 2)°

+60F1 (s, (s, 2))ys(s, z))ds

fg (5040 F (s, (s,2)) + 50400 F¢(s, ¢ (s, 2))y1 (s, 2)

+25200 F5 (s, (s, 2))y1(s, 2) + 25200 F5 (s, ¢(s, 2))ya(s, 2)
+252002 Fy (s, (s, 2))y1(s, 2)ya(s, 2) + 84003 Fy(s, ¢(s, 2))y1 (s, 2)3
+8400Fy (s, ¢(s,2))ys(s, 2) + 84002 F3(s, ¢ (s, 2))y1(s, 2)ys(s, 2)

+63002 F3(s, (s, 2))ya2(s, 2)? + 126003 F3(s, ¢(s, 2))y1 (s, 2)*ya(s, 2)
+2100*F3(s, (s, 2))y1(s, 2)* + 2100 F5(s, (s, 2))ya(s, 2)

+21002 Fy (s, (s, 2))y1(s, 2)ya(s, 2) + 4200° Fo (s, o(s, 2))y1 (s, 2)%y3(s, 2)
+42004 Fy (s, (s, 2))y1(s, 2)3y2(s, 2) + 63003 Fy(s, (s, 2))y2(s, 2)?y1 (s, 2)
+420° Fy (s, (s, 2))y1 (s, 2)° + 4200% Fa (s, (s, 2))y2(s, 2)y3(s, 2)
+428F2(s, (s, 2))ys(s, 2) + 63003 Fa(s, o(s, 2))ya(s, 2)%y1 (s, 2)

+T70°Fy (s, ¢(8,2))y1(s,2)8 + 10505 F1 (s, ¢(s, 2))y1(s, 2)*ya(s, 2)

+1400% Fy (s, ¢(s, 2))y1 (s, 2)°ys (s, 2) + 6300 F1 (s, 0(s, 2))y (s, 2)*va (s, 2)?

(s,
+10503Fy (s, (s, 2))y (s,z) ya(s, z) + 4202 F1 (s, ¢(s, 2))y1(s, 2)ys(s, 2)
+42003Fy (s, (s, 2))y (s,z)yg(s 2)ys(s, 2)
+10503Fy (s, ¢(s,2))y (s,z) + 10502 Fy (s, (s, 2))ya(s, z)y4(s z)
+700%Fy (s, p(s, 2))ya(s, 2)2 + TOF1 (s, ¢(s, 2))ys (s, ))

11
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