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Resum

Els recursos h́ıdrics són un dels assumptes ambientals més importants degut a la vulner-

abilitat de l’aigua a ser contaminada i el seu efecte directe en la salut humana. La millora

de la seva gestió depèn en gran mesura del tractament d’aigües residuals. Per aquest motiu,

hi ha estrictes ĺımits de contaminació establerts per l’efluent de les estacions depuradores

d’aigües residuals (EDAR), el qual és abocat en rierols o altres aigües receptores. Amb la

finalitat de millorar la qualitat del tractament, complir les normes imposades per les autoritats

i mantenir un baix cost de les operacions, s’apliquen estratègies de control en aquestes estacions.

Aquest projecte presenta un sistema de control basat en controladors per model intern

(IMC) que empren xarxes neuronals artificials (ANN), com alternativa a l’estratègia de control

per defecte del Benchmark Simulation Model no. 1 (BSM1), un marc que emula el comporta-

ment d’una EDAR de propòsit general que utilitza controladors proporcionals integrals (PI).

Amb el mètode de control proposat, el comportament real de l’estació es modela amb només

les dades de l’influent i de l’efluent per tenir sota control les concentracions d’oxigen dissolt i de

nitrat i nitrit de nitrogen, oferint també un millor rendiment en termes de la integral de l’error

absolut (IAE) i de la integral de l’error quadràtic (ISE) respecte als controladors per defecte.

Resumen

Los recursos h́ıdricos son uno de los asuntos ambientales más importantes debido a la

vulnerabilidad del agua a ser contaminada y su efecto directo en la salud humana. La mejora de

su gestión depende en gran medida del tratamiento de aguas residuales. Por este motivo, hay

estrictos ĺımites de contaminación establecidos para el efluente de las estaciones depuradoras

de aguas residuales (EDAR), el cual es vertido en arroyos u otras aguas receptoras. Con el

fin de mejorar la calidad del tratamiento, cumplir las normas impuestas por las autoridades

y mantener un bajo costo de las operaciones, se aplican estrategias de control en estas estaciones.

Este proyecto presenta un sistema de control basado en controladores por modelo in-

terno (IMC) que emplean redes neuronales artificiales (ANN), como alternativa a la estrategia

de control por defecto del Benchmark Simulation Model no. 1 (BSM1), un marco que emula el

comportamiento de una EDAR de propósito general que utiliza controladores proporcionales

integrales (PI). Con el método de control propuesto, el comportamiento real de la estación se

modela con sólo los datos del influente y del efluente para tener bajo control las concentraciones

de ox́ıgeno disuelto y de nitrato y nitrito de nitrógeno, ofreciendo también un mejor rendimiento

en términos de la integral del error absoluto (IAE) y de la integral del error cuadrático (ISE)

con respecto a los controladores por defecto.
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Abstract

Water resources are one of the most important environmental issues due to the vulnera-

bility of water to contamination and its direct e↵ect on human health. Improving their

management depends largely on the treatment of wastewater. For that reason, there are

strict pollution limits set for the e✏uent of wastewater treatment plants (WWTPs), which is

discharged into streams or other receiving waters. In order to improve the treatment quality,

meet the standards imposed by authorities and to maintain low cost of operations, control

strategies are implemented in these plants.

This project presents a control system based on internal model controllers (IMCs) adopting

artificial neural networks (ANNs), as an alternative to the default control strategy of the

Benchmark Simulation Model no. 1 (BSM1), a framework emulating the behavior of a general

purpose WWTP that uses proportional integral (PI) controllers. With the proposed control

approach, the real plant behavior is modeled with only influent and e✏uent data to take under

control the dissolved oxygen and nitrate and nitrite nitrogen concentrations, also o↵ering a

better performance in terms of integral absolute error (IAE) and integral square error (ISE)

with respect to the default controllers.
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Chapter 1

Introduction

Nowadays, the population growth along with the increase of industrial activity or the expansion

of residential areas among others, has turned the environmental contamination into a serious

threat. On the one hand, one of the most notable phenomena directly related to environmental

pollution is the climate change and all its derivatives, such as rising temperatures, extreme

weather events, shifting wildlife populations and habitats, rising seas, and a range of other

impacts [Cli]. On the other hand, pollution not only has environmental consequences, but also

e↵ects on human health potentially leading to illnesses. That is why all actions and measures

that contribute to stopping the problem of environmental contamination are welcomed.

Among the possible means of contamination such as air, soil, and water, the last-mentioned

can result in human health problems. This is motivated due to its capacity to transmit dangerous

diseases such as cholera and typhoid. Other e↵ects are related to ecosystem damages produced

by an excess of nutrients. They fuel algae blooms creating low-oxygen areas, which in turn can

a↵ect the aquatic life [Nun20].

There are many things people can do to contribute to the global matter of contamination,

which concerns everybody. An important one consists in the reduction of the pollutant concen-

trations present in wastewater, and thus preserve the natural resources and environments where

treated water is discharged.

Wastewater treatment plants (WWTPs) are industries devoted to treating wastewater and

remove contaminants by means of highly complex and non-linear processes. They convert the

wastewater into an e✏uent that can be returned to the water cycle (discharged into streams or

other receiving waters) with minimum impact on the environment, or directly reused. This set

of mechanical (physical), biological, and chemical operations done to clean wastewater allows to

see WWTPs as large non-linear systems.

1
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Moreover, since water’s pollutant products are harmful to the environment at high con-

centrations, the treated water, which has passed through pollutant reduction processes (also

generating high-pollutant products), must meet the standards imposed by authorities to ensure

a certain quality. For instance, the European Directive 91/271 “Urban wastewater” [Com91]

established by the European Union is a legal requirement that penalize the violation of the

pollution e✏uent limits by means of high economic punishments to the WWTP.

For what supposes to overcome the established limits, both for fines to WWTPs and for

environmental problems, control strategies have been developed to maintain the pollutants under

said limits.

Figure 1.1: Satellite view of the WWTP of Montcada i Reixac.

On the other side, artificial intelligence (AI) has evolved until such point that this area of

computer science, solves many di↵erent types of everyday problems that are hard to tackle by

human beings but relatively straightforward for computers [Goo16].

Artificial neural networks (ANNs) are one of the many methods embraced by AI that can

model complex and non-linear systems, such as those performed in a WWTP, considering only

the plant’s influent and e✏uent data. This feature of ANNs is the key point of this project

together with the structure of internal model controllers (IMCs), which are built upon a rep-

resentation of the process under control and its inverse. The potential of ANNs to generate

accurate mathematical models of high-complexity processes gives the possibility to present a

new control approach based on IMC controllers adopting ANNs with excellent performance

[Pis19a].
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In the present dissertation two ANN-IMC controllers will be designed using long short-term

memory (LSTM) networks (a type of ANN) to track two important WWTP concentrations: the

first one devoted to controlling the dissolved oxygen, and the second one devoted to controlling

the nitrate and nitrite nitrogen. Both controllers will be implemented in a simulation scenario

replicating the WWTP’s real behavior: the Benchmark Simulation Model no. 1 (BSM1). Their

performance will be determined by the integral absolute error (IAE), and the integral square

error (ISE) metrics, which will also be used to compare the proposed controllers with those

implemented by default in the BSM1 of proportional integral (PI) type. Finally, the separately

created controllers will be merged to have a WWTP scenario exclusively managed with ANNs.

The necessary tools for the development of this work are listed below. Its use throughout

the project will be specified in detail in the organization of the thesis.

• MATLAB: it is a general, high-performance language for technical com-

puting [MAT]. Besides, the add-on software product Simulink will be used

to work with the BSM1.

• Python: it is a widely used high-level, general-purpose, interpreted, dy-

namic programming language [Pyt]. Specifically, the TensorFlow library

will be used together with Keras, which is a high-level neural networks

application programming interface (API) [Ker]. This last library is more

user-friendly and easier to use as compared to TensorFlow [Nai17].

1.1 Motivation and Objectives

WWTP are industries focused on minimizing pollutant concentrations of residual urban waters

and can therefore be considered as a mitigation measure of the environmental pollution, one

of the most serious global challenges because of all the consequences it entails, some of the

more remarkable presented in the introduction. For this reason, these plants must operate

continuously, fulfilling the increasingly strict regulations.

Control strategies are employed to support the pollutants removal tasks, which perform

highly complex biological and biochemical processes, in order to improve the treated water qual-

ity, meet the standards imposed by authorities and to decrease the costs of operation [Con13].

There are many control strategies that have been proposed with the aim of reducing the pollu-

tant levels, so it is interesting to further suggest new control approaches that improve current

solutions, which in turn lower economical costs of WWTPs and environmental contamination.

In addition, the present dissertation proposes the deployment of controllers built with ANNs,

a feature that makes these systems more attractive for several reasons. The first and most

obvious is that, as stated in the introduction, they can o↵er better performance than at least
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the controllers installed by default on the BSM1, resulting in enhanced e✏uent quality at lower

costs.

Furthermore, ANNs can model the direct and inverse processes of non-linear systems such

as WWTPs, also dealing with the shortcoming of the standard IMC for processes that are not

fully invertible for presenting non-linearities that are non-invertible. Besides, it is a drawback

to acquire the mathematical models for the direct and inverse processes.

Another valuable benefit of working with ANNs is that they are data-driven methods, which

means that they can define a model of a WWTP with only the plant’s influent and e✏uent

data, making ANN-IMC controllers a low-cost alternative to expensive hardware, and without

needing any knowledge about the process behavior. This last fact motivates the adoption of

ANNs in this kind of industries. At the same time, it becomes more interesting along with the

term of big data [O’L13]. This ingredient, together with the current computing power, are the

core of deep learning and ANNs because their models improve with the amount of data. A good

analogy is that the rocket engine is the deep learning models and the fuel is the huge amounts

of data we can feed to these algorithms [Ng15].

In summary, the main contribution of this work, driven by the basic motivation explained

above, can be broken down into the following objectives:

• Design of an IMC controller based on ANNs to enhance the default control of the dissolved

oxygen of the fifth reactor tank (SO,5): achieve better IAE and ISE values than the BSM1

PI controller of the SO,5.

• Design of an IMC controller based on ANNs to enhance the default control of the nitrate

and nitrite nitrogen of the second reactor tank (SNO,2): achieve better IAE and ISE values

than the BSM1 PI controller of the SNO,2.

• Establishment of a control system exclusively using IMC controllers based on ANNs to

enhance the default control strategy: achieve better IAE and ISE values than the BSM1

PI controllers.

The next section describes the organization of this dissertation, and as will be seen, each of

the above lines is dedicated to an individual section of Chapter 4.

1.2 Thesis Outline

After an initial introduction to control systems based on ANNs in the context of WWTPs, as

well as the motivation and objective surrounding this project, the present section provides an

outline of the dissertation. The topics covered are depicted in the diagram of Figure 1.2.
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Figure 1.2: Diagram of the thesis outline.

Chapter 2

The next chapter will provide a brief description of the state-of-the-art, together with the

theoretical concepts necessary for the elaboration and comprehension of this work. For this

purpose, first the most innovative strategies for WWTP control will be discussed. After that,

the concepts related to the working scenario and the control strategy of this project will be

outlined. In summary, this last part will comprise an introduction to BSM1 and the fundamentals

of the two key elements of the proposed control strategy: IMC controllers and ANNs (LSTM

structures).

Chapter 3

In this chapter, a practical view of the cycle for designing neural networks will be provided.

This workflow will be oriented to the ANNs that will form the IMCs of the next chapter. As

shown in Figure 1.2, a total of four networks will be created to implement the two controllers.

For the sake of brevity, this episode attempts to deepen in the part of the design of these ANNs,

so that it can be extrapolated in Chapter 4, which will concentrate mainly on their configuration

and implementation in the BSM1.

Following the schematic of Figure 1.2, it will be seen how the manipulated variables are

generated and filtered to obtain raw data. Then, the preprocessing applied to the collected and
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analyzed data will be presented. This first part, as can be observed in the diagram of the thesis

organization, will be carried out mainly in MATLAB and Simulink, although the analysis and

preprocessing of the data will be done with Python for convenience. When the data is ready

to be used, it will be shown how the networks that form the controller are built, again using

Python.

Chapter 4

This chapter focuses on the design of the two ANN-IMC controllers and their establishment

in the BSM1 framework. The first one is designed in Section 4.1 and is devoted to control

the SO,5. Its construction is made up of multiple stages, the main ones shown in Figure 1.2.

Once the ANNs are built following the steps of Chapter 3, the parameters that define the ANN

architectures (weights and biases), along with the means and variances, will be exported so that

the networks can be implemented in the environment in which the BSM1 is provided: MATLAB

and Simulink. Finally, all that will remain is to put together these pieces created separately,

which form this innovative IMC concept, in order to improve the default SO,5 monitoring of the

BSM1.

The second controller, in charge of track the SNO,2, is developed in Section 4.2. Here, the

problem addressed is similar to the one of Section 4.1 in terms of procedure. However, this

challenge is completely di↵erent in terms of design, since as it will be seen, the process to be

controlled in this case is totally di↵erent from the one of the SO,5. This implies starting from

scratch in the searching for the best configuration of the networks and the most appropriate

data to model the direct and inverse processes that conform an SNO,2 ANN-IMC controller.

Therefore, greater results than those initially reported by the simulation benchmark will be

obtained.

Before specifying the overall conclusions and possible topics for future research in Chapter

5, Section 4.3 takes the two controllers created independently in the preceding sections to join

them in the same simulation framework, and achieve an enhanced control, uniquely from data,

of a scenario that replicates the behavior of a general purpose WWTP.



Chapter 2

Overview of the Working Scenario

and the ANN-IMC Control

Approach

The aim of this chapter is to provide an overview of the most advanced developments in con-

trollers for industrial applications, and to cover the necessary theoretical aspects to fulfill with

the goals of this dissertation. To this end, Section 2.1 presents the most recent stage in the

history of controllers applied in factories such as wastewater treatment plants (WWTPs), also

incorporating the newest ideas and features. Section 2.2 introduces the working scenario with

an explanation of the main components of its layout that emulate a WWTP, emphasizing on its

control strategy and the criteria that will be used to determine the yield of the diverse control

strategies. The structure of the internal model controllers (IMCs) considered in this disserta-

tion as well as its fundamentals are presented in Section 2.3. Finally, in Section 2.4, basics of

deep learning are exposed from a general view such as artificial intelligence (AI), to a specific

view such as long short-term memory (LSTM) structures (the type of artificial neural networks

(ANNs) that will be used in the subsequent chapters).

2.1 Control Trends in the WWTP Industry

Over the last few years, the field of artificial intelligence has progressed spectacularly due to the

repercussions of the increasing big data in conjunction with the current computing power. This

makes the state-of-the-art of this technology di�cult to define, as in a short period of time it

has shown a great development. Specifically, this study is focused on deep learning and artificial

neural networks, which is one of the subsets of AI that is generating more interest because of

7
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its capacity to get closer to human perceptive power.

From the control point of view, the Benchmark Simulation Models no. 1 and 2 (BSM1 and

BSM2) representing general purpose WWTP architectures, implement default control strategies

based on proportional integral (PI) controllers to maintain the dissolved oxygen (SO), and the

nitrate and nitrite nitrogen (SNO) concentrations of certain reactor tanks by modifying the

oxygen transfer coe�cient (KLa), and the internal recirculation flow rate (Qintr), respectively

[Ale08, Jep07]. The BSM1 scenario is the starting point of this thesis since, as mentioned in

the introduction, all its objectives turn around implementing a control strategy based on neural

networks that enhances the operation of the BSM1 controllers.

Another use of this technology in the context of this work that should be highlighted is the

adoption of the ANN-based internal model control strategy in [Pis19a]. Here, the proposed con-

trol strategy is deployed over the BSM1 framework to control the concentration of the dissolved

oxygen in the fifth reactor tank (SO,5) with multilayer perceptron (MLP) neural networks. This

paper can be considered as the precursor of the present dissertation. However, the results of

this research will be improved by adopting another kind of ANNs that are highly advisable for

time series problems: long short-term memory (LSTM) networks. Moreover, this work will go

further by proposing an ANN-IMC version of the other BSM1 controller (devoted to tracking

the concentration of the nitrate and nitrite nitrogen of the second reactor tank (SNO,2)), and

bringing the two new structures together in a single simulation scenario.

In addition, other control approaches improving the default strategy of BSM1 and BSM2

such as model predictive (MPC) or fuzzy logic (FL) controllers are shown in [She08, Bar18]. Nev-

ertheless, the design of these methods is more complex than the straightforward IMC schematic

implemented in this dissertation, which is just based on available measured data. At the same

time, the proposed approach exploits the benefit of ANNs when modeling complex non-linear

functions.

Finally, there are further applications outside the WWTP industry where ANNs have been

used in the IMC implementation to control di↵erent processes such as the light of an o�ce or

the movement of a vehicle [Kan18, Wan18]. Nevertheless, these works also adopt feedforward

neural networks (FFNNs) instead of recurrent neural networks (RNNs) like LSTMs to design

the ANN-IMC control approach.

In short, the strategy implemented in this project replaces the main components of the

traditional IMC schematic, i.e., the model of the process under control and its inverse, by

LSTM neural networks. Here, the IMC concept based on this kind of networks is implemented

in WWTPs, although it is not limited to be applied in other areas where predictive controllers

are required and there is temporal dependence on the available data.
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2.2 Benchmark Simulation Model no. 1 (BSM1)

The Benchmark Simulation Model no. 1 is a simulation scenario undertaken in Europe from

1998 to 2004 by Working Groups of COST (European Cooperation in Science and Tech-

nology) Action 682 and 624 (Alex et al., 1999) [Ale99], and now continued under the um-

brella of the IWA (International Water Association) Task Group on Bechmarking of Control

Strategies for WWTPs [Cop02]. This “simulation benchmark” replicates the WWTP’s real

behavior implementing the Activated Sludge Model no. 1 (ASM1) as the biological process

model (Henze et al., 1987) [Hen87]. It is available for free on the Lund University’s website:

https://www.iea.lth.se/WWTmodels_download/.

The activated sludge is a process dealing with the treatment of sewage and industrial wastew-

ater. Its aim is to achieve, at minimum costs, a su�ciently low concentration of biodegradable

matter in the e✏uent together with minimal sludge production. To do this, the process must be

controlled. In the case of BSM1, it considers a default controller strategy based on PI controllers

for this purpose [Ale08]. However, many control strategies can be proposed.

Without a standardized protocol, comparison of di↵erent control strategies, either practical

or based on simulation, is di�cult due to several reasons, including:

• The variability of the influent.

• The complexity of the biological and biochemical phenomena.

• The large range of time constants (varying from a few minutes to several days).

• The lack of standard evaluation criteria (among other things, due to region specific e✏uent

requirements and cost levels).

In order to deal with these di↵erences, this simulation environment was developed as a tool

for evaluating activated sludge wastewater treatment control strategies; as a “benchmark” from

which to judge and compare the performance of the di↵erent control strategies.

Although in this work the BSM1 will be used as the working scenario for the sake of simplicity,

two other later benchmarks versions with additional features are available:

• BSM1: relatively simple, it combines nitrification with predenitrification, which is most

commonly used for nitrogen removal. The control strategies are evaluated over periods of

14 days, with di↵erent weather conditions [Ale08].

• BSM1LT: it is based on BSM1, but with a longer evaluation period (609 days). Faults

(toxic events, problems on sensors and actuators) can occur.
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• BSM2: the BSM2 layout includes BSM1 for the biological treatment of the wastewater.

The sludge treatment is taken into account [Jep07].

As stated above, the BSM1 will be the working scenario. Considering that this project

will seek an ANN-based alternative to the default control strategy, the simulator will play an

important role. It will be used first in the data generation (influent and e✏uent measurements

will be required to train the neural networks), and then to test the control approach based on

IMC adopting ANNs once it is implemented.

Regarding some general characteristics, its influent dynamics are defined by means of files

for three di↵erent weather conditions: dry weather, rain weather (a combination of dry weather

and a long rain period) and storm weather (a combination of dry weather with two storm

events). Each one contains 14 days of influent data with sampling intervals of 15 minutes. For

initialization, a 100-day period of stabilization in closed-loop using constant inputs (average

dry weather flow rate and flow-weighted average influent concentrations) with no noise on the

measurements has to be completed before using the dry weather file (14 days) followed by the

weather file to be tested [Ale08].

2.2.1 Plant Layout

The first plant layout (BSM1), modeling the water line of a WWTP, is composed of five reactor

tanks where the biological and biochemical processes defined in ASM1 are performed. The first

two reactor tanks are anoxic tanks, which means they are working in anoxic conditions (with a

lack of oxygen), while the next three tanks are aerobic tanks, which means they are working under

aerobic conditions (with large amount of oxygen) [Ger14]. Thus, the plant combines nitrification

with predenitrification in a configuration that is commonly used for achieving biological nitrogen

removal in full-scale plants [Con13].

After that, the activated sludge reactor is in series with a secondary settling tank, which

is responsible for separating the activated sludge solids from the mixed liquid. This secondary

clarifier is modeled as a 10-layer non-reactive unit (no biological reaction) wherein the 6th layer

(counting from bottom to top) is the feed layer [Ale08].

Finally, a basic control strategy with two control loops is proposed to test the benchmark:

1. Control loop #1: involves controlling the dissolved oxygen (DO) level in the last aerobic

compartment (the fifth tank) by manipulation of the oxygen transfer coe�cient.

2. Control loop #2: involves controlling the nitrate level in the last anoxic compartment

(the second tank) by manipulation of the internal recycle flow rate.

Figure 2.1 shows a general overview of the layout.
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Figure 2.1: General overview of the BSM1 plant.

In terms of flow rates, this plant is designed for an average influent dry weather flow rate

of 18446 m3/day, a volume of 1000 m3 for each anoxic tank, a volume of 1333 m3 for each

aerated tank, and a volume of 6000 m3 for the non-reactive secondary settler. It means that

the hydraulic retention time (based on average dry weather flow rate and total tank volume,

i.e., biological reactor + secondary clarifier, of 12000 m3) is 14.4 hours. Finally, the main flows

are: the influent flow rate (Qin), the internal recirculation flow rate (Qintr) (understood as the

quantity of aerated flow going from the fifth tank to the first one), the external recirculation

flow rate (Qr), and the WWTP’s e✏uent flow rate (Qe).

This same plant layout is represented in Simulink by the system in the figure below, where

the main parts that make up the plant can be easily identified [Ale08].

Figure 2.2: Interface layout of the BSM1 plant in Simulink.
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2.2.2 Default Control Strategy

In order to enhance the water treatment process, and therefore to make it more e�cient and

cost-e↵ective, control loops are implemented in WWTPs to manipulate di↵erent variables of

the system. A better operation of the control loops means better e✏uent quality at a lower

cost. By default, the control strategy of the BSM1 is based on two feedback loops defined in

terms of proportional integral (PI) controllers. As stated in the previous subsection, the first

one is devoted to controlling the dissolved oxygen in the fifth thank (SO,5) by using the oxygen

transfer coe�cient of the fifth tank (KLa5) as control handle, while the second one is devoted to

controlling the nitrate of the second tank (SNO,2) by using the internal recirculation flow rate

(Qintr) as control handle. In other words, the first controller varies the KLa5 concentration to

maintain the SO,5 at a certain set point, while the second one varies the Qintr to maintain the

SNO,2 at a certain set point.

PI controllers are by far the most used controllers in industry because of their simplicity

and good trade-o↵ between performance and robustness [Men16]. Only the two parameters that

give the name to the controller need to be adjusted in the so-called controller tuning stage: the

proportional gain (Kp) and the integral gain (Ti). The value of the controller output, which is

fed into the system as the control handle or manipulated variable (u(t)), is computed as follows:

u(t) = Kp

✓
e(t) +

1

Ti

Z t

0
e(⌧)d⌧

◆
(2.1)

where e(t) represents the feedback error: e(t) = r(t)�y(t), y(t) being the controlled variable and

r(t) its desired value or set point. Then, the e↵ort of control strategies is dedicated to achieving

a controlled variable as similar as possible to the set point by means of the manipulated variable.

For a better understanding, Figure 2.3 shows the PI-based control loops of the control strategy

predefined within the BSM1 scenario.

Figure 2.3: PI controller structures for SO,5 (left) and SNO,2 (right).

This is how the the first and second control loops keep the dissolved oxygen and nitrate con-

centrations in the fifth and second tanks at a predetermined level. It is achieved by manipulating

the oxygen transfer coe�cient and the internal recycle flow rate respectively, by means of the PI

controller (C 0). A sensor is used to measure the controlled variable and provide feedback to the

control system. The BSM1 framework gives the possibility to measure the controlled variables

by means of sensors with or without noise [Ale08]. For this work, ideal sensors will be adopted
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(the scenario with noise is out of the scope of this thesis). Once measured the concentration,

the di↵erence between the controlled variable and the set point (the feedback error) is used by

the controller to determine the manipulated variable to drive the real process (P ). Said process

represents the fifth tank for the first control loop, and the first and second tanks (among others)

for the second control loop. The Kp and Ti parameters must be fixed for each one of the control

loops.

Finally, as it was done for the plant layout, the design of the PI controllers in Simulink is

shown in the figure below.

Figure 2.4: Interface layout of the PI controllers in Simulink for SO,5 (top) and SNO,2 (bottom).

2.2.3 System Performance Assessment

The performance assessment is made at a level concerning the control loops, evaluated by the

integral of the absolute error (IAE), and the integral of the squared error (ISE) criteria. These

two metrics quantify the e↵ect of the control strategy on the controller performance. Basically,

the results will serve as a proof that the proposed control strategy has been applied properly

and improves the functioning of the default version. In other words, the results will help to

determine how well each structure is tracking changes in the set point.

As stated earlier, the control strategies are simulated over periods of 14 days with di↵erent

weather conditions. However, BSM1 simulation protocol specifies that the period of observation
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for IAE and ISE is the second week or 7 last days for each weather file. Considering this

statement, the expressions of the two measurements that will be used to evaluate the performance

of the systems are the following:

IAE =

Z t=14days

t=7 days
|r(t)� y(t)|dt (2.2a)

ISE =

Z t=14days

t=7 days

�
r(t)� y(t)

�2
dt (2.2b)

The di↵erence between the controlled variable and the reference signal represents the control

error, and the integrals are evaluated over the time period of the second week. Both measures

require a fixed experiment to be performed on each system, i.e., a single set point to always

compare metrics and strategies from the same stage.

On the one hand, the IAE integrates the absolute error over time. This measure penalizes

the error linearly with the magnitude, without adding weight to any of the errors in a systems

response. Consequently, the smaller the IAE the better the tracking, being zero the ideal case.

On the other hand, the ISE integrates the square of the error over time. Unlike the IAE, this

metric penalizes large errors more than smaller ones (since the square of a large error will be

much bigger). Thus, high ISE indicates that the control system produces large errors, so values

close to zero are desirable.

2.3 Fundamentals of Internal Model Control (IMC)

As seen in the previous section, the operation of a WWTP is supported by control loops that

allow the manipulation of system variables like the dissolved oxygen and the nitrate of BSM1.

After a brief presentation of the basics of the BSM1 default feedback loops in Subsection 2.2.2,

the basics of the control strategy considered in this dissertation to improve the maintenance of

process variables, i.e., the IMC, are presented in this section.

In this work, the default PI controllers are changed by IMC controllers. The philosophy

of the latter relies on the internal model principle, which states that “control can be achieved

only if the control system encapsulates, either implicitly or explicitly, some representation of the

process to be controlled” [Gar82]. Particularly, if the control scheme is developed based on an

exact model of the process being controlled, then perfect control is theoretically possible. It

means that the performance of this kind of controllers depends directly on the process model

accuracy, so the e↵ort in Chapter 4 will be dedicated to designing the ANNs to model the

processes as precisely as possible. The standard IMC control system (controller and process

model) is depicted in Figure 2.5.



2.3. Fundamentals of Internal Model Control (IMC) 15

Figure 2.5: IMC controller structure.

On the one hand, P corresponds to the real process, Pm represents its model, P�1
m is the

inverse of Pm and F corresponds to a first-order filter. On the other hand, C 0 represents the

IMC controller itself. Finally, using the same nomenclature as earlier for PI controllers, r(t),

u(t), and y(t) corresponds to the reference, controller, and process output, while d(t), ym(t) and

y0(t) correspond to the perturbation, model output, and the di↵erence between the process and

model outputs (the estimated e↵ect of disturbance), respectively.

According to Figure 2.5, the operation of IMC systems is described by the expressions below:

y(t) = P
�
u(t) + d(t)

�
(2.3a) u(t) = C 0�r(t)� y0(t)

�
(2.3b)

where P (·) is the real process to control, y0(t) = y(t)� ym(t) is the e↵ect of disturbances and of

a mismatch of the model, being ym(t) = Pm
�
u(t)

�
, where Pm(·) is the model of the real process

to control. Lastly, the IMC controller behavior is described by the following equation:

C 0(·) = F
�
P�1
m (·)

�
(2.4)

where F (·) is a first order filter, in general a low-pass filter used to attenuate the e↵ects of

process-model mismatch [Gan13].

If the output of Pm and the output of P are the same, which means that Pm is exactly equal

to P (y0(t) = y(t) � ym(t) = 0), and there is no disturbance (d(t) = 0), the control system

behaves as if it was in open loop (perfect tracking):

y(t) = P
�
u(t)

�
= P

✓
F
⇣
P�1
m

�
r(t)

�⌘◆
= r(t) (2.5a)

u(t) = C 0�r(t)
�
= F

⇣
P�1
m

�
r(t)

�⌘
. (2.5b)
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Otherwise, if there is mismatch between P and Pm or if a disturbance acts on the system, the

feedback loop enters into play [Roj16]. In practice, this is the common situation: process-model

mismatch and unknown perturbations a↵ecting the system.

With the IMC controller concept that this project presents, unlike traditional IMC design

techniques, this approach does not require mathematical models defining Pm and its inverse

P�1
m . Instead, these processes are integrated into the IMC controller structure as artificial neural

network (ANN) models, in such a way that they mimic the processes’ behavior in an accurate

manner. As will be seen in the next section, ANNs are computational models based on the

structure and functions of biological neural networks. The model of the process being controlled

is emulated by an ANN built to map u(t) to ym(t) (ANNdir), and its inverse by another ANN

built to map r(t) � y0(t) to the input of F (ANNinv). As it will be seen in Chapter 3, these

ANN models used for controlling the process are constructed uniquely with data, which is an

advantage over the original PI controller. In the context of this work, perturbations (such as

the di↵erent weather conditions) will be included as part of the actual process, since the ANNs

will be constructed with this factor integrated into the data. Figure 2.6 presents the redesigned

IMC controller structure that will be employed in this dissertation.

Figure 2.6: ANN-IMC controller structure.

Here, ym(t) is computed as ym(t) = ANNdir

�
u(t)

�
and the IMC will be finally described as:

C 0(·) = F
�
ANNinv(·)

�
(2.6)

That is why this section opens the door to the next one, where it will be understood what

ANNs are, and which are the main steps for their design.

2.4 Fundamentals of Deep Learning

Before moving on to the content and results of this project, it is convenient to introduce certain

basic concepts of what deep learning is, what it can achieve, and how it works. This will enable

a better understanding of this thesis.
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First, it is important to take into account that deep learning is a subset of machine learning,

which in turn is a subset of artificial intelligence (AI) as it is shown in Figure 2.7.

Figure 2.7: A representation of the relationship between artificial intelligence, machine learning,
and deep learning.

Although deep learning is just a subset of AI, it is an important subset since their techniques

apply for many applications in current life such as the widespread deployment of practical speech

recognition, machine translation, self-driving cars, or image recognition among others.

Having seen how these three concepts are related, in order to understand deep learning, it

is suitable to start from the outer circle to the inner one as shown in Figure 2.7, i.e., from the

most general concept corresponding to AI to the interested one: deep learning.

In computer science, AI is the intelligence demonstrated by machines, in contrast to the

natural intelligence displayed by humans. Colloquially, the term ”artificial intelligence” is often

used to describe machines (or computers) that mimic ”cognitive” functions that humans asso-

ciate with the human mind, such as ”learning” and ”problem solving” [Rus10]. For this reason,

this field focuses on the e↵ort to automate intellectual tasks normally performed by humans

[Cho17].

Going deeper into this broad concept, machine learning is found as one of the several subfields

of AI. It is defined as the study of computer algorithms that improve automatically through

experience [Mit97]. The improvement is due to the ability of these computer algorithms to be

trained (rather than explicitly programmed) and learn from data. The training consists on the

process of modifying the internal parameters (or weights) of the algorithm for exposure to many

examples (or input/output pairs) relevant to a task. This will allow the trained algorithm to

determine the appropriate response to said task when receiving new inputs. For instance, if

a daily task like the handwritten digit recognition is desired to be automated, many examples

of handwritten digits by various people (as input) together with the values they represent (as

output), have to be presented to the machine learning algorithm. Then, it will be able to find

similar patterns to distinguish the variety of numbers [Tor18]. Similarly, and among many other

examples, some organizations have the capacity to predict changes in business with properly
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trained machine learning algorithms, giving the straightforward value of being able to predict

the future. Since machine learning algorithms learn from data, the amount and quality of

available data for building a model are important factors in how well the model learns from the

task (see Chapter 3). In fact, most machine learning involves transforming the data in some

sense [Zha20].

A machine learning model is the output of a machine learning algorithm run on data (or

trained) [Bro20]. This corresponds to a mathematical model or a parametric function which

can be modified because it has parameters for such a purpose. That is why the algorithm

can adapt the function to determine the relationship between its inputs and outputs. In other

words, the algorithm adjusts the model parameters in order to correct or refine this input output

relationship. Learning is thus the act of setting the model parameters in order to reduce the

model’s error, and the learning process is training because the algorithm is trained to match the

correct answer (the output) to every question o↵ered (the input). After training, when a model

is provided with an input, it will give an output based on the data with which it was trained.

For the sake of clarity, Figure 2.8 shows a diagram of how these concepts are related.

Figure 2.8: Diagram of a machine learning model.

In general, once we have the pertinent information, building a machine learning model in-

volves the training and testing phases, as it will be seen in more detail and in a more practical

view in Chapter 3.

Figure 2.9: Diagram of training and testing phases.
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In the training phase, the model is constructed adjusting its parameters to minimize errors

by means of a learning algorithm and using a dataset for this matter, i.e., the training dataset.

In the testing phase, the learned model is applied to new data (data not used in the training

phase), i.e., the testing dataset, to obtain its performance. The goal in building a model is to

have good operation in training, as well as in test data. Usually, an intermediate phase is carried

out with the so-called validation dataset before moving on to the testing phase. It is used to

determine when to stop training in order to avoid model overfitting: a problem that happens

when a model learns the detail and noise in the training data to the extent that it negatively

impacts the performance of the model on new data (the opposite of underfitting, which occurs

when a model can neither model the training data nor generalize to new data) [Bro19b].

Finally, the three main machine learning categories in accordance with the types of learning

problems are summarized:

• Supervised learning: when the target (or label), which is what the model is predicting,

is available (referred as having labeled data). The two main types of supervised learning

problems are classification (when the target is a class), and regression (when the target

is a numerical value). Some of the most popular algorithms in this category are linear

regression, decision trees, or neural networks.

• Unsupervised learning: when the target is unknown or unavailable (referred as having

unlabeled data). Two main problems that are often encountered are clustering (involves

finding groups in data), and density estimation (involves summarizing the distribution

of data). Some of the best-known algorithms in this category are K-means, or principal

component analysis (PCA).

• Reinforcement learning: when the model is implemented as an agent that operates in

an environment and must learn to operate using feedback [Sut18]. Some popular examples

of reinforcement learning algorithms include Q-learning, temporal-di↵erence learning, and

deep reinforcement learning.

As stated in the introduction, the development of the work will be undertaken with neural

networks. Besides, it will address supervised learning problems, so there will be input and

output data to train these networks.

Proceeding as planned in Figure 2.7, deep learning is found a subfield of machine learning,

so in both cases algorithms learn by analyzing data. However, deep learning is concerned with

algorithms inspired by the structure and function of the brain called artificial neural networks

(ANNs) [Bro19d].
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The biggest advantage of deep learning over other machine learning subfields is the scalability

[Ng15], which means that its large neural networks can deal with any amount of data, and in

a nutshell, this is translated into more accuracy. Because of that, the results o↵ered by large

neural networks tend to improve as they are trained with more data, unlike other machine

learning techniques which reach a plateau of performance, as represented in the figure below.

Figure 2.10: Chart representing how data science techniques scale with the amount of data.

As illustrated in Figure 2.11, an ANN consists of three or more layers: an input layer, one or

more hidden layers, and an output layer. The term “deep” refers to the number of hidden layers

in the ANN. Each layer has a certain number of nodes called neurons: the input layer has equal

number of neurons as the dimension of input data features, the hidden layers has an arbitrary

number of neurons, and the output layer has one or more neurons depending on the problem

(e.g., only one if it is a regression problem, or more than one if it is a classification problem).

Data is injected through the input layer, then it is modified in each of the hidden and output

layers.

Figure 2.11: The architecture of a simple neural network.

Data modifications are based on the parameters associated to each of these nodes (the weights

and biases), which determine the data modifications. In this context, learning means finding

the values for the parameters of all layers in a neural network, such that the network correctly

maps example inputs to their associated targets.
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Basically what a single neuron (or perceptron; the simplest version of a neural network

[Fre99]) does is multiply the input data by a weight vector, add a bias, and pass the result

through an activation function, which is a mathematical equation, to produce a result before

transferring it to further layer.

Figure 2.12: The architecture of a single neuron.

In order to find the parameters that perform these operations, an iterative process is carried

out for all the known labeled examples. This is done comparing the value of their label obtained

through the model with the expected value of the label of each element. After an iteration,

the weights of the W and b parameters are adjusted in such a way that a loss function, in

charge of measuring the quality of the network’s output (the loss score), is minimized. Then,

the computation of the loss function is used as a feedback signal to adjust the value of the

weights through an optimizer, with the aim of reducing the loss value of the current example.

This iterative procedure for finding the network parameters is summarized in the diagram in

Figure 2.13.

This training loop starts with random values for the weights, resulting in outputs that are

far from what they should be, producing then high loss score values. After many iterations,

values are obtained for the weights that minimize the loss function, leading to outputs that are

close to their labels.
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Figure 2.13: Diagram of the deep learning’s iterative process.

Two last concepts that should be understood are the batch size and number of epochs, both

integer values. The batch size defines the number of samples to work through before updating

the internal model parameters, whilst the number of epochs defines the number of times that the

learning algorithm will work through the entire training dataset. So, the size of a batch must

be more than or equal to one and less than or equal to the number of samples in the training

dataset, whereas the number of epochs can be set to an integer value between one and infinity

[Bro19a].

There are many classes of ANNs, but to understand the ones involved in this project, i.e.,

recurrent neural networks (RNNs), first it is important to know the basics of feedforward neural

networks (FFNNs). As it will be seen, both kind of networks are named after the way they move

the information through the neurons of the network: FFNNs feed information straight through,

while RNNs cycles it through a loop.

2.4.1 Feedforward Neural Networks (FFNNs)

A feedforward neural network is an ANN wherein connections between the nodes do not form a

cycle [Zel94]. It means that data is moved only in forward direction, from the input neurons to

the output neurons.

This class of ANNs are also called multilayer perceptrons (MLPs) and are the quintessential

deep learning models [Goo16]. As its name suggests, MLPs are perceptrons (single neuron

models) with more than one layer. Based on what has been seen so far, an MLP is just a

mathematical function composed by many simpler functions mapping some set of input values

to output values. Figure 2.11 would represent an MLP with a single hidden layer.
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Because of their flexibility, MLPs are often applied to supervised learning problems: they

train on a set of input/output pairs and learn to model the correlation (or dependencies) be-

tween those inputs and outputs. On the contrary, a drawback of FFNNs is that they are not

designed for time-series data, what means that results with sequential data may not be so good.

Unlike supervised learning problems like classification or regression, time series problems add the

complexity of order or temporal dependence between observations (a time dimension). Despite

the great capability o↵ered by FFNNs, they are a↵ected by this key of temporal dependence,

almost always unknown [Bro19c].

Recurrent neural networks (RNNs), like those involved in this work, add the explicit handling

of order between observations when learning a mapping function from inputs to outputs. This

implies that the data processed by RNNs should be three dimensional with the shape (number

of samples, number of time steps per sample, and number of variables), in contrast to FFNNs,

whereby should be two dimensional with shape (number of samples, and number of variables).

Instead of mapping inputs to outputs alone, RNNs can learn a mapping function for the inputs

over time to an output (they also consider previous time steps), enabling them to operate better

than FFNNs in these scenarios. As the data to be used in this thesis has a temporal dependence,

there is an interest in using RNNs, which will be discussed in the next subsection.

2.4.2 Recurrent Neural Networks (RNNs)

An important characteristic in common of the neural networks seen so far is that they have

no memory. A type of artificial neural networks that have memory are the recurrent neural

networks.

Unlike FFNNs, RNNs can use their internal hidden state (memory) to process sequences of

inputs. This characteristic allows RNNs to better mimic how the human brain works. When

humans read a text, the words are processed one by one while keeping memories of what came

before, allowing a fluid understanding of the text. It means that biological intelligence processes

information incrementally while maintaining an internal model of what it is processing, built

from past information and constantly updated as new information comes in [Cho17].

An RNN adopts the same idea as biological intelligence to address the memory shortcoming

of FFNNs: it processes sequences by iterating through the sequence elements and maintaining a

state containing information relative to what it has seen so far. On the contrary, FFNNs process

the entire sequence in a single step (the sequence must be shown to the network at once) with

no state between inputs.

Since RNNs take time and sequence into account, they have a temporal dimension, so they

are a proper class of networks to analyze time-series and sequential data (data where the order

matters) allowing to treat the dimension of “time”.
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Having memory implies a type of neural network that has an internal loop so that information

can persist, as is illustrated in Figure 2.14.

Figure 2.14: A folded and unfolded RNN cell.

The above diagram shows the folded and its equivalent unfolded version of an RNN cell,

which in the most abstract setting, is anything that has a state and performs some operation

that takes a matrix of inputs [RNN20]. The unfolded version makes sense of why RNNs are

called “recurrent”: they perform the same task for every element of a sequence, with the output

being dependent on the previous computations. A chunk of neural network (A) looks at some

input or sequence element (xt) and outputs a value (ht). A loop allows information to be passed

from one step of the network to the next.

Due to the internal loop present in all RNNs in order to keep relevant information of previous

inputs, they have this form of a chain of repeating modules or units of neural network (A). In

standard RNNs, this repeating module has a very simple structure with a single neural network

layer, as is shown in Figure 2.15.

Figure 2.15: The repeating module in a standard RNN.

This sketch represents how a standard RNN loops over time steps considering at each time

step the previous state (ht�1) and the current input (xt) to obtain an output or current state

(ht). The state can therefore be considered as a kind of short-term memory of a cell.
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It can also be observed that the decision reached at time step t-1 (ht�1) a↵ects the decision

it will reach one moment later at time step t (ht), so the state for the next step will be the

previous output unless for the first time step, where the previous output will not be defined

(there will be no current state), and the state will be initialized as a zero vector.

Going a little deeper, the architecture of the repeating module in a standard RNN cell is

composed by the elements forming the diagram of Figure 2.16.

Figure 2.16: The internal structure of a standard RNN cell.

Each one of these cells comprises two sources of input: the present (xt) and the recent

past (ht�1), one output (ht), and the remaining ingredient, which is a neural network layer

with hyperbolic tangent activation function. As it is explained during this section, a layer is a

collection of neurons operating together at a specific depth within a neural network. There are

di↵erent weights associated for the di↵erent inputs of the layer neurons. Inputs are multiplied

by their respective weights, summed together with a certain bias, and finally some activation

function such as the hyperbolic tangent (tanh) in this case is applied.

In order to get the output or current state (ht), first, the two inputs are combined to form

a vector which has information of the current (xt) and previous inputs (ht�1). After that, this

vector, which is multiplied by some weights and with a certain bias added, goes through the tanh

activation function. It gives rise to the internal hidden state (memory) mathematical expression:

ht = tanh(Wxt +Uht�1 + b) (2.7)

where xt and ht�1 denote the current input and the recurrent information of the previous time

step, respectively. W are the weights at current input state, U are the weights at previous

hidden state, and b are the biases. The tanh activation function squashes values to be always

between -1 and 1. It regulates the values flowing through the network, avoiding big di↵erences

between them.
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However, the loop structure of a standard RNN involves performing the same previous

operation for each time step. It means that internally backpropagated signals (information)

passing many times through the same repeating module (through a set of stacked tanh layers),

will tend to disappear after a few recursions considering that in the best-case scenario, the tanh

is 1. This fact that makes a basic RNN have a short-term memory is the so-called vanishing

gradient problem. It is a limitation that involves processing relatively short sequences so that

previous hidden states have a relevant e↵ect on the current output.

For this reason, standard RNNs are not a good choice for problems that require a long

memory, because early signals (information) cannot be taken into account to be related with

recent inputs. Most applications require an alternative designed to solve this problem, like the

one used in this work: long short-term memory (LSTM) networks.

LSTM is one kind of RNN developed by Hochreiter and Schmidhuber in 1997 [Hoc97]; it was

the solution to the short-term memory su↵ered by standard RNNs due to the vanishing gradient

problem. Figure 2.17 shows that LSTMs also have a chain structure as standard RNNs, but

in this case, the repeating module has a di↵erent layout. Instead of having a single neural

network layer, there are four (the tanh on the top right represents just an activation function,

not a neural network layer with a tanh) connected in a such a way that they allow for a larger

memory, as will be seen later in detail.

Figure 2.17: The repeating module in an LSTM.

The core idea behind LSTMs are the cell state and its di↵erent gates; the key components

enabling past information to be used at a later time, thus addressing the vanishing gradient

problem. On the one hand, the cell state (also known as the long-term memory), is the memory

of the cell. It can carry relevant information during the processing of the sequence, including

information from the earlier time steps. A good analogy for a better understanding, is to see

the cell state as a conveyor belt which runs in parallel to the sequence being processed, where

information from the sequence can be put on the conveyor belt at any point, be transported to

a later time step, and be taken when it is required.
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On the other hand, LSTMs have the ability of removing or adding information to the cell

state. It is carefully regulated by means of internal mechanisms called gates. Gates are com-

posed of a neural network layer with sigmoid activation function and a pointwise multiplication

operation, and they decide what information to remove, maintain, or add from the cell state.

As such, these gates have weights that are learned during the training procedure. Specifically,

there are three gates within an LSTM cell: the forget gate, the input gate, and the output gate.

Figure 2.18 shows how an LSTM unit is structured internally.

Figure 2.18: The internal structure of an LSTM cell.

The three cell inputs are the input data vector at the current time step (xt), the hidden

state of the previous time step (the previous output of the cell) (h(t�1)), and the state of the cell

(the memory) (c(t�1)), whereas the two cell outputs are the current hidden state (the current

output of the cell) (ht), and the updated memory of the cell (ct). Regarding the gates, they

will be explained below in an operational step by step to have a global comprehension of how

an LSTM cell works:

1. Forget gate (f t): the first step is to decide what information to throw away from the

cell state. It is done by means of f t by passing the information of h(t�1) combined with xt

through its neural network layer with sigmoid activation function, giving values between

0 and 1 to the cell state (1 representing keeping all the information while 0 representing

removing all the information). Mathematically, this gate can be expressed as follows:

f t = �(W fxt +U fht�1 + bf ) (2.8)

being W f , U f , and bf the weights and biases of the forget gate.
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Figure 2.19: Forget gate operations.

2. Input gate (it): the second step is to decide what information from the input to update

to the cell state. It is done in two parts: on the one hand, and in the same way as for f t,

by means of it by passing the information of h(t�1) combined with xt through its neural

network layer with sigmoid activation function, and on the other hand, by means of a

vector of new state candidates (c̃t) by passing the same combined information through

an hyperbolic tangent activation function (tanh), giving values between -1 and 1 to its

output. c̃t gives rise to the candidates for the memory of the cell, while it decides which

values are updated. In the next step the pointwise multiplication of these values will be

used to calculate the cell state. These two operations are described mathematically as:

it = �(W ixt +U iht�1 + bi) (2.9a) c̃t = tanh(W cxt +U cht�1 + bc) (2.9b)

being W i, U i, bi, W c, U c, and bc the weights and biases of the input gate, and the state

candidates respectively.

Figure 2.20: Input gate operations.

3. Cell state (ct): the third step is to update the previous cell state. It is done by means

of the sum of the pointwise multiplications of ct�1 by f t, and c̃t by it. The first product
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removes or maintains information, whereas the second product adds (or not) information.

In mathematical terms, this computation is expressed in the following way:

ct = f t � ct�1 + it � c̃t (2.10)

Figure 2.21: Calculating cell state.

4. Output gate (ot): the last step is to decide what to output based on input and the cell

state. It is done in two parts: on the one hand, by means of ot by passing the information of

ht�1 combined with xt through its neural network layer with sigmoid activation function,

and on the other hand, by passing ct through a tanh activation function. The output of

the tanh gives rise to the ct values between -1 and 1, while ot decides which values are

output. The pointwise multiplication of these values is ht. It is described as follows:

ot = �(W oxt +U oht�1 + bo) (2.11a)

ht = ot � tanh(ct) (2.11b)

Figure 2.22: Output gate operations.
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As could be noted, the sigmoid and tanh activation functions play an important role in this

mechanism. The first one keeps or forgets information depending on its output values (between

0 and 1), and the second one keeps the information between a workable range of values (between

-1 and 1).

Chapter Summary

Reached this point, it is assumed that the theoretical background of this project has been

dealt. On the one hand, the working scenario has been presented from a general view, such as

the plant design, to a more concrete and interesting view for this study; that of the controllers.

On the other hand, the controller structure which will replace the ones of the working scenario

has been introduced. Finally, the basics about the key components of the proposed controllers,

i.e., the ANNs, was covered deepening in the LSTM networks and their functioning. In the next

chapter, the general procedure used to design neural network models as the LSTMs models of

this project, will be presented.



Chapter 3

Workflow for the Design of Neural

Network Models

Creating a neural network model, as well as any other machine learning model, involves an

iterative process of development and refinement, depicted in Figure 3.1.

Figure 3.1: Workflow diagram for the creation of a neural network model.

In summary, once the data is collected, studied, and processed, the model is trained to

transform the inputted data into the desired results by showing it representative samples. After

being trained, it is tested with data it has not seen before and evaluated to know how it works.

If the model is performing well enough, it is ready to operate, otherwise the process would be

repeated, or the algorithm would be directly fit again with a di↵erent configuration.

3.1 Data Gathering, Analysis, and Preprocessing

Get clean data is the first step in designing any data-based model and it is critical because the

quantity and quality of the information directly a↵ects the performance of the model.

31
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In order to obtain the datasets, two years of influent considering dry, rainy, and stormy

weathers are used to generate the data by means of the BSM1 simulation scenario in open loop.

Gather information with this setup entails: remove the default controller to be replaced from the

original simulation benchmark, create a random square pulse signal (the manipulated variable)

with reasonable characteristics (similar to those specified in the BSM1 description in therms

of minimum and maximum of the signal, and pulse length), and finally introduce this signal

filtered into the BSM1 to pick up its response.

A previous consideration to the introduction of the pulse signal to the plant, is the filtering

of this signal with the aim of employing smooth variations, pretending a more realistic situation.

Figure 3.2 outlines an example of this process, which is nothing more than a kind of ideal low-

pass filter since it eliminates all frequencies above a cuto↵ frequency while passing those below

unchanged.

Figure 3.2: Filtering of the internal recirculation flow rate (Qintr) signal.
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The random square pulse signal (first 100 days shown in Figure 3.2 top) is passed into the

frequency domain by means of the fast Fourier transform (FFT), and as expected, the FFT of

this nature gives rise to a kind of sinc function (shown in Figure 3.2 middle). Then, the transform

is multiplied by a rectangular function letting pass, for instance, the frequencies included in its

first lobe. As consequence of this operation, when going back to the time domain, the signal

shows that the transitions between values are not immediate but have a certain slope (first 100

days shown in Figure 3.2 bottom).

With the manipulated variable filtered, it is introduced into the pertinent process to take

the necessary signals in its response and be able to model it. Initially the raw data has the form

shown in the example below.

Figure 3.3: Head of the initial dataframe for the ANNdir structure of the dissolved oxygen in
the fifth thank (SO,5).

Each row of the previous table represents a di↵erent time step of the two years compiled

(for the sake of brevity, sampling intervals of 15 minutes are equivalent to 1/96 seconds in the

simulator), while each of the first columns corresponds to the di↵erent concentrations available

to be taken as input variables to train the neural network model together with the last column,

belonging to the concentration taken as output, i.e., the target, the one to be predicted.

At this point, there is an interest to know the relationship between the output variable of the

process to be controlled (SO,5 and SNO,2 for the first and second controllers respectively) and the

available features. That is why it is important to analyze the data: to determine how it should

be used. To that end, di↵erent measures like the correlation and mutual information (MI),

chosen in this work, can be used as guiding tools. As such, these measures are not computed

to know exactly which variables to use in the training of the neural network models (it is an

iterative process), but to have a reference on which variable can favor their functioning.

Correlation is a measure that quantifies the linear association between a pair of variables,

i.e., how strongly one variable depends on the other [Bon17]. There are many measures for it,

but in this case, the Pearson product-moment correlation coe�cient (PPMCC) is used to find

the pairwise correlation of the di↵erent datasets. The data analysis and preprocessing phase

is carried out using Python as it was indicated in the organization of the thesis. Specifically,

the correlation has been calculated by means of the pandas.DataFrame.corr() function, as

illustrated in the exemplary matrix of Figure 3.4.
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Figure 3.4: Correlation matrix of the data from the entrance to the fifth tank, its oxygen transfer
coe�cient (KLa5), and the dissolved oxygen at the exit of said fifth tank (SO,5).

This table format summarizes the correlation between all possible combinations of variables

with each cell. As can be noticed, the matrix is square since it has the same components in

the rows and in the columns. The line of 1.00s going from the top left to the bottom right is

the main diagonal, which shows that each variable always perfectly correlates with itself. It is

also possible to observe that the matrix is symmetrical; the same correlation is shown above the

main diagonal being a mirror image of those below the main diagonal.

In terms of the correlation coe�cient, it can take a range of values from 1.00 to -1.00, and

each one can be easily interpreted through its two key components:

• Magnitude: the larger the magnitude (closer to 1.00 or -1.00), the stronger the correla-

tion. A value of 0 indicates that there is no association between the two variables.

• Sign: if positive, there is a positive association; that is, as the value of one variable
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increases, so does the value of the other variable. If negative, there is a negative association;

that is, as the value of one variable increases, the value of the other variable decreases.

To see this visually, the scatterplots of two pairs of variables with high correlation (positive

and negative respectively) are represented in Figure 3.5.

Figure 3.5: Scatterplots of the dissolved oxygen at the exit of the fifth tank vs the nitrate (left)
and the flow rate at the entrance of said fifth tank (right).

If a line of best fit (a straight line that best represents the data on the scatterplot) is drawn

through the data of the two pairs of variables (indicated in red), it can be observed that the sign

of the correlation coe�cient matches the slope of the line. The first subplot (r = 0.94) clearly

shows that with an increase in the SO,5, there seems to be an increase in the SNO,4. On the

other hand, the second subplot (r = -0.94) exhibits a decrease in the Qi,4 as the SO,5 increases.

The correlation matrix in Figure 3.4 is enough for the case of the first control loop, since as

will be seen in Section 4.1, data has only been taken from the input of the fifth tank to model

the process of that controller. However, for the case of the second control loop, and because

the process to be modeled is more complex, data has been taken from the input and output

of the first tank, the output of the first combiner, and the output of the settler as will be seen

in Section 4.2. So, a total of four correlation matrices have been computed considering these

points along with the influent flow rate (Qin), the internal recirculation flow rate (Qintr), and

the nitrate of the second tank (SNO,2).

A tool like the Pearson’s correlation refers to the degree to which a relationship is linear.

In this way, it will not be useful for determining the relationship between two variables with a

non-linear relationship. Instead, it might be better described by another statistical measure like

the MI.

MI is a measure that quantifies the mutual dependence between a pair of variables, i.e., how

much information is obtained about one random variable through observing the other random

variable [Cov12]. As discussed above and in contrast to correlation, MI is not limited to linear

dependence. In order to calculate it, the formula of the MI between two random variables X

and Y has been taken as a starting point:
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I(X;Y ) = H(X)�H(X|Y ) (3.1)

being H(X) the entropy for X, which is the uncertainty of a single variable, and H(X|Y ) the

conditional entropy, which is the entropy of the random variable X conditional on the knowledge

of the random variable Y. In the same way as for the previous measure, an exemplary matrix

containing this kind of computations is shown in Figure 3.6.

Figure 3.6: Mutual information matrix of the data from the entrance to the fifth tank, its oxygen
transfer coe�cient (KLa5), and the dissolved oxygen at the exit of said fifth tank (SO,5).

For this matrix, each cell represents the mutual information between two variables, and it

also maintains the square and symmetrical shape as in the previous instance by having the

same components in rows and columns. The main diagonal, according to the self-information,

generally exhibits the highest values as well, 1.00 being the largest due to the normalization

of the matrix. MI is always larger than or equal to 0.00, where a large value indicates a great
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relationship between the two variables; a low value indicates a small relationship; and 0.00 means

the variables are independent.

Compared to the matrix of Figure 3.4, it can be appreciated that for the last row (the one

of interest for reporting the results related to the controlled variable), the highest correlation

values mostly coincide with the highest MI values. However, some concentration such as SNH,4

shows a higher priority according to MI (it is the 5th variable with the best MI being the 10th

with the strongest correlation), and that is why both measures have been taken into account as

reference in the selection of variables to train the network; because they are complementary and

describe di↵erent aspects of association.

Another contrast to the correlation matrix is that the results of the main diagonal are not

always maximum. This fact can be easily explained by plotting a variable with large self-

information, and a variable with low self-information as in Figure 3.7.

Figure 3.7: Plots of the first days of data of the oxygen transfer coe�cient of the fifth tank
(KLa5) (left), and the soluble inert organic matter of the fourth tank (SI,4) (right).

First, it should be noted that the self-information of a variable corresponds to the entropy

of that variable since the conditional entropy of the same variable is zero. Then, given that the

entropy measures the uncertainty of an information source, or in other words the amount of

average information contained in the symbols (values) used, when all symbols are equally likely

(as in the case of the random variableKLa5 generated), they all provide relevant information and

entropy (or self-information) is maximum. Otherwise, when certain symbols are more likely than

others (as it is the case of 30 for the SI,4 concentration), the uncertainty (or self-information) is

lower.

Having an idea of which signals to use in the model training, it just remains to apply the

necessary preprocessing techniques to have the desired dataframe. Particularly for this project,

data organization is necessary, because as outlined in Chapter 2, LSTM models learn a function

that maps a sequence of past observations as input to an output observation. Given that the

selected data is of the type shown in Figure 3.3 (multivariate time series data with multiple input

series), and there is a single observation per time step for each input series, data transformation

must be done by means of the sliding window method. This technique divides the original

sequence into multiple samples, where a certain number of time steps (the window width) is
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used as input, and one time step is used as output. For a better understanding, Figure 3.8

presents an example of the e↵ect of applying the sliding window (with a window width of three

time steps) to the concentrations used in the first controller.

Figure 3.8: Head of the selected dataframe for the ANNdir structure of the dissolved oxygen in
the fifth thank (SO,5) (top) and its transformation via the sliding window (bottom).

The result of this example leads to samples with three time steps of each parallel series as

input associated with the value of the output series at the third time step. It means that the

dimension of the input component has a three-dimensional structure: the first dimension is the

number of samples (three included in Figure 3.8 bottom), the second dimension is the window

width (three chosen for this instance), and the third dimension is the number of features (four in

this case). With this configuration, LSTM models have enough information to learn a mapping

from an input sequence to an output value.

Finally, the feature standardization has been required to decrease the heterogeneity in

the data making the values of each feature have zero-mean and unit-variance, thanks to the

sklearn.preprocessing.StandardScaler() function.

3.2 Model Training

At this second step, proper inputs and output are known. However, there is still a last unknown

concerning the mathematical function to transform these inputs into the desired goal. So, the

next step is to expose the learning algorithm to reference samples in order to build (train) an

accurate model in mapping the input to output values.

Between the several possibilities to make this partition, in this project, the K-fold cross-

validation is adopted [Ber18]. For cases with limited or unbalanced data samples, the perfor-

mance obtained for one validation set can be very di↵erent to the performance obtained for a

di↵erent validation set. K-fold cross-validation provides a solution to this issue by dividing the
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available data for training and validation into folds of equal size and ensuring that each fold is

used as validation set at the di↵erent points of the available data. Figure 3.9 clearly describes

this technique with the sample quantities used in this work.

Figure 3.9: Application of Nine-fold cross-validation.

From the whole dataset (69879 samples), first a part is reserved for testing purposes (6988

samples, 10% of all data), and then, K-fold cross-validation is applied to the remaining part

(62891 samples, 90% of all data). With the implementation of this tool, the part devoted to

training and validation is split into K partitions of equal size (nine of 6988 samples, 10% of all

data), and K trainings are done evaluating a di↵erent partition in each one.

Consequently, K di↵erent models are obtained from this training, each of them giving a

certain score used to assess overfitting. To get the final model performance, the average of the

K scores is computed. Finally, the model used to operate can be anyone of the K produced.

3.3 Model Evaluation

The third and final step consists in evaluating the model, an essential part of building an e↵ective

machine learning or deep learning model, as it allows for a critical feedback from metrics and

make improvements. This step determines when the development cycle ends: when the metrics

in the model evaluation show the desired operation.
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In this way, model evaluation allows to check the model performance against unseen data

(data that has never been used for training), get an idea of how the model will work in the real

world and therefore determine if the model is good or not.

Model evaluation metrics are required to quantify model performance. When someone says

something is good (whether it is a car, a country, or a machine learning model), the first question

is on what basis is this statement being made (e.g. consumption for the case of the car, economic

status for the case of the country, and accuracy for the case of the machine learning model).

For machine learning models, the choice of evaluation metrics depends on each situation as each

of them can address di↵erent problems (such as classification or regression problems) under

di↵erent conditions, and that is why it is important to understand the context first.

The performance of the ANNs of this work will be evaluated accordingly to five metrics:

the mean absolute percentage error (MAPE), the mean arctangent absolute percentage error

(MAAPE), the root mean squared error (RMSE), the normalized root mean squared error

(NRMSE), and the coe�cient of determination (R2).

• MAPE: is the mean or average of the absolute percentage errors of forecasts. It is scale-

independent and easy to interpret because it provides the percentage of error in the pre-

diction. Consequently, the smaller the MAPE the better the forecast. It is defined as:

MAPE =
1

N
·

NX

i=1

���
yi � ŷi

yi

��� · 100 (3.2)

where N corresponds to the number of examples, yi corresponds to the ith sample of the

real output data, and ŷi is the ith predicted value.

However, the MAPE produces infinite or undefined values (outliers) for zero or close-to-

zero actual values, and for this reason the MAAPE is also proposed.

• MAAPE: is the mean or average of the arctangent absolute percentage errors of forecasts

[Kim16]. The bounded range of the arctangent function provides a maximum AAPE of

⇡/2. As MAPE, good predictions have results close to zero. It is computed as follows:

MAAPE =
1

N
·

NX

i=1

arctan
⇣���

yi � ŷi
yi

���
⌘
· 100 (3.3)

• RMSE: is a globally known metric, frequently used to measure the di↵erences between

values. It is a scale-dependent measure with desirable values around zero. Its formula is

the next one:
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RMSE =

vuut 1

N
·

NX

i=1

(yi � ŷi)2 (3.4)

Nevertheless, the RMSE is scale dependent. Since the scales of the real output data di↵er

across the di↵erent ANNs, the NRMSE is also considered to compare the results of the

di↵erent ANNs with similar conditions.

• NRMSE: is the mean of the RMSE. Obviously, values near zero are interesting. In this

situation, the RMSE is normalized by the di↵erence between maximum and minimum,

giving rise to the following equation:

NRMSE =

q
1
N ·

PN
i=1(yi � ŷi)2

ymax � ymin
(3.5)

ymax and ymin being respectively the maximum and minimum values of the real output

data.

• R2: measures the amount of the data variance that is explained by the model and ranges

from 0 to 1. Thus, a result of 1 reveals a perfect correlation between values [Pis19c]. R2

can be calculated as:

R2 =

�PN
i=1

�
ŷi � ŷ

�
· (yi � y)

�2
PN

i=1

�
ŷi � ŷ

�2 ·
PN

i=1(yi � y)2
(3.6)

where ŷ corresponds to the mean of the predicted values, and the mean of the real values

corresponds to y.

Chapter Summary

As summary, this chapter has presented a vision of the design process of deep learning models,

more oriented to the one followed in the elaboration of the proposed controllers (adapted with

examples from the project itself) which will be seen in the next chapter. This is why the workflow

was explained using data of the BSM1 itself. First, data gathering, analysis, and preprocessing

has been presented. It is a very important part of the development of neural networks, which

sometimes remains in the background and involves a high workload. Finally, the procedure that

will be used to train and evaluate the ANNs of the IMCs has been shown. Thus, in the same way

that in Chapter 2 the metrics to evaluate the controllers were defined, the metrics to evaluate

the neural networks have been specified in the last section of this chapter.





Chapter 4

ANN-IMC Strategy in WWTPs

4.1 ANN-IMC Control of the Dissolved Oxygen of the Fifth

Reactor Tank (SO,5)

In this section, an IMC controller based on ANNs is designed to control the dissolved oxygen

of the fifth reactor tank (SO,5) of the BSM1. The core idea is to improve the performance of

the original PI controller dedicated to this task. Consequently, the goal of this episode is to

complete the schematic shown in Figure 4.1.

Figure 4.1: ANN-IMC controller structure for SO,5.

As it is observed, in this case the real process P is basically the fifth bioreactor tank. The

filter F consists in a first-order filter, where the gain will be fixed to 1 and the time constant

will be selected based on the results of the control metrics. The controlled variable, associated

with r(t), will be the SO,5 set point, while the actuation variable, corresponding to u(t), will be

the KLa5 concentration. In such a way, the controllers track the SO,5 variations modifying the

43
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KLa5 coe�cient. Finally, the work of this section is summarized in finding the missing parts of

the controller structure, i.e., the ANNdir and the ANNinv, in order to achieve a model output

signal ym(t) as similar as possible to the process output signal y(t). In other words, to minimize

the e↵ects of process-model mismatch.

4.1.1 Direct and Inverse ANNs

In line with the workflow for the design of ANNs models, the first step is to get data, analyze

them and preprocess them. For that, two years of influent considering dry, rainy, and stormy

weathers is used together with a filtered two-years KLa5 variable. This variable consists in

normally distributed random numbers around 0 and 300 with variations of 1 hour taking into

account the characteristics of this concentration under the description of the benchmark, to

collect data of the BSM1 response in open loop. Using a manipulated variable with a range of

random values to collect the data allows the ANN to have plenty of examples when training, so

that it can generalize when it receives di↵erent values as input.

For this first controller, a study of correlation and mutual information (MI) of the con-

centrations collected at the entrance of the fifth reactor tank, along with KLa5 and SO,5, was

carried out as depicted in Figures 3.4 and 3.6. Some of the signals that exhibit higher values of

these two measures employed for the information study are the SO,4, the SNO,4, and the SNH,4

[Pis19a]. They are commonly used to train both, the ANNdir and the ANNinv. Then, for the

ANNdir in particular, the KLa5 coe�cient must be compulsorily employed because this model

represents the process being controlled, and as seen in the description of BSM1, the dissolved

oxygen control loop takes the KLa5 to control the SO,5. The rest of variables, in this case the

three mentioned above, are chosen arbitrarily in terms of how many and which ones. The goal is

to help the ANNdir in the modeling task of the process under control with the greatest precision.

Similarly, for the ANNinv apart from the three concentrations shared by both processes, the

essential input and output variables are exchanged, i.e., KLa5 for SO,5. An additional feature for

the modeling of this process is that the output value of the previous instant is also used, namely

KLa5(t � 1). The use of this last input is based on the philosophy of nonlinear autoregressive

models with exogenous inputs (NARX models), which are networks that have feedback from the

output neuron [Sie97]. This feature gives a lot of information to the network since the output

value of the previous instant is being passed as input at every moment. Therefore, the network

will give a lot of importance to this input for predictions, and the rest of inputs will serve to

slightly modify the forecasts. However, it is necessary to take care with this configuration be-

cause it can result in overfitting problems (the model can learn a function related too closely to

this delayed output feature).

Regarding the preprocessing, the sliding window is applied considering a window width of 10
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time steps for the two ANNs, i.e., a window width of 2.5 hours (the sampling rate is 15 minutes).

This method leads to a three-dimensional input shape (the shape required for fitting an LSTM

model) of 62891 samples of 10 time steps of each parallel input series for the ANNdir and the

ANNinv, respectly represented in Figure 4.2.

Figure 4.2: Shape of the 3D input arrays used to train the LSTM networks of the direct (left)
and inverse (right) processes of the first control loop.

At this point, the ANNs can be trained, and as seen in Chapter 2, there are several algorithms

for this. In this dissertation LSTM cells will be used because of their capacity in modeling time-

series and time-dependent parameters such as the WWTP’s influent and e✏uent values [Pis19b].

Their configuration was found performing a grid search, which is nothing more than a trial and

error process to find the structures o↵ering the best performance, in this case it involves training

di↵erent configurations and choosing the one that works better. After the search, the settings

established for both ANNs are synthesized in Table 4.1.

LSTM structures

Model layer Type Neurons per gate Activation function Regularizer

1
st LSTM 100 Tanh & sigmoid L2 penalty (0.001)

2
nd Dense 1 Linear -

Table 4.1: LSTM structures for the ANNdir and the ANNinv of the SO,5 ANN-IMC controller.

Each prediction structure consists of an LSTM model that has a single hidden layer of

LSTM units (or neurons per gate), and an output layer used to make predictions (a.k.a. Vanilla

LSTM). In this case, each model is defined with 100 LSTM units in the hidden layer and a

unique neuron with a linear activation function in the output layer predicting a single numerical

value for dealing with a regression problem. Thus, the di↵erence between direct and inverse

structures is in the number and type of signals used for their training. Hence, the structure
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of the SO,5 ANN-IMC controller once completed with the missing parts corresponding to the

ANNdir and the ANNinv, is shown in Figure 4.3.

Figure 4.3: Proposed ANN-IMC controller structure for SO,5.

In order to avoid a poor performance when making predictions on new data because of

the overfitting problem discussed in Section 2.4, a regularization technique is applied to make

slight modifications to the learning algorithm in such a way that the model generalizes better.

Specifically, an L2 penalty of 0.001 is introduced to the loss function as a term to simplify the

model. It can be understood as a kind of obstacle that is put to the learning algorithm so that

it does not fit so much to the training data [Cho17].

Once the models are defined, they need to be compiled using a model optimizer and a loss

function. As explained in Section 2.4, the optimizer is the search technique used to update

weights in the models, and for all situations, the adaptive moment estimation (Adam) has been

used for being one of the most popular gradient descent optimizer [Goo16]. The loss function is

the evaluation of the model used by the optimizer to adjust the value of the weights, and also

for all cases, the mean squared error (MSE) has been used for being one of the most common

functions for regression problems.

The last settings regarding the model training are the number of epochs, the batch size, and

the number of folds to be considered in the K-fold cross-validation. The first one is set to 200
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epochs, meaning that the model will be exposed 200 times to the training dataset. The second

one is set to 5000 samples, meaning that the model will see 5000 training instances before update

weights. Finally, the 9-fold cross-validation shown in Figure 3.9 is performed to get an 80-10-10

split of the data into training, validation, and test, leading to 55903, 6988, and 6988 samples

for each case, respectively. With all the parameters defined, all that remains is to train and

evaluate these networks that will form the new SO,5 controller, so the following lines assess their

performance with the metrics defined in Chapter 3.

ANNs Performance

Once the training is done and models are built for the process of the fifth tank and its inverse,

it is possible to feed them with input data similar to the one used in the training process to

make forecasts. According to Chapter 3, the operation of the ANNs is analyzed by means of

five metrics: the MAPE, the MAAPE, the RMSE, the NRMSE, and the R2. Furthermore, the

training method is K-fold cross-validation for K = 9 (nine experiments will be performed), and

one tenth of the entire sample dataset was initially reserved for testing purposes. In average,

the results of the nine models for the selected metrics gives rise to the scores of Table 4.2.

Metric LSTM direct model LSTM inverse model

Training Validation Test Training Validation Test

MAPE [%] 23.212 23.552 25.114 9.544 10.055 4.388

MAAPE [%] 13.492 13.608 13.944 8.152 8.176 8.356

RMSE 0.102 0.104 0.103 2.843 2.866 2.977

NRMSE 0.015 0.016 0.016 0.009 0.009 0.009

R2 0.997 0.996 0.997 0.999 0.999 0.999

Table 4.2: Performance of the ANNdir and the ANNinv of the SO,5 ANN-IMC controller.

A model is built for each data split (fold) and is evaluated with the metrics once the prediction

process is finished for the di↵erent datasets. If the data samples are unbalanced, which means

that the distribution of the di↵erent types of examples among the training dataset is unequal,

the nine folds would give di↵erent results. In the case of this project, the examples have been

generated from data obtained from a signal with random numbers, so the entire dataset has a

variety of examples and the operation of the models created for the nine divisions is very similar.

Looking at the average of the scores, it is observed that in general the nine models make

good predictions, i.e., they are not underfitted. R2 is almost one in both the direct and inverse

models, being one a perfect correlation between real output and prediction. Regarding the other

four metrics, they show good numbers considering that good predictions have results of these

metrics close to zero. Also, it is possible to ensure that the models are not overfitted to the data

of the training set because the values achieved for training and validation are quite similar. On
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the contrary, if the results obtained in validation were much worse than the training, it would

be an indicator of overfitting. After that, the test set provides a final check that the models are

generalizing well before deploying the controller. It is important to notice that the MAPE of the

LSTM inverse model for test is not a common result. However, there are two main reasons for

this: the limitation of MAPE in producing large values when the actual values are close to zero

[Kim16], and the signal dynamics of the test set (smoother or more variable). Although the data

have been obtained with a random signal, some di↵erences may exist along the dataset due to

the randomness of the same signal, or because of the type of influent at each moment. Therefore,

it is also important to emphasize the importance of using several metrics to evaluate a model.

Finally, looking at the MAAPE, NRMSE, and R2 of both models, it is observed that the inverse

models generally work slightly better that the direct ones. This is because for the inverse model,

the output signal of the previous instant was considered as an input, which provides a lot of

information to the networks. This feature was only used to model the inverse process because

the direct one gave overfitting problems.

The model parameters of one of the nine folds of each process will be exported together with

the means and variances stored during the standardization procedure. Since the models of each

fold o↵er a similar behavior, anyone is suitable to form the controller. Here, the 9th and 4th

were chosen for the ANNdir and the ANNinv respectively for providing some of the best results.

Figure 4.4 shows a visual example of how well these ANNs work.

Figure 4.4: Predictions from day 698 to day 700 of the ANNdir (top), and the ANNinv (bottom)
of the SO,5 ANN-IMC controller.

As it is observed, a two-day prediction sample of the SO,5 by the ANNdir, and the KLa5 by

ANNinv corroborates that the models o↵er an excellent functioning.
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4.1.2 ANN-IMC Controller

Moving according to the diagram of the introduction of this thesis, it is time to implement the

ANNs in MATLAB, and finally design the first ANN-IMC controller in Simulink. Starting from

the beginning, once the weights and biases of the ANNdir and the ANNinv trained with Python

are exported, they must be implemented in MATLAB and Simulink, because this will be the

environment of the BSM1 where the proposed controller will be tested. In other words, the

priority is to replicate the models that have been previously created in Python. To do that,

both ANNs are deployed on this new platform separately, verifying that they really work as the

original ones. For the sake of brevity, Figure 4.5 presents the results of this first stage only for

the ANNdir, since as stated above, both structures are practically identical (only the input data

employed in each case changes).

Figure 4.5: Interface layout of the ANNdir structure of the SO,5 ANN-IMC controller in
Simulink.

The initial block is in charge of horizontally concatenate the four input signals to create a

contiguous output signal of 1x4. These concentrations are the same as those chosen in Subsection

4.1.1 for building the ANNdir. Instead, for the ANNinv, five variables were used to train the

network, so the output signal will be of 1x5 in that case and so on for the following boxes.

The next two blocks take care of the data preprocessing. The first of them reproduces the

sliding window method by means of the schematic shown in Figure 4.6.

Figure 4.6: Interface layout of the sliding window of the SO,5 ANNdir structure in Simulink.

As will be seen later, the ANNs themselves will be implemented in MATLAB with simple

mathematical operations such as multiplication and addition, so it is interesting to work with

vectors as input rather than with three-dimensional structures as in Python. This subsystem

takes 1x4 input signals and outputs 1x40 signals given that the window width was chosen as
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10 time steps. The mux of the beginning is used to insert the new four elements (to update

the window), the delay component is used as a memory to keep the previous output values, the

block in the middle only initializes the signal to a vector of 1x40 zeros, and finally, the variable

selector is used to drop the oldest four elements.

After that, a MATLAB function is implemented to standardize the information using the

statistics of the input data saved before the training process by subtracting their mean to the

slided data and dividing by their standard deviation. This action not only enables to change the

values of the input features to a common scale, but also to speed up the learning and forecasting

by dealing with smaller numbers.

xnorm =
x� x

�x
(4.1)

The next module after the preprocessing phase is the core of the ANN structures. In each of

these blocks, the LSTM networks themselves are defined to carry out the predictions. For this

reason, the weights and biases of the networks exported in Python are loaded to execute the

same set of operations defined by Equations 2.8 to 2.11b in Section 2.4.

At the end of the architecture of these systems, the inverse function described before the

prediction block is applied: the data de-standardization. In this case, this is achieved by mul-

tiplying the normalized predictions by the standard deviation of the output data and adding

their mean. This operation allows the obtained forecasts to return to their real scale.

y = ynorm · �y + y (4.2)

Having the subsystems of the SO,5 ANNdir and ANNinv structures, the first controller can

be formed as illustrated in Figure 4.7.

As it is shown, the controller layout follows the same structure presented in Figure 4.3. Apart

from the direct and inverse LSTM models detailed above, the first-order filter can be identified

in the middle as a transfer function with gain and constant time set to 1 and 1/850 respectively.

Between the ANNinv and this filter there is a block that does not appear in the scheme of Figure

4.3, as it simply acts as a saturator so that the output values of the ANNinv are limited to a

range of numbers. This unit has been added because it is also integrated in the PI controller

and so the comparison between strategies is more equitable. Input and output ports 1 refer to

the input and output of the process of the fifth tank. Finally, the subsystem at the bottom right

oversees the calculation of the metrics that will be used to check the operation of the proposed

controller which will be discussed below.
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Figure 4.7: Interface layout of the SO,5 ANN-IMC controller in Simulink.

Controller Performance

The last part of this section dedicated to the SO,5 control loop, evaluates the operation

of the default PI controller as well as the proposed IMC in order to compare both strategies.

For this purpose, the same set point is used for the two structures so that the same scenario is

maintained for the controllers and for the two metrics that will be employed for their examination

(comparisons are fair in all aspects). This shared reference signal is generated as a random square

pulse signal of 1-hour variations from 0 to 5 g/m3 of SO,5 since it is a range of values of this

concentration that was used to train the ANNs of this controller, and consequently are numbers

that the LSTM models can handle. Moreover, the performance is computed considering BSM1

influent profiles with di↵erent weathers (dry, rain and storm). As outlined in Subsection 2.2.3,

the assessment of controllers is carried out in terms of the integral of the absolute error (IAE),

and the integral of the squared error (ISE) criteria considering a 14 days influent but only

evaluating the last 7 days. Table 4.3 provides the operation results of the default PI controller

and the ANN-IMC controller of the first control loop for a SO,5 signal with the characteristics

mentioned above.

Metric PI IMC Improvement [%]

Dry Rain Storm Dry Rain Storm Dry Rain Storm

IAE 1.060 1.028 1.057 0.604 0.571 0.590 43.06 44.42 44.23

ISE 0.521 0.515 0.527 0.095 0.087 0.090 81.82 83.17 82.92

Table 4.3: Performance of the PI controller and the ANN-IMC controller of the SO,5.
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The percentage decrease is calculated as an easy way to appreciate the improvements of

the strategy used in this dissertation over the predetermined one established in the BSM1.

These results show that the SO,5 ANN-IMC controller o↵ers the best performance for all three

climates, in addition to giving near-zero values, and thus almost perfect tracking. For dry

weather, the IMC values of IAE and ISE are correspondingly 0.604 and 0.095, which represent

an improvement of 43.06% and 81.82% on the PI controller. When rainy and stormy weathers

are given, these percentages of enhancement slightly rise: 44.42% and 83.17% for rain, being the

case of biggest improvement, while for storm are 44.23% and 82.92%, respectively. These scores

are summarized in an average enhancement of 43.90% for IAE, and 82.64% for ISE, which prove

that the dissolved oxygen control strategy by default is greatly improved.

In the same way that a visual example of the operation of the ANNdir and the ANNinv was

given in the previous subsection, Figure 4.8 demonstrates the monitoring of the SO,5 set point

for the di↵erent weathers by the proposed IMC controller.

Figure 4.8: Tracking of SO,5 set point changes for dry, rainy and stormy weathers.

As it can be seen, the tracking of the SO,5 reference signal is accurate for all three weather

conditions since the controlled variable mostly overlaps the set point.

With these results, the first objective of this project is fulfilled: an IMC controller based on

LSTM structures has been designed enhancing the default control of the dissolved oxygen of the

fifth reactor tank.
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4.2 ANN-IMC Control of the Nitrate and Nitrite Nitrogen of

the Second Reactor Tank (SNO,2)

In this section, another IMC controller based on ANNs is designed. It is devoted to controlling

the nitrate and nitrite nitrogen of the second reactor tank (SNO,2) of the BSM1 with higher

performance than the original PI controller dedicated to this matter. Consequently, the goal of

this module is to complete the schematic shown in Figure 4.9.

Figure 4.9: ANN-IMC controller structure for SNO,2.

The big di↵erence between this section and the previous one, apart from the controlled

variable, is the real process to be controlled. As it is indicated, the real process P of this

schematic is considerably more complex than the one of the dissolved oxygen. Now P not only

corresponds to a single bioreactor tank but to two tanks along with other subsystems such

as a flow splitter or a settler. For the filter F , the same coe�cients as the default SNO,2 PI

controller will be used considering that this predefined structure also incorporates a filter, so that

the comparison between original and proposed controllers is fair and it is not F what makes

the di↵erence in the results but the models that reproduce the direct and inverse processes.

The controlled variable, associated with r(t), will be now SNO,2, while the actuation variable,

corresponding to u(t), will become Qintr, linked so that the controllers track the SNO,2 variations

modifying theQintr rate. Like in the previous module, the e↵ort of this section is based on finding

the ANNdir and the ANNinv that obtain a model output signal ym(t) with the greatest similarity
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to the process output signal y(t), thus minimizing the e↵ects of process-model mismatch.

4.2.1 Direct and Inverse ANNs

For this new challenge, the two years of data are obtained from the BSM1 framework simulated

in an open loop configuration when inputting the two years of influent alternating dry, rainy, and

stormy weather together with the filtered version of a two-years Qintr variable. Qintr consists in

normally distributed random numbers between 0 and 200000 with variations every 2 days given

the nature of this signal [Ale08].

Due to the complexity of the process monitored by the second control loop, more information

(a larger number of variables) will be needed to model it, so the study of correlation and

mutual information (MI) is not only done from concentrations gathered at a single point in

the plant as for the first control loop, but from four di↵erent points: the input and output

of the first reactor tank, the output of the first combiner, and the output of the settler, all

of them computed together with Qintr and SNO,2. This results in a total of four correlation

matrices plus four MI matrices, and many possible combinations of features to form the ANNs.

After several experiments with di↵erent data selections (the iterative process of development

and refinement, presented in Figure 3.1), a total amount of 11 parameters were chosen with

the help of data analysis: SS,0 and SND,0 from the input of the first tank, XS,1, SO,1, SNO,1,

SNH,1 and SALK,1 from the output of the first tank, SNO,comb1 and XND,comb1 from the output

of the first combiner, and XB,H,settler and TSSsettler from the output of the settler. These are

the shared concentrations to train the ANNdir and the ANNinv. Then to model the direct

process in question, Qintr is needed because it is the control handle to manage the SNO,2, and

Qin is also used to be included in the PI architecture, and so to keep similarity. To shape the

inverse process, besides considering the 11 variables listed above, SNO,2 becomes another input,

Qin is also taken into account, and finally a delayed version of the manipulated variable Qintr is

adopted, as it was done in the previous section to facilitate the modeling of the inverse process.

Once selected the information that will be used to train the ANNs, its preprocessing is done

applying a sliding window with a window width of 10 time steps for the two ANNs to have the

same initialization time of 2.5 hours of the first controller. Figure 4.10 shows the outcome of

implementing this technique. The values of SNO,2 and Qintr from the tenth time step forward,

will be assigned to each input example of the ANNdir and the ANNinv respectively, so that the

algorithms have input/output pairs from which to learn.
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Figure 4.10: Shape of the 3D input arrays used to train the LSTM networks of the direct (left)
and inverse (right) processes of the second control loop.

With the samples ready to train the networks, it is time to define their architecture. LSTM

cells will be used since they are one of the most suitable algorithms for time series problems.

A grid search of the parameters and layouts with which to build models that provide accurate

predictions is performed, Table 4.4 summarizes the structure of the LSTM networks chosen to

form the second controller.

LSTM structures

Model layer Type Neurons per gate Activation function Regularizer

1
st LSTM 50 Tanh & sigmoid L2 penalty (0.001)

2
nd Dense 1 Linear -

Table 4.4: LSTM structures for the ANNdir and the ANNinv of the SNO,2 ANN-IMC controller.

Both the network of the direct and the inverse processes are formed with a single LSTM cell

with 50 neurons per gate in the hidden layer, followed by one neuron with a linear activation

function in the output layer. The only distinction between the two structures is in the input

layer. It just takes the input signals (values) and passes them to the next layer for further

processing by subsequent layers. So, since the number and type of signals used for the ANNs

training are di↵erent for both architectures, these input layers will be too regarding the number

of neurons. In short, in terms of network design, among all the possible combinations to form

the four ANNs that make up the two IMCs, the same structure has been maintained for the

two pairs of LSTM models that compose them. Only the data and the number of neurons per

gate have varied. Once the remaining blocks representing the model of the real process and its

inverse have been defined, the design of the SNO,2 ANN-IMC controller can be completed as

depicted in the sketch of Figure 4.11.
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Figure 4.11: Proposed ANN-IMC controller structure for SNO,2.

As for the SO,5 controller, the L2 regularization technique is defined with a penalty of 0.001

to prevent model overfitting. In terms of model compilation, the Adam optimization algorithm

is used again to train the network, together with the MSE loss function to evaluate it.

Once the networks are compiled, they are fit during the model training process, which is

configured in the same way as the previous controller: 200 epochs, a batch size of 5000 samples,

and a K-fold cross-validation of K = 9 (see Figure 3.9) in order to get nine models created

with di↵erent sections of the whole dataset. This partition results in 80% of the data (55903

samples) for training, and 10% of the data (6988 samples) for both validation and test. These

last parameters concerning the model compilation and model training are also unchanged with

respect to the previous ANN-IMC. In this way, the necessary networks to design the new SNO,2

controller can be built, and once created, it is possible to evaluate them with the five metrics

defined in Section 3.3.
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ANNs Performance

After training the required LSTM networks to model the process that goes from the entrance

of the flow splitter to the exit of the second tank and its inverse, they are tested with data they

have not seen before and evaluated to know how they work. In order to evaluate the functioning

of the networks that will form the second controller, the MAPE, the MAAPE, the RMSE, the

NRMSE, and the R2 will be used again. However, only the MAAPE, the NRMSE, and the R2

will serve to compare the new results with those of the previous section because they are scale

independent and free of outliers for close-to-zero values. The MAPE and the RMSE will also

be useful for assessing the performance of the latest models considering their individual range

of values. It is worth to notice that it is very important to use multiple evaluation metrics

to evaluate the models because they may perform well according to the measurement of one

metric, but poorly when measured by another one [Eva]. The average of the scores of the nine

experiments carried out by the 9-fold cross-validation (training and validation), together with

the scores of the nine models impartially evaluated on the last 10% of the whole dataset (test),

give rise to the numbers of Table 4.5.

Metric LSTM direct model LSTM inverse model

Training Validation Test Training Validation Test

MAPE [%] 11.589 11.845 5.267 1.643 1.447 1.141

MAAPE [%] 4.912 4.930 3.416 3.670 3.671 5.401

RMSE 0.057 0.057 0.059 465.259 467.882 518.255

NRMSE 0.004 0.004 0.004 0.003 0.003 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.5: Performance of the ANNdir and the ANNinv of the SNO,2 ANN-IMC controller.

The values obtained from the five metrics for the nine models on the three dataset partitions

were quite similar between folds. This indicates once again that there is a variety of examples

throughout the dataset from which the nine models can be trained o↵ering a similar operation

for each fold due to their balanced plurality of examples.

From the average it can be observed a remarkable improvement of these results compared to

those of the previous controller. R2 is always one, which means that there is perfect correlation

between real output and predicted values. This is also an indicator of a highly reliable model

for future forecasts. NRMSE is almost zero and MAAPE is very low in both models, which

is synonymous of almost perfect predictions. RMSE and MAPE corroborate the success of

the aforementioned metrics showing also small values bearing in mind that the direct model

predicts numbers of SNO,2 between 0 and 16 g/m3 while the inverse model predicts values of

Qintr between 0 and 200000 m3. Here it can be appreciated the importance of MAAPE and

NRMSE in supporting these metrics: the NRMSE serves to prove that an RMSE error of the
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inverse model around 500 is low when working with a scale of values of the order of magnitude

five, whereas the MAAPE serves to avoid imprecise measurements such as those of the MAPE

of the direct model when working with values close to zero. Some MAPE and MAAPE values

give unusual values for testing. But as explained in the previous section, this is due to the

constraint of these metrics for small actual values, and to the shape of the signal in that period.

Comparing the four ANNs designed to form the IMCs, it has been confirmed that the models

composing the SNO,2 ANN-IMC controller work with greater precision than those composing

the SO,5 ANN-IMC controller. Among the models forming the SNO,2 ANN-IMC controller, the

MAAPE, NRMSE, and R2 reveals that the inverse models generally perform a little bit better

that the direct ones due to the extra feature of the delayed output.

Given that the nine models generated during training for each process showed similar mea-

surements in their evaluation, any combination of folds of the direct and inverse models could be

appropriate to form the controller. In particular, the 1st fold was chosen for both the ANNdir

and the ANNinv for generalizing and performing satisfactorily once incorporated into the SO,5

ANN-IMC controller structure. Figure 4.12 shows a visual example of how well the ANNs work.

Figure 4.12: Predictions from day 650 to day 700 of the ANNdir (top), and the ANNinv (bottom)
of the SNO,2 ANN-IMC controller.

The above fifty-day plots of the SNO,2, and the Qintr demonstrates that the predictions

are so precise that the blue trace representing the actual values is barely visible because it is

overlapped by the orange trace representing the forecasts. Knowing that the models of the real

process and its inverse are performing excellently, it is time to export their weights and biases

along with the means and variances from Python, to import them in MATLAB, where the SNO,2

ANN-IMC controller will be designed and tested once implemented in the BSM1.
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4.2.2 ANN-IMC Controller

Once the model parameters are extracted in Python, they can be loaded on other frameworks

such as MATLAB and Simulink. In the same way as for the previous controller, first the networks

of the direct and inverse processes are implemented separately, as a strategy to ensure the same

excellent operation that was obtained in the previous subsection by comparing the forecasts

of each LSTM network in both platforms. Otherwise, if the controller is directly created in

Simulink, there are so many elements that compose the ANN-IMC structures that searching for

an error could become a tedious task. Figure 4.13 shows the system that emulates the behavior

of the ANNdir in Simulink. As in the previous section, only the layout of the network structure

of the direct process will be exposed, considering that the one of the inverse process will be

practically identical unlike the input data.

Figure 4.13: Interface layout of the ANNdir structure of the SNO,2 ANN-IMC controller in
Simulink.

As it is noted, the elements that make up the ANNs of this second controller in Simulink

are practically the same as those observed in the controller of the previous section. The major

di↵erence between them is found in the initial block and its number of input signals. Since the

number of variables with which the ANNdir and ANNinv of the SNO,2 were trained is 13 and 14

for each network, the same concentrations are used now as inputs. The horizontal concatenation

of these entries results in 1x13 and 1x14 signals for the direct and inverse models, respectively.

The following blocks follow the same procedure seen for the first controller. After grouping

the incoming data, a first preprocessing step is applied, which consists of the sliding window

described by the schematic of Figure 4.14.

Figure 4.14: Interface layout of the sliding window of the SNO,2 ANNdir structure in Simulink.
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The previous subsystem basically orders the data in such a way that the network itself

(implemented in a subsequent block) receives the data of each variable for 10 time step (the

window width defined). Its operation follows the same steps as those in the sliding window of

the previous section. The di↵erence is in the data considered as well as their mean and variance.

Following the structure, data is scaled before and after the core of the ANN structures. The

MATLAB code that defines the operations of LSTM networks is defined within the box after

preprocessing. Besides, here the function is programmed for calculations with 50 neurons per

gate in order to map the received inputs to output values with the same accuracy as was shown

in the previous subsection.

Having the subsystems of the SNO,2 ANNdir and ANNinv structures, the second controller

can be assembled as seen in Figure 4.15.

Figure 4.15: Interface layout of the SNO,2 ANN-IMC controller in Simulink.

As it is observed, the controller layout follows the same structure presented in Figure 4.11,

and visually di↵ers from the previous controller in the number and type of input signals of each

LSTM network. However, this time the first-order filter located in the middle system is a transfer

function with gain and constant time set to 1 and 1/1000 respectively, the same numbers taken

from the filter of the Qintr PI controller. The same criteria is applied to the saturation block

after the ANNinv, which just limits the predictions of Qintr in the same way as the default PI

does. Input and output ports 1 refer to the input and output of the process that goes from the

entrance of the flow splitter to the exit of the second tank. Finally, the subsystem at the bottom

right performs the calculation of the IAE and ISE metrics to determine the performance of the

proposed controller.
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Controller Performance

The default PI controller as well as the ANN-IMC of the SNO,2 will be evaluated to compare

the performance of the default control strategy with the new proposed IMC one. The same

reference signal is employed for this assessment, so that the measurements and the controllers

are evaluated from the same point of view. The SNO,2 concentration generated for this purpose

is a random square pulse signal of 12-hour variations from 0 to 14 g/m3, which describes a shape

that LSTM networks know how to work with. Again, the performance is computed in terms

of the IAE and ISE over the last 7 days of tracking. For that purpose, BSM1 influent profiles

with dry, rain and storm weathers are considered. Table 4.6 provides the operation results of

the default PI controller and the ANN-IMC controller of the second control loop for a SNO,2

signal with the features mentioned above.

Metric PI IMC Improvement [%]

Dry Rain Storm Dry Rain Storm Dry Rain Storm

IAE 5.567 9.663 8.211 4.546 8.736 7.253 18.34 9.59 11.67

ISE 11.580 24.180 20.320 5.867 17.830 15.020 49.34 26.26 26.08

Table 4.6: Performance of the PI controller and the ANN-IMC controller of the SNO,2.

The percentage of improvement is computed to exhibit the reduction in the IAE and ISE

of the SNO,2 ANN-IMC controller with respect to the original PI implemented in the BSM1.

These results show that the SNO,2 ANN-IMC controller o↵ers the best performance for all three

climates. A decrease of 1.021 in IAE and 5.713 in ISE for dry weather represents the best scenario

with an improvement of 18.34% and 49.34% accordingly. For rainy and stormy weathers, the

gains are not as high as in the previous climate. Nevertheless, an enhancement in IAE and ISE

of 9.59% and 26.26% has been achieved for rain weather, while for storm the upgrade has been

11.67% and 26.08%. In average, the scores account for 13.20% in IAE, and 33.89% in ISE, which

prove that the nitrate and nitrite nitrogen control strategy by default is notably improved.

Despite achieving a better performance in the SNO,2 ANNs than in the SO,5 ANNs, the

improvement in the performance of the SO,5 controller is larger than the one of the SNO,2

controller. This situation is due to PI controllers, which are designed adopting a linearization

of the real process [Pis19a]. Therefore, a fixed or slowly varying set point (as is the case of the

SNO,2 reference signal) will result in a more linear process to be monitored, and consequently

preferable for this type of controllers. Considering that the set point and the process under

control of each problem are completely di↵erent (see Figures 4.3 and 4.11), the baseline scenario

is distinct too, so the improvements of the proposed structures are not comparable.

Finally, Figure 4.16 plots the tracking of the SNO,2 set point for the di↵erent weathers by

the proposed IMC controller.
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Figure 4.16: Tracking of SNO,2 set point changes for dry, rainy and stormy weathers.

As it is observed, the SNO,2 at the process output follows the changes of the reference

signal for all the three weather conditions, despite the di�culties presented by rain and storm

conditions around days 8 to 12.

It is worth to notice that with the ANN-based IMC strategy implemented, a very precise

representation of the process being controlled and its inverse (see Figure 4.12), is not su�cient

to achieve perfect control as indicated by the internal model principle. This does not mean

that the theory is wrong, but that there is an additional factor such as the feedback error (the

di↵erence between the process and model outputs), which is not modeled by the ANNs (it is

not considered in the training dataset) and consequently a↵ects the functioning of the strategy

presented in this dissertation. To alleviate this, the addition of certain level of noise to the data

(especially to the reference signal) can be considered to include this factor (the sum or di↵erence

operation at the beginning of the ANN-IMC controllers) in the model training.

With these results, the second objective of this project is fulfilled: an IMC controller based

on LSTM structures has been designed enhancing the default control of the nitrate and nitrite

nitrogen of the second reactor tank. The product of this section, combined with the previous

one, opens the door to the last part of development and results analysis.

4.3 ANN-IMC Control of the Overall Benchmark Simulation

Model no. 1 (BSM1)

This final part of Chapter 4 will merge the two ANN-IMC controllers designed separately in the

two preceding sections to replace the default structures of the BSM1 as indicated in Figure 1.2.

In this way, SO,5 and SNO,2 concentrations will be managed exclusively with LSTM-type neural
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networks, and thus solely with data.

The original Simulink plant layout that was illustrated in Figure 2.2, looks like the following

system once the modifications are applied.

Figure 4.17: Interface layout of the new BSM1 plant in Simulink.

The subsystems that define the ANN-IMC controllers for dissolved oxygen, and nitrate and

nitrite nitrogen, contain the structures that were shown in Figure 4.7 and Figure 4.15 respec-

tively. The points of the plant where input information is taken coincide with those carrying

signals that were used to train the ANNs of both controllers. For instance, in the case of the

SNO,2, 13 variables for the ANNdir and 14 variables for the ANNinv were chosen to model the

real process, encompassing the flow splitter along with the first two tanks, and its inverse. Vari-

ous points across the plant were considered to take these concentrations and model the processes

more precisely: the input and output of the first reactor tank, the output of the first combiner,

the output of the settler, and the input of the plant (to include Qin). Also, the output of the

second reactor tank is required to include the SNO,2 as the output of the process under control,

and estimate the e↵ect of disturbances and model mismatch.

Once the ANN-IMC controllers have been implemented in the BSM1 plant, their behavior

can be evaluated to prove the plant enhancement and see the controllers dependence.

Controllers Performance

Next, the operation of both default PI controllers and of both proposed IMCs will be evalu-

ated in order to contrast the functioning of both strategies in the monitoring of an entire WWTP

scenario.
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An important factor in joining the two controllers developed separately in the previous

sections is the impact of one structure on the other. Initially, each of these ANN-IMCs was

designed maintaining the original PI of the other concentration. The default set points of the

SO,5 and SNO,2 in BSM1 framework are fixed at 2 g/m3 and 1 g/m3 respectively. It means that

the SO,5 ANNs were trained with data collected from the plant when the SNO,2 control loop

had a fixed set point of 1 g/m3. In the same way that the SNO,2 ANNs were trained with data

collected from the plant when the SO,5 control loop had a fixed set point of 2 g/m3. So, the

networks that conform the controllers have been trained under these configurations, in which the

other structure employs a constant reference signal, and thus, joining the proposed ANN-IMCs

with variable set points will a↵ect their operation. To mitigate this issue without having to

rebuild the networks for a plant with variable set points, a balance has been sought between

reference signals: the same set point of Section 4.2 is used for the SNO,2, while a random square

pulse signal of 1-hour variations from 1.5 to 2.5 g/m3 of SO,5 (instead of 0 to 5 g/m3 as in

Section 4.1) is considered. In that manner, the SO,5 set point is closer to the default value of

2 g/m3 without getting too far from the variations with which the SO,5 ANNs were trained.

As in the preceding sections, the performance is computed for each controller considering the

three BSM1 influent profiles and the IAE and ISE metrics over the last 7 days of control. Table

4.7 provides the scores of default PI controllers and ANN-IMC controllers of first and second

control loops.

SO,5

Metric PI IMC Improvement [%]

Dry Rain Storm Dry Rain Storm Dry Rain Storm

IAE 0.337 0.306 0.332 0.335 0.309 0.317 0.50 0.00 4.40

ISE 0.038 0.034 0.037 0.037 0.031 0.032 2.08 7.83 11.58

SNO,2

Metric PI IMC Improvement [%]

Dry Rain Storm Dry Rain Storm Dry Rain Storm

IAE 5.563 9.668 8.199 5.370 9.577 8.384 3.47 0.94 0.00

ISE 11.620 24.160 20.340 7.542 19.780 17.380 35.09 18.13 14.55

Table 4.7: Performance of the PI controllers and the ANN-IMC controllers of the SO,5 and the
SNO,2.

Focusing directly on the percentage of improvement, it can be appreciated the importance

of using networks under the same circumstances (same kind of data) they were trained. In this

third stage with the controllers combined, the upgrade is not as great as the one achieved for

the controllers separately. Nevertheless, the strategy approach of this thesis still improves the

preestablished one in most measurements. The results show that both ANN-IMC controllers

o↵ers best performance for all three climates in terms of ISE: 7.16% of average improvement
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in tracking the SO,5, and 22.59% for the SNO,2. Regarding the IAE, the scores show a modest

enhancement in two of the three weathers for each structure: 0.50% and 4.40% of reduction in

dry and stormy conditions for the SO,5, while 3.47% and 0.94% of reduction in dry and rainy

periods for the SNO,2. The remaining climates show similar results to those of the PI controllers

in terms of the IAE.

As a summary, the results are also satisfactory even though the improvements are not as

significant as the ones achieved individually. The implemented control approach can be regarded

as an alternative to the one fixed by default, also providing more precise tracking. For specific

weathers where there is no improvement in IAE, there is a trade-o↵ between metrics: a reduction

in ISE results in a control system that produces fewer large errors. In the context of WWTPs,

it is vitally important to avoid large big mistakes that involve exceeding the established limits

for some concentrations, being preferable to commit certain small errors. Finally, and most

important, these measurements can be enhanced by training the networks for this scenario as

discussed before (rebuilding the networks for a plant with variable set points). However, this

work is beyond the scope of this thesis.

With these results, the third objective of this project is fulfilled: a control system using

IMC controllers based on LSTM structures has been established enhancing the default control

strategy.

Chapter Summary

As it is demonstrated throughout this chapter, all the objectives listed in the introduction

have been fulfilled. Two of the most used metrics in the field of control (IAE and ISE) have

been employed to prove the improved performance of the proposed controllers over the default

ones. Between this chapter and the previous one, it has been possible to reflect the magnitude

of the challenge involved in programming ANNs: there are an infinite number of configurations

to create the models on another large number of available data. Every decision taken in the

formation of these networks and therefore in the controllers, matters a lot in the final results.

Finally, the separately created controllers have been combined into a single benchmark scenario

to have a WWTP based exclusively on ANNs and data. It has been seen that despite the

degradation by the e↵ect of one controller on the other, the new strategy generally improves the

original one. Besides, it has been indicated how these results could be enhanced following the

same guidelines of this project.
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Conclusions and Future Work

This dissertation has implemented an ANN-based IMC strategy in BSM1 WWTP simulation

scenario, where it has been possible to analyze the proposed control approach. It was based

on ANNs (LSTM structures) to model the processes required by a standard IMC (the process

under control and its inverse). Thus, the commitment of this work mainly turned around the

design of ANNs, which are the main blocks that constitute the IMC controller of the proposed

concept. The workflow for the creation of ANNs models was detailed in Chapter 3.

Two ANN-IMC controllers have been developed in Chapter 4 as an alternative to the default

PI controllers of the BSM1. The behavior of the strategy adopted in this project and the one

established by default in the BSM1 has been compared by means of the IAE and ISE metrics

considering influent profiles of dry, rain, and storm weathers.

• In Section 4.1 a first controller was designed to track the dissolved oxygen in the fifth

reactor tank (SO,5) concentration at a variable set point actuating over the oxygen trans-

fer coe�cient (KLa). Results show that the SO,5 ANN-IMC controller improves the PI

behavior for the three analyzed climates in an average 43.90% of IAE, and 82.64% of ISE.

• In Section 4.2 a second controller was designed to track the nitrate and nitrite nitrogen in

the second reactor tank (SNO,2) concentration at a variable set point actuating over the

internal recirculation flow rate (Qintr). Results show that the SNO,2 ANN-IMC controller

improves the PI behavior for the three analyzed climates in an average 13.20% of IAE,

and 33.89% of ISE.

Moreover, in Section 4.3 both controllers were joined together on the same BSM1 scenario

to provide a control system exclusively managed by ANNs. The results of both ANN-IMC con-

trollers generally improved the PIs behavior for the chosen set points in IAE and ISE. However,

their performance has been influenced by working in a scenario where the information processed

67
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by the ANNs di↵ers from that used in their training (ANN models are built to deal with a

particular problem).

In general, the development of this thesis has contributed in some way to the study of new

measures to mitigate the problems of environmental pollution by improving the operation of

WWTPs, in addition to favoring the expenses of these plants. In turn, this has demonstrated

that ANNs are capable of modeling complex and non-linear processes with great precision and

only with data.

Although the contribution of this dissertation ends here, new fronts always appear. A list of

some topics not covered in this thesis that may be of interest for further studies is given below.

• Improve the accuracy of the ANNs, and hence the operation of the controllers.

As discussed throughout this project, the control quality of an IMC structure is directly

related to the model of the process being controlled and its inverse. For the proposed

control approach, ANNs are adopted to model both processes. However, there are many

aspects to consider in their construction, such as the architecture of the model itself or the

data to be used. Although precise prediction and tracking results have been achieved in

this dissertation, there are uncountable number of combinations to form the ANNs, and

consequently proposals for new ANN-IMC controllers improving the current results.

• Improve the operation of the controllers once they are joined. As mentioned in

Section 4.3, the union of the separately created controllers with di↵erent set points a↵ects

the operation of both ANN-IMCs. Despite this, the scores obtained were quite good, and

most importantly they can be enhanced by training the networks for a scenario where the

properties of the other controller are considered.

• Test the behavior of the controllers when real sensors are considered. Data

gathering and tracking of concentrations have been carried out when ideal sensors (without

noise) are adopted for both PI and ANN-IMC controllers. Nevertheless, there is the

possibility of working in a more realistic scenario using real sensors. This line of study will

also allow to analyze which strategy is more robust against noise.

• Implement the ANN-IMC strategy on the BSM2 or in other industries. BSM2

framework includes the BSM1 for the biological treatment of the wastewater in addition

to the sludge treatment. This means working with a more complete scenario, with more

sophisticated processes, and more like real WWTPs. It is important not to limit the

ANN-IMC control approach to the specific context of this work, but it is also interesting

to implement this strategy in BSM2, as well as in other industries that require the control

of a system.
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• Deploy the controllers in a real WWTP. There is not a better way to ensure that the

ANN-IMC strategy works properly than implementing it in a real WWTP. This project has

carried out a systematic process and created reliable and accurate models that can make

predictions for IMC structures. The next step would be to put these models forming the

ANN-IMC controllers in operational software to bring the contributions of this dissertation

to the real world.
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Appendix A

ANNs Performance

A.1 Learning Curves

Figure A.1: Learning curves of the ANNdir (left) and the ANNinv (right) of the SO,5 ANN-IMC
controller.

Figure A.2: Learning curves of the ANNdir (left) and the ANNinv (right) of the SNO,2 ANN-
IMC controller.
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vi Appendices

A.2 K-fold Cross-validation

Fold Metric LSTM direct model LSTM inverse model

Training Validation Test Training Validation Test

MAPE [%] 22.839 24.591 24.508 8.766 6.621 4.495

MAAPE [%] 13.490 13.803 13.896 8.232 8.039 8.437

1
st

RMSE 0.102 0.105 0.103 2.795 2.877 2.937

NRMSE 0.015 0.016 0.016 0.009 0.009 0.009

R2 0.997 0.996 0.997 0.999 0.999 0.999

MAPE [%] 22.562 23.562 24.837 9.583 4.186 4.382

MAAPE [%] 13.226 13.802 13.882 8.188 8.137 8.386

2
nd

RMSE 0.100 0.102 0.101 2.778 2.772 2.901

NRMSE 0.015 0.016 0.015 0.009 0.009 0.009

R2 0.997 0.997 0.997 0.999 0.999 0.999

MAPE [%] 22.457 24.310 24.415 9.438 9.293 4.690

MAAPE [%] 13.327 13.676 13.714 8.437 8.626 8.651

3
rd

RMSE 0.101 0.105 0.102 3.091 3.087 3.233

NRMSE 0.015 0.016 0.015 0.010 0.010 0.010

R2 0.997 0.996 0.997 0.998 0.999 0.998

MAPE [%] 22.995 21.738 24.625 9.440 5.501 4.154

MAAPE [%] 13.729 13.559 14.194 7.921 8.375 8.174

4
th

RMSE 0.103 0.104 0.103 2.697 2.679 2.815

NRMSE 0.015 0.016 0.016 0.008 0.008 0.009

R2 0.997 0.996 0.997 0.999 0.999 0.999

MAPE [%] 23.522 25.734 25.630 9.589 9.257 4.442

MAAPE [%] 13.597 14.109 14.088 8.197 8.126 8.402

5
th

RMSE 0.106 0.107 0.107 2.842 2.903 2.976

NRMSE 0.016 0.016 0.016 0.009 0.009 0.010

R2 0.996 0.996 0.996 0.999 0.999 0.998

MAPE [%] 24.863 23.380 26.759 10.537 5.176 4.542

MAAPE [%] 14.028 13.333 14.417 8.349 7.675 8.458

6
th

RMSE 0.105 0.106 0.105 3.005 2.977 3.181

NRMSE 0.016 0.016 0.016 0.009 0.009 0.010

R2 0.996 0.996 0.997 0.999 0.999 0.998

MAPE [%] 24.554 23.308 26.502 9.213 16.412 4.300

MAAPE [%] 13.818 13.530 14.219 8.087 8.084 8.270

7
th

RMSE 0.105 0.107 0.107 2.790 2.795 2.896

NRMSE 0.016 0.017 0.016 0.009 0.009 0.009

R2 0.996 0.996 0.996 0.999 0.999 0.999

MAPE [%] 23.553 24.344 25.592 10.317 10.903 4.137

MAAPE [%] 13.594 13.992 14.062 7.832 8.494 8.110

8
th

RMSE 0.103 0.102 0.103 2.680 2.757 2.799

NRMSE 0.015 0.016 0.016 0.008 0.009 0.009

R2 0.996 0.997 0.997 0.999 0.999 0.999

MAPE [%] 21.561 21.001 23.160 9.014 23.148 4.350

MAAPE [%] 12.621 12.670 13.026 8.127 8.024 8.312

9
th

RMSE 0.094 0.096 0.095 2.912 2.947 3.052

NRMSE 0.014 0.015 0.015 0.009 0.009 0.010

R2 0.997 0.997 0.997 0.999 0.999 0.999

Table A.1: Nine-fold cross-validation performance of the ANNdir and the ANNinv of the SO,5

ANN-IMC controller.
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Fold Metric LSTM direct model LSTM inverse model

Training Validation Test Training Validation Test

MAPE [%] 13.346 10.123 6.418 1.321 1.144 0.841

MAAPE [%] 5.333 4.860 3.641 3.707 3.266 5.297

1
st

RMSE 0.060 0.061 0.063 420.107 415.734 478.204

NRMSE 0.004 0.004 0.004 0.002 0.002 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 11.752 11.424 5.435 1.497 1.181 1.156

MAAPE [%] 5.114 4.802 3.483 3.560 3.458 5.376

2
nd

RMSE 0.058 0.057 0.060 390.583 396.605 452.681

NRMSE 0.004 0.004 0.004 0.002 0.002 0.002

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 12.445 13.589 4.954 1.418 1.470 1.334

MAAPE [%] 5.102 5.394 3.389 3.762 3.753 5.529

3
rd

RMSE 0.053 0.054 0.054 532.322 532.686 571.420

NRMSE 0.003 0.003 0.003 0.003 0.003 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 11.047 12.227 5.276 1.441 1.010 0.997

MAAPE [%] 4.926 5.065 3.490 3.513 3.780 5.287

4
th

RMSE 0.059 0.059 0.061 396.571 409.918 441.191

NRMSE 0.004 0.004 0.004 0.002 0.002 0.002

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 11.294 12.797 5.073 2.303 1.624 1.079

MAAPE [%] 4.813 5.069 3.517 3.821 4.049 5.415

5
th

RMSE 0.058 0.060 0.060 462.432 469.652 508.249

NRMSE 0.004 0.004 0.004 0.003 0.003 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 12.714 10.991 5.010 1.658 1.328 1.156

MAAPE [%] 4.773 4.713 3.480 3.603 4.081 5.425

6
th

RMSE 0.055 0.055 0.055 492.024 484.136 546.736

NRMSE 0.003 0.003 0.003 0.003 0.003 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 8.981 7.677 4.504 1.240 1.433 1.074

MAAPE [%] 4.294 4.011 2.937 3.638 3.366 5.390

7
th

RMSE 0.054 0.054 0.058 495.765 485.580 546.763

NRMSE 0.003 0.003 0.004 0.003 0.003 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 11.623 14.312 5.848 2.193 2.680 1.466

MAAPE [%] 5.109 5.416 3.446 3.845 3.552 5.535

8
th

RMSE 0.061 0.060 0.063 585.951 590.203 639.816

NRMSE 0.004 0.004 0.004 0.003 0.003 0.004

R2 1.000 1.000 1.000 1.000 1.000 1.000

MAPE [%] 11.103 13.467 4.883 1.712 1.149 1.167

MAAPE [%] 4.744 5.044 3.365 3.582 3.732 5.357

9
th

RMSE 0.054 0.055 0.055 411.578 426.422 479.237

NRMSE 0.003 0.003 0.003 0.002 0.002 0.003

R2 1.000 1.000 1.000 1.000 1.000 1.000

Table A.2: Nine-fold cross-validation performance of the ANNdir and the ANNinv of the SNO,2

ANN-IMC controller.


