
This is the published version of the master thesis:

Ortiz Rodríguez de Liébana, Miguel; Carrabina Bordoll, Jordi , dir. Localization,
tracking and guidance with Android app. 2019. 94 pag. (1170 Màster Universitari
en Enginyeria de Telecomunicació / Telecommunication Engineering)

This version is available at https://ddd.uab.cat/record/259409

under the terms of the license

https://ddd.uab.cat/record/259409

Master’s Thesis

Master in Telecommunication Engineering

__

Localization, Tracking and Guidance with Android app

Miguel Ortiz Rodríguez de Liébana

__

Supervisor: Jordi Carrabina Bordoll

Departament de Microelectrònica i Sistemes Electrònics

 Escola Tècnica Superior d’Enginyeria (ETSE)

 Universitat Autònoma de Barcelona (UAB)

September 2019

El sotasignant, Nom del Professor, Professor de l’Escola Tècnica Superior d’Enginyeria (ETSE) de la

Universitat Autònoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memòria de Treball Final de Master ha estat realitzat sota la seva

direcció per l’alumne Miguel Ortiz Rodríguez de Liébana.

I, perquè consti a tots els efectes, signa el present certificat.

Bellaterra, 09/09/2019.

Signatura: Jordi Carrabina Bordoll

Acknowledgments

I would like to express my special appreciation to my thesis supervisors, Phd Jordi Carrabina

and Prf. Marc Codina. They have provided me their support on this project. I would also thank

my colleagues from work for their support, kind advice and patience to resolve my questions.

Furthermore, I would like to give a special thanks to my family and friends for their

comprehension and affection during this year.

Resum:

Avui en dia la evacuació total o parcial d´un edifici en cas d´ alarma es basa en el coneixement dels

usuaris del pla d´evacuació.

En aquest projecte es proposa una solució que complementi el pla d´evacuació i ajudi als usuaris

durant el procés d´evacuació a arribar al punt de reunió amb l´ajuda de tecnologies mòbils i de

localització indoor. Per això es proposa el desevolupament d´una aplicació mòbil de Realitat

Augmentada per fer servir en smartphones amb Android OS. Aquesta aplicació detecta la posició de

l´usuari mitjançant tecnologia de posicionament indoor i el guia per l´edifici mitjançant senyals visuals

per arrivar a un punt de reunió.

Resumen:

Hoy en día la evacuación total o parcial de un edificio en caso de alarma se basa en el conocimiento

de los usuarios del plan de evacuación.

En este proyecto se propone una solución que complemente al plan de evacuación y ayude al usuario

durante el proceso de evacuación a llegar al punto de reunión con la ayuda de tecnologías móviles y

de localización indoor. Para ello se propone el desarrollado de una aplicación móvil de Realidad

Aumentada para utilizar en smartphones con Android OS. La aplicación detecta la posición del usuario

mediante tecnología de posicionamiento indoor y le guía a través del edificio mediante señales visuales

para llegar a un punto de reunión.

Summary:

Nowadays the total or partial evacuation of a building in the event of an alarm is based on the user

knowledge of the evacuation plan.

The purpose of this project is to provide a complementary solution to the emergency evacuation plan.

It will help the user during the evacuation process to reach the designated assembly area through

mobile technologies and indoor location. Therefore, an Augmented Reality mobile application has been

developed for smartphones with Android OS. The application detects the user position by indoor

positioning technology and guides him through the building by visual signals in order to reach the

designed assembly area.

Contents

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Objectives .. 2

1.3 Thesis structure .. 2

2 State of Art .. 5

2.1 Mobile Operating System .. 5

2.2 Programming Languages ... 5

2.3 Mobile devices – smartphones and smart glasses ... 6

2.4 Indoor Positioning ... 7

3 Problem and Solution .. 8

3.1 Problem .. 8

3.2 Solution .. 8

4 Android ... 14

4.1 History and features ... 14

4.2 Android Studio .. 16

5 Java ... 17

5.1 History and features ... 17

5.2 Java API ... 17

5.3 Java - TIOBE Index ... 18

6 Augmented Reality & JPCT 3D engine .. 19

6.1 History ... 19

6.2 Applications ... 19

6.3 JPCT 3D engine ... 20

7 Indoor Localization System .. 21

7.1 History and features ... 21

7.2 Applications ... 23

8 Planning and resources ... 24

8.1 Planning - Gantt Chart ... 24

8.2 Costs and resources ... 25

9 Analysis ... 27

10 Application Development ... 29

10.1 Workflows and algorithms .. 29

10.2 Virtual World ... 30

10.3 Development .. 34

10.4 Functions ... 36

10.5 North Magnetic alignment ... 42

11 Tests and Results ... 47

11.1 Tests ... 47

11.2 Results ... 47

12 Conclusions and Future Works ... 51

12.1 Conclusions ... 51

12.2 Future steps .. 51

13 Bibliography and References .. 53

14 Annex - Code .. 54

List of Figures

Figure 1. Smartphones companies ... 6

Figure 2. Google Glass ... 7

Figure 3. Museo del Prado map by Rafael Moneo ... 8

Figure 4. Signals ... 9

Figure 5. Interactive Kiosk ... 9

Figure 6. Virtual Maps ... 10

Figure 7. SIGUE application .. 10

Figure 8. Android versions 1 .. 11

Figure 9. Android versions 2 .. 12

Figure 10. Android Studio .. 12

Figure 11. Java ... 12

Figure 12. JPCT 3D engine .. 13

Figure 13. Xiaomi mi A1 ... 13

Figure 14. Android devices .. 14

Figure 15. Market OS distribution. Information source: Gartner Inc. 15

Figure 16. Android experience ... 15

Figure 17. Android Studio interface ... 16

Figure 18. Java API .. 18

Figure 19. TIOBE index 2019 .. 18

Figure 20. AR: industry applications ... 19

Figure 21. GPS vs. IPS ... 21

Figure 22. Inertial positioning system flow diagram ... 22

Figure 23. a)Time of arrival approach; b)angle of arrival approach; c)hybrid ToA/AoA

approach; d)received signal strength and fingerprint approach ... 22

Figure 24. IPS techniques combined .. 23

Figure 25. Gantt chart ... 24

Figure 26. Logical workflow diagram .. 29

Figure 27. Virtual reference axis .. 30

Figure 28. Android Studio dependencies ... 31

Figure 29. Virtual World map .. 32

Figure 30. Virtual World view ... 33

Figure 31. Virtual World 1 ... 33

Figure 32. Virtual World 2 ... 33

Figure 33. Virtual World 3 ... 34

Figure 34. Virtual World axis .. 34

Figure 35. Android Studio configuration ... 35

Figure 36. Android Vritual Device Manager ... 35

Figure 37. Android Manifest - App name .. 36

Figure 38. onSurfaceCreated .. 39

Figure 39. onSurfaceChanged .. 39

Figure 40. onDrawFrame ... 39

Figure 41. onTouch .. 40

Figure 42. IsInWorld .. 40

Figure 43. PointsInvisibles ... 40

Figure 44. IsWayOut .. 40

Figure 45.CalcPoint_RoomCorr ... 41

Figure 46.Calc_Room .. 41

Figure 47.CalcRuta ... 41

Figure 48. onSensorChanged ... 42

Figure 49.onAccuracyChanged .. 42

Figure 50. panBy .. 42

Figure 51. Azimuth - Roll - Pitch ... 43

Figure 52. Azimuth angle monitoring .. 43

Figure 53. Camera rotation ... 44

Figure 54. Virtual World and Magnetic heading directions ... 45

Figure 55. User 1 - application ... 48

Figure 56. User 2 - application ... 48

Figure 57. Device 1. - Android 4.4 kitkat .. 48

Figure 58. Device 1.2 - Android 4.4. kit kat .. 49

Figure 59. Virtual World .. 49

Figure 60. Checkpoint signal Room 1 .. 49

Figure 61. Checkpoint signal Room 2 .. 50

List of Tables

Table 1. Project costs ... 26

Table 2. JPCT Classes .. 31

Abbreviations

IPS Indoor Positioning System

GPS Global Positioning System

IDE Integrated Development Environment

API Application Programming Interface

OS Operating System

OOP Object-Oriented Programming

UI User Interface

SoC System on Chip

LPS Local Positioning System

BLE Bluetooth Low Energy

NFC Near Field Communication

JVM Java Virtual Machine

JDK Java Development Kit

OpenGL Open Graphics Library

GNSS Global Navigation Satellite System

RSSI Received Signal Strength Indicator

IMU Inertial Measurement Units

INS Inertial Navigation System

WP Work Package

WF Workflow

APP Application (SW Mobile device)

AR Augmented Reality

AI Artificial Intelligence

SW Software

HW Hardware

DVP Design Verification Plan

1

1 Introduction

This first chapter explains the motivations for choosing this topic and working on this project.

It also exposes the different objectives to be achieved. Finally, a brief explanation of the

structure of this thesis will be introduced.

1.1 Motivation

Currently building evacuation depends on the knowledge the users have of the emergency

evacuation plan and space distribution of a building. Psychological factors such as stress due

to the alarming situation can cause mental block into the user and remain difficult the

evacuation process. Even worse, what would happen if the user did not know at all the space

distribution of the building?

This project pretends to design a solution based on mobile devices, Augmented Reality (AR)

and IPS (Indoor Position System) in order to help the user, find the designated assembly area

timely during the evacuation.

The solution is adapted in an emergency evacuation context, but it can be used for other

purposes, for instance to move inside a building from a current position A to another position

B. Never mind that the building is a shopping mall or an office, the user can easily be guided

through the spaces of the building without losing time to find a plan or an information desk.

The main reason for being part of this project is for me an opportunity to develop a solution for

a real issue working with different technologies and more precisely the mobile ones.

During those last years, mobile applications have given solutions to real problems in education,

finance, mobility to mention just a few examples and making life easier for people. As an

engineer I am willing to solve social problems with technology and the knowledge that I have

acquired during my master's degree in engineering.

Thanks to this project, I am delighted to introduce myself to Android mobile applications

development, to work with Java programming language and to investigate 3D virtual

environments.

2

1.2 Objectives

The aim of this project is to build an Augmented Reality application that shows the way out to

the assembly area during the evacuation process.

For that purpose, it is mandatory that the following steps be developed:

- A 3D virtual environment of a building or part of it

- Fundamental functions for guidance in a virtual environment and the receipt of the

position signal sent by the indoor localization system.

- Development of an Android application to be installed on smartphone with Android OS.

To achieve these objectives two prototypes will be created:

1. First prototype - virtual solution to verify the viability of the application.

1.1 Development of a virtual map for the building prototype_1

1.2 Development of a navigation system in 3D virtual environment

1.3 Development of a reference system for the virtual and real-world environments

1.4 Development of the Way-Out function_1

1.5 Development of the signalization functions

1.6 Test of prototype_1

2. Second prototype - integration of prototype_1 to the real-world environment.

2.1 Development of a virtual map for the building prototype_2

2.2 Development of the Way-Out function_2

2.3 Development of the camera function to merge the virtual and real-world views

2.4 Development of data acquisition system and adaptation to the indoor positioning

2.5 Test of prototype_2

1.3 Thesis structure

The project is developed in 14 chapters, there is a short description of each one of them.

Chapter 1 - Introduction

Definition of key concepts of the development and definition of the projects, motivations,

objectives and structure.

3

Chapter 2 - State of Art

Introduction to the different technologies used to develop the solution.

Chapter 3 - Problem and solution

Explanation of the identified problem and the conceptual and technical solution proposed.

Chapter 4 - Android

Chapter focused on explaining why the Android OS had been chosen and his principals

characteristics. Also, a review of the IDE Android Studio used for the development of Android

applications.

Chapter 5 - Java

Chapter dedicated to the history of the programming language Java, the motivations why it has

been selected and his impact in the current market.

Chapter 6 - Augmented Reality & JPCT 3D engine

History of the Augmented Reality, his main applications and the organizations that used this

technology. Also, comment on the 3D library used in this project.

Chapter 7 - Indoor positioning system (IPS)

Point dedicated to explaining the IPS systems and opportunities that offer.

Chapter 8 - Planning and resources

Description of the planning to develop the solution of the project. Following to the introduction

to the resources that have been used for the project.

Chapter 9 – Analysis

Definition of the projects scope.

Chapter 10 – Application Development

Study of the main functions and development of the virtual world, the logical of the functions,

the workflows developed, and the integration of the hardware used.

4

Chapter 11 – Test and Results

Description of the verification and validation plan where all tests are defined.

Presentation of the tests results.

 Chapter 12 - Conclusions and Future Works

This chapter closes the project doing an evaluation of the results obtained and proposing future

works.

Chapter 13 - Bibliography and References

References to all the articles, books, blogs and websites consulate and mentioned for this

project.

Chapter 14 - Annex

Application code

5

2 State of Art

Since the arrival of the mobile OS, the world has lived a digital revolution. These systems have

permitted that a large range of services could be concentrated in only one device, a smartphone,

a smartwatch, a tablet or smart glasses to mention only that.

Those last few years a significant number of solutions have emerged from the fusion of mobile

technologies and identification technologies, positioning or information technologies, thanks to

the successful evolution on the electronic area, specifically in electronic mobile devices.

Another significant point is the number of professionals with technology background who

contributes to the exponential evolution of some programming languages and technologies. For

that reason, a lot of technologies as Augmented Reality has shown a huge increase of their

applications in different sectors: industry (receive instructions to repair a machine), advertising

(outside advertising campaigns), tourism (show information of spaces or places), video games

(PokemonGo), museums (giving life to drawing paint), medical (visualization of the data of the

patient), architecture (showing the process of construction of a virtual house), academical

(showing information on an interactive way).

2.1 Mobile Operating System

It is about programs than facilitate the interaction between the user and the mobile device

programs. There are several mobile systems in the market, but more than 98% of all the devices

use Google Android OS or Apple IOS. This sector is in constant evolution, this past August the

last mobile operating system was introduced as a rival of both mentioned previously. It is called

HarmonyOS and is developed by the Chinese company Huawei.

These operating systems are oriented specifically to the wireless connectivity and multimedia

format for mobile phones.

On the Spanish market, the OS which predominates is Android with almost 90% of the part of

the market.

2.2 Programming Languages

Since the creation of computing systems that allows programming and creating software, many

programming languages have been created. Object-oriented programming (OOP) languages are

the most used in those last years. Most of these programming languages have the capacity to

6

develop multiplatform solutions, to group their functions in APIs and few of them have the

support of big corporations and communities. Their main advantages are to be able to recycle

the components, easy maintenance and modular structure. The OOP most used are Java, C#,

C++, Python, Objective-C y PHP.

Nowadays, there are used for the development of software in helpdesk applications, in backend

solutions, in UI...

2.3 Mobile devices – smartphones and smart glasses

Mobile devices are electronic devices which combine the benefits of computers and mobile

phones. These devices have the following characteristics: mobile operating system, SoC with

high processing capacity, connection to network, memory, GPS, touch screen, integrated

battery, cameras and wearable.

Between all the mobile devices the smartphones stand out. They revolutionized all sectors since

their apparition ten years ago. Smartphones are very popular in all generations and accessible

to all social categories. They have become an indispensable tool for professionals and personal

uses. They also allow to install some applications as agenda, calendar, chats, mailbox, web

browser, video games. All these applications make life easier. Since their arrival, these devices

have modified our habits as shopping or social relationships.

The use of Smartphones has benefited from the improvement of OS and technology evolutions

as SoCs (System on Chips), touch screens and batteries. Today these devices have the support

of big corporations like Apple, Google, Huawei, Xiaomi, Oppo, ZTE or Samsung.

Figure 1. Smartphones companies

Thanks to continuous improvement of those devices, new technologies have gained importance

through the years like AR and AI.

Regarding smart glasses, these devices had a huge boom in 2012. It is the incorporation of

smartphone to glasses. The most well-known smart glasses are the “Google Glass”. There are

also other options as for instance “HoloLens” by Microsoft.

7

The arrival of smart glasses had a positive reputation in the professional world due to the virtual

reality and the development of customized applications in certain fields.

Figure 2. Google Glass

2.4 Indoor Positioning

Through the years, outdoor positioning provides a high-quality solution thanks to GPS and

GLONASS, but the indoor positioning solutions are still improving their technologies.

There are two positioning systems: Global as GPS which uses the satellites to calculate the

position. Local systems called Local Positioning System (LPS) which calculates the position

using local mechanisms like WIFI stations and telephony stations.

The system used to obtain the position in indoor places is the Indoor Position System (IPS).

The IPS are specific cases of LPS. These systems are focused on indoor positioning in spaces

no exposed to the outdoor.

The most important technologies used for indoor positioning are WIFI and Bluetooth.

The Bluetooth Low Energy (BLE) can reach a high precision in the positioning. BLE uses a

hardware (called beacons) much more economical than a WIFI router moreover it had a reduced

operation range. Normally They use the fingerprint technique.

8

3 Problem and Solution

3.1 Problem

There are several reasons for what a person will need to move into a building to one point to

another easily and quickly.

First, we must consider what could happen if a person does not have the knowledge of the

distribution of the indoor spaces of a building where he is. Following examples of places where

this situation could happen:

1. Shopping Malls

2. Public buildings as school university or museums.

3. Hospital centers

4. Corporate buildings

Other reasons for moving into a building quickly is in the case of emergency alarm. In this case

is mandatory that the person knows:

1. Where He/She must go

2. The route knowledge to go until the assembly area

3.2 Solution

Nowadays a few solutions exist to resolve indoor positioning problems.

BUILDING MAP

The first solution is building maps. The user must have the physical map of the building under

his eyes and be able to read the map. It is not a simple solution because there is not a lot of

maps in a building and there are in some determined points. Everybody also does not have the

same ability to interpret properly a map.

Figure 3. Museo del Prado map by Rafael Moneo

9

INFORMATION DESK - EXPERT

Another option is to ask at the information desk to a professional or a person who knows the

building. This solution supposes that these two persons have enough knowledge of the building.

After asking how to move to the final point all depends on the quality and the reliability of the

information provided. It is a solution usually used in hospitals, museums and office buildings

but this solution has some disadvantages:

1. Find the right person at this specific moment when we need to know the way

2. Rely on the information provided by the person with the knowledge of the building

3. Be able to interpret the information received

Figure 4. Signals

VIRTUA L MAP

This following solution is a virtual map of the building. On this kind of maps spaces and

including the ways are shown as the user must follow to go from initial point to the final point.

There are two options to see the virtual maps. The first one is the Interactive Kiosk, it is a

touch screen located in a determined point in the building and the user can consult the way to

go to a place in the building.

Figure 5. Interactive Kiosk

10

The second one is a Virtual Map that the user can consult in his own mobile device for instance

a smartphone. They are working the same as interactives Kiosks, but the difference is that ones

are not in a determined point.

Figure 6. Virtual Maps

Therefore, the virtual map solution allows to show the way to the user from one determined

point (kiosk) or in one determined moment (mobile device). The disadvantages of both options

are the following points:

- The user must remember the way indicated in the screen of the kiosk.

- The mobile device offers a solution no connected with the real-world environment.

That is why these solutions are not complete.

The solution based on virtual map developed by the Public Galician Service of Saúde deserves

to be highlighted. It is an application called “SIGUE” available on Play Store of Android and

AppStore of Apple. Different services are centralized in this application and can show to the

user a way to move through the hospitals of the Galician Health Service.

Figure 7. SIGUE application

11

PROJECT SOLUTION

The solution proposed in this project improves the previous solutions exposed. This one brings

a high added value solution with a reduced developing cost.

In this project, Android will be used as an operating system. This OS allows us to develop an

application programmed with JAVA. This application can be used in some Android mobile

device. Through the camera of the mobile device, the application captures the pictures of the

building from the position of the user and shows him the necessary signals in real time to be

guided intuitively to the final point.

Android permits developing applications for mobile devices. This fact allows avoiding the

process of design a customized hardware. The selection of Android is due to the following

points:

- Very extended: there are a lot of devices commercialized which use OS

- Developers license is economical, and it is one-time payment

- Easy to download and install on a mobile device

- Updating the application is easy and fast

- Many code libraries

- Available for a different type of mobile devices (tablets, smartphones…)

The minimal version for the developed application to be operative is Android 4.4 KitKat which

meets with the API level 19. The reason for selected this minimal version is because 96.2% of

Android OS commercialized devices are compatible with this version.

Figure 8. Android versions 1

12

Figure 9. Android versions 2

The IDE (Integrated Development Environment) selected for the development of the

application is Android Studio. It is the most important IDE for the development of Android

applications. This option is totally free and can run on Windows 10. It is also supported by a

huge community of developers.

Figure 10. Android Studio

The programming language in the development of the application code is Java. There are two

reasons to select this option. From one side is a very powerful programming language and from

the other side it is one of the native languages to develop Android applications. As the most

popular language in the development of Android applications, Java benefits a huge supporting

community.

Figure 11. Java

13

The library chosen for developing the 3D environment of the spaces is JPCT. This library is

compatible with Android Studio.

Figure 12. JPCT 3D engine

The physical device used to install the application is the smartphone Xioami mi A1. It is my

own mobile device. It is a smartphone made by the Chinese company Xiaomi. Xiaomi mi A1

runs with Android One OS in his Android 9 Pie version.

Figure 13. Xiaomi mi A1

14

4 Android

4.1 History and features

In 2003 Android Inc company was built by Andy Rubin, Rich Miner, Nick Sears and Chris

White with the aim to develop mobile devices which a knowledge of position and user

preferences. Later in 2005 Google bought Android Inc and started to develop a mobile platform

based on the Kernel of Linux. It was only in 2008 that the first version of the operating system

of Android called Android 1.0 Apple Pie was commercialized.

Nowadays there is a huge number of versions and the last one was launched last August 2019

and is called Android 10.0 or Android Q.

Several operating systems exist but the difference between Android and the others is based on

Linux, a totally free and multi-platform nuclear operating system.

Figure 14. Android devices

For the other side Android allows to programming applications in Java through the virtual

engine Dalvik. That is why Android provides necessary interfaces to develop applications with

smart device functions (sensors, GPS, agenda).

This operating system has a significant penetration in the international market as a worldwide

leading OS. The following graphic shows the evolution of the trimestral sales of mobile devices

separated by operating systems from 2007 to 2018.

15

Figure 15. Market OS distribution. Information source: Gartner Inc.

It is important to underline that Android has a big community behind the system and support

all the professionals through forums, blogs, websites and meetups.

Android has converted the smartphone as a device able to make high level photos, to be

informed of the position of the user by GPS coverture, to make NFC (Near Field

Communications) payments, to consult internet sites or to enjoy an experience based on virtual

reality and so much more. Android also provides an IDE called Android Studio.

Figure 16. Android experience

16

4.2 Android Studio

Android Studio is the official integrated environment of development for Android platform. It

was announced on May 16 of 2013 and replaced the Eclipse as the official IDE for the

development of applications for Android. The first stable version was published in December

2014. Now the version 3.5 of Android Studio is available. Following the graphical presentation

of the IDE.

Figure 17. Android Studio interface

It is important to configure in the correct format the Android Manifest. It is an XML file that

contains the description of all the Android application characteristics. Including the minimal

version used for Android, the permissions, the building blocks and the presentation

configuration (landscape or portrait presentation).

17

5 Java

The selection of Java programming language has two factors:

1. It is one of the Official Android languages.

2. There is a considerable support community.

5.1 History and features

TIOBE Quality Indicator presented Java as the most used programming language (object

oriented) known in the world. Since 1995, it has been commercialized by Sun Microsystems

(today Oracle). A number of applications and websites have been built in Java for his reliability,

security and speed.

Java is deployed in a large number of devices: from laptops to data centers, from gaming

consoles to supercomputers, from mobile devices to Internet.

The reason why Java is used on multiple devices is due to the fact that Java applications are

compiled into bytecode (Java class), which can execute in any Java (JVM) virtual engine

regardless of the computer architecture.

As key figures:

- 97% of corporation desktop run Java

- More than 9 million of Java developers worldwide

- More than 3000 million mobile phones execute Java

- 5000 million of Java cards activated

- 125 million of TV devices execute Java

Java has the support of a large community of software developers.

5.2 Java API

API means application programing interface. It is basically a tool set that programmers can use

to develop software. API of Java is a website where is published a list of all the classes that are

part of the Java development kit (JDK). It includes all Java packages, classes, and interfaces,

along with their methods, fields, and constructors. These prewritten classes provide a

tremendous amount of functionality to a programmer. Following a screenshot of the website.

18

Figure 18. Java API

The current API of Java is in the edition 7 and is called “Java™ Platform, Standard Edition 7

API Specification”.

5.3 Java - TIOBE Index

The TIOBE Programming Community index is an indicator of the popularity of programming

languages. The index is updated once a month. The ratings are based on the number of skilled

engineers world-wide, courses and third-party vendors. Popular search engines such as Google,

Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings. It is

important to note that the TIOBE index is not about the best programming language or the

language in which most lines of code have been written. TIOBE Index for August 2019

described Java as the programming Language more popular.

Figure 19. TIOBE index 2019

19

6 Augmented Reality & JPCT 3D engine

Augmented reality allows to combine real-world elements with virtual environment in real time.

This capacity to overlay virtual information on top of the real-world through our smartphones

pretends to create an added value experience to the user.

6.1 History

While developing one of the most famous planes “Boeing 747” in 1992, the scientist and

researcher Thomas P. Caudell faced a manufacturing problem. The workers who assembled the

different aircraft parts spent too much time trying to understand the instructions. He worked on

a solution which provides information on a screen in order to guide the workers during the

installation process.

6.2 Applications

Augmented reality has seen an increasing impact in important in almost all the sectors:

- Industry: Receiving instructions during an installation

- Advertising: Visualization of Outdoor Advertising Campaign

- Turism: Orientate a tourist providing relevant information

- Gaming: “PokemonGo”

- Museums: Giving life to the masterpieces.

- Medical: Visualization of patient information.

- Architecture: Visualization of the alterations in an apartment.

- Sports: The sporty person can explore new paths and visualize relevant information.

- Academic: Show to the student information in an interactive way.

- Automotive: Show route to the conductor using GPS.

Figure 20. AR: industry applications

20

An important group of companies works currently with AR and Android mobile technologies.

To only mentioned a few of them: Amaxperteye, Wizzan, Icarus, VMware, Ubimax, Picavi,

Eyesucceed, Hodei Technology, Chironix, Cvision. Most of the companies mentioned have

their headquarters in the US.

6.3 JPCT 3D engine

JPCT is a 3D engine is a library for desktop Java and Google´s Android. It will work on

Windows, Linux, Mac Os X, Solaris x86 and on Android mobile phone or Tablet. It supports

OpenGL via LWJGL and JOGL and uses OpenGL ES 1.x and ES 2.0 on Android.

JPCT for Android called JPCT-AE has an API which offers to programmers all the features

they need to code for mobile 3D games, simulation application for Google´s Android platform.

The main Features:

- It is optimized for the Android mobile platform

- Supports OpenGL ES 1.x and 2.0 on Android 1.5 or higher

- Render to texture

- Build-in primitives like cones, cubes, spheres...

- Transparency and fog effects

- On a Tablet or smartphone

OpenGL (Open Graphics Library) is a specific standard who defines a multilingual and multi-

platform API to describe applications that produce 2D and 3D graphics.

21

7 Indoor Localization System

7.1 History and features

Since 2000 the Geolocation systems are present in most mobile devices thanks to GNSS (Global

Navigation Satellite System), of which the best known is the GPS.

Now, these systems have been adapted to the mobile devices and guide us in the car, by foot or

on bike, as city or country side. Nevertheless, some zone still resisting to the positioning

technology, especially indoor spaces, most known in the scientific area as indoor environment.

In these environments the GPS fails and that is the reason why it is necessary other alternatives.

GPS technology is not working in indoor environments for these following reasons:

- The satellite signal is not able to reach the necessary intensity in indoor space

- In case of the satellite signal reaches, the building maps should be public and in mobile

device format

It for these reasons that another type of indoor positioning is used as previously commented in

the State-of-the-Art section: Indoor Positioning Systems (IPS). The following figure illustrates

the different concepts in both technics GPS vs. IPS.

Figure 21. GPS vs. IPS

Nowadays, the next indoor positioning technologies are used:

Bluetooth

These systems have relied on the use of received signal strength (RSSI) measurements to

estimate the distance between Bluetooth devices that are part of the system. Using this

technique, positioning systems can achieve meter-level accuracy when determining the location

22

of a specific device. As of Bluetooth 5.1, since angle to the antenna can be measured, it can be

used to determine inside position accurate to centimeter level.

Inertial Positioning systems

This technique works thanks to Inertial Measurement Units (IMU) such as accelerometer,

gyroscope and geomagnetic field sensor in smartphone. Although the precision of Inertial

Navigation System (INS) is limited due to the drift of IMU along the time as well as cumulative

errors, no external signals are necessary, and this robustness and invulnerability make it a

powerful complementary to others indoor positioning technologies in short term.

Figure 22. Inertial positioning system flow diagram

Wifi positioning systems

The most common and widespread localization technique used for positioning with wireless

access points is based on measuring the intensity of the received signal (received signal strength

indication or RSSI) and the method of "fingerprinting”. The accuracy depends on the number

of nearby access points whose positions have been entered into the database.

Figure 23. a)Time of arrival approach; b)angle of arrival approach; c)hybrid ToA/AoA approach; d)received signal strength

and fingerprint approach

https://en.wikipedia.org/wiki/Received_signal_strength_indication

23

They can be combined with different technologies to reach a better positioning capacity. The

possible solution is introduced in the following figure.

Figure 24. IPS techniques combined

7.2 Applications

The IPS applications are very extended. It will depend on the goal that is given to them. These

following useful applications stand out:

- To control crowded spaces

- To localize someone into a space

- To show personalized advertising according to the user

Outstanding sectors:

Marketing Space management

Sport and Music events Industry

Education sector Health

Hotel industry Augmented reality

Retail Aviation management

24

8 Planning and resources

8.1 Planning - Gantt Chart

The first step to develop the project is identifying the stages and the planning as resources and

staff as in work packages called WP with the time perspective.

All the stages must be marked in the Gantt chart to have a better perspective. This chart is

managed by the project manager and he will be responsible for it updating and identify all the

eventual risks.

Figure 25. Gantt chart

WP_1: Planning

Identify the needs and develop the project

Definition of a Project plan

Gantt Chart

WP_2: Analysis and Feasibility

Analysis of the state of art of the components and technologies to understand technical concepts

Scope definition

Product Requirements

Business cases refinement

Risk evaluation

Feasibility report

25

WP_3: Development prototype_1

Architecture design

Application development code

Build Android application

WP_4: Development prototype_2

WP_5: V&V - Tests

Define a collection of tests to verify the correct construction of the application

Define collection of tests to validate that the application performs as is expected

Integration Test Report, System Test Report, SW Test Report, Acceptance Test Report.

WP_6: Documentation

Technical documentation

Review

WP_7: Oral Presentation

Preparation of the oral presentation

Thesis defense

8.2 Costs and resources

RESOURCES

To calculate the costs of the project for developing the Prototype_1 the following resources are

required.

SW Tools

Android Studio

Developer account on Google Play

HW Tools

Android Smartphone

Windows Computers

Indoor Antennas position Systems

26

Human Resources

Android developer

COSTS - The project cost is described in the following table.

Type Concept Cost Period Total Cost

Sw Android Studio - - -

Sw Google Play acc. 25 € one-time 25 €

Hw Android smartphone 200 € one-time 200 €

Hw Windows computer 600 € one-time 600 €

Hw Indoor Antennas System - - -

Hm Android Developer 25 €/h 18 weeks 11250 €

- - - - 12075 €

Table 1. Project costs

Indoor antennas Systems services are provided by an external company.

Android developer has a cost 25€/hour and the work day is of 5 hours.

27

9 Analysis

As it was mentioned in the section 1.2 the project was divided in two prototypes. For each one

of them it will be defined their requirements for defining the scope of the project. Normally in

a SW project the requirements are developed by the product owner or the responsible of each

department (SW, HW, System). The collection of requirements is described next.

PROTOTYPE 1

1. First prototype - virtual solution to verify the viability of the application

1.1 Development of a virtual map for the building prototype _1

1.2 Development of a navigation system in 3D virtual environment

1.3 Development of a reference system for the virtual and real-world environments

1.4 Development of the Way-Out function _1

1.5 Development of the signalization functions

1.6 Test of prototype_1

Requirements - Prototype_1:

Req_1. The app shall be support for minimum Android API level 19 (kitkat)

Req_2. The app shall be available in .apk format

Req_3. The app can be installed in any smartphone with Android version 4.4 or greater (until

Android 9.0)

Req_4. The name of the app is “TFM_Prototype1_VX.Y”. The nomenclature X.Y is the

reference for the version control of the app (X-major, Y-minor)

Req_5. The app shall work on smartphones with the screen resolution FullHD (1,920 x 1,080

pixels) or FullHD+ (2.340 x 1.080 pixels)

Req_6. The .apk file shall be less than 10 MBytes

Req_7. The device shall have at least the next sensors: accelerometer, gyroscope and

geomagnetic field sensor

Req_8. The device shall have a maximum weight of 200gr

Req_9. The device shall be equal or greater than 5 inches

Req_10. The device shall have Android 4.4 kitkat (or greater)

Req_11. The device shall be able to process the rendering images

Req_12. The devices shall be able to do screen refresh at least 25 frames/second in order to

have a fluid vision experience

Req_13. The app shall perform as described in the Workflow “App Workflow diagram”

28

 Req_14. The app shall update the direction of the camera when rotation movement on Y-axis

is detected.

Req_15. The app shall update the position camera when some touch screen movement is

detected.

Req_16. The app shall perform lateral and lineal movements of the camera.

Req_17. The app shall introduce the virtual world on screen orientation “landscape”

Req_18. The app shall set the camera 90º from the smartphone magnetic heading

PROTOTYPE 2

2. Second prototype - integration of prototype_1 to the physical-real world

2.1 Development of a virtual map of the real building prototype_2

2.2 Development of the Way-Out function_2

2.3 Development of the camera function to merge the virtual and real- world views

2.4 Development of data acquisition system and adaptation to the indoor positioning

2.5 Test of prototype_2

Requirements - Prototype_2:

All the requirements of Prototypes_1 are applied to the Prototype_2 and the next ones.

Req_19. The device shall have rear camera

Req_20. The device shall have Bluetooth connectivity

Req_21. The device shall have Wifi connectivity

Req_22. The device shall have 3G/4G connectivity

Req_23. The device shall connect with the server to get the position

Req_24. The app shall update the position in less than Xms (TBD) after the position was

received

Req_26. The app shall have a virtual map with a scale 1:1 according real-world environment

29

10 Application Development

10.1 Workflows and algorithms

The next diagram shows the logical sequence used on the app.

Figure 26. Logical workflow diagram

The workflow defined previously is usable for both subproject (prototype_1 and prototype_2).

The aim of this workflow is based on the evaluation of every new point entered into the system

30

in order to determine the position in the building (“WayOut”, “Room” or “Corridor”). In

consequence the logical of the app modifies the checkpoints signals features (visibility or

texture).

The idea is to add a series of visual elements depending on the user's position. The logical

workflow is built for the prototype_1 but it can serve for the prototype_2. Although some

modification will be necessary for the introduction of a logical part focused on the management

of the position signal provided by the indoor positioning system.

Important: From this point we will focus on the development of the solution based on the

prototype_1.

10.2 Virtual World

To guide the user inside of the building is necessary to develop the signals that will serve as

reference points. These signals are situated in the space included into the building, therefore a

virtual world must be built.

The virtual world is the virtual recreation of the inside of the building. It is mandatory to create

all the elements to build the virtual world as walls, floors, doors, stairs and distributing them

properly inside the world.

The construction of the virtual world is possible thanks to the 3D JPCT library. This library has

an API where the necessary basic elements are described to build the world.

The axis reference of JPCT is visualize as below.

Figure 27. Virtual reference axis

31

The classes used to develop the virtual world are shown in the next table.

World Define the space where the elements will be added

FrameBuffer Provide a buffer into which JPCT renders the scene

Light Allow to handle the light source

Object3D Allow to create 3D objects

Primitives Allow to create some predefined 3D objects

ExtendedPrimitives Provide some methods to create basic 3D objects that can be used within

a JPCT world

SimpleVector Represent a basic three-dimensional vector (used by Object3D and

ExtendedPrimitives)

Table 2. JPCT Classes

The next step is the IDE configuration dependencies for Android Studio to recognize the JPCT

library classes.

Then, the “build.gradle” file in dependencies section has to create a reference to the file

“libs/jpct_ae.jar”. This is the way for Android Studio to allow developers using the JPCT

library.

Figure 28. Android Studio dependencies

32

To create the building is necessary to follow the next steps:

1. Create a world and a light source

2. Create objects (define the size and give them texture, move them to a position)

3. Add objects to the world

To define the objects, it must set some features: height, thickness, length.

To define the texture, we must instantiate the texture class and modify their features. New

textures can be defined as pictures or defined textures can be represented with color (red, blue,

green...).

To move an object to an exact position into the world is necessary to have a reference in the

central position of the object and it will move according to the reference point of the coordinate

axis. For further information about connected data with the development of the virtual world is

recommended to go to the Annex section where the application code is.

The developed world for this prototype_1 is shown in the following figures. It is an approximate

representation of a segment of offices floor of the engineer university UAB.

It is composed by a hallway and 6 rooms, 3 on each side of the hallway. The elements created

are walls, floor and signals elements.

Figure 29. Virtual World map

33

Figure 30. Virtual World view

These screenshots as below show different perspective of the virtual world developed.

Figure 31. Virtual World 1

Figure 32. Virtual World 2

34

Figure 33. Virtual World 3

Note: The wall with the green texture is a reference. One of the green wall’s vertex meets with

the point (0,0,0). This fact makes easy the test process for the developer.

Figure 34. Virtual World axis

10.3 Development

Before starting the code development is mandatory to make a correct Android Studio

configuration.

1. Set up the Android version: minSdkVersion:19 and targetSdkVersion:28

2. Set up the dependencies (libs\jpct.jar) as explained in the last section 10.2

35

Figure 35. Android Studio configuration

It is possible to emulate a smartphone using the Android Studio emulator. Android Virtual

Device Manager allows the developer to use the smartphone desired. Although the emulator

has some limitations. For this reason, is a good option to install the apk file in a real smartphone,

especially for heavy computation applications.

Figure 36. Android Vritual Device Manager

In the AndroidManifest.xml file is possible to modify the application name changing the value

name of “android:label”. Then the application will show the name on the screen when it has

been executed in the smartphone.

36

Figure 37. Android Manifest - App name

10.4 Functions

This sub chapter is the most important part of the project. The functions and methods developed

in the code app were described next.

Activity

The “Activities” are necessary to visualize on the screen the application content. Each screen

shown by the application is an Activity. That means if an application has three screens, the

application has 3 Activities. The activities are built into two parts: The logical and the graphical.

The graphical part is a file XML which contains all the elements shown on the screen.

The activities accomplish a lifecycle. The activity class provides a core set of sillcallbacks:

 onCreate(), onStart(), onResume(), onPause(), onStop(), and onDestroy().

 The system invokes each of these callbacks as an activity enters a new state. The workflow of

these states is described next.

https://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity.html#onStart()
https://developer.android.com/reference/android/app/Activity.html#onResume()
https://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.android.com/reference/android/app/Activity.html#onStop()
https://developer.android.com/reference/android/app/Activity.html#onDestroy()

37

Then, the programmer shall develop some of these methods on the code application. For more

information check the code in the Annex section and here.

The logical part is a file with .java format. In this file is where the application Java code is and

where the main functions are developed.

Import

All the packages imported are mentioned in this section

https://developer.android.com/guide/components/activities/activity-lifecycle

38

MainActivity class

It is the class instantiated to execute the application.

onCreate

Called when the activity is starting.

onResume

State in which the application interacts with the user. The SensorManger features are coded

(type of sensor, sampling period).

onPause

It is called when the user no longer actively interacts with the Activity, but it is still visible on

screen.

39

onSurfaceCreated

Here is where the world, light and camera are instantiated. The textures used are also defined.

The objects are added to the world. They can also be positioned in the virtual environment.

Some objects features are settled.

Figure 38. onSurfaceCreated

onSurfaceChanged

This sets up the FrameBuffer and the World. Called after the surface is created and whenever

the OpenGL ES surface size changes.

Figure 39. onSurfaceChanged

onDrawFrame

This is the render method, called by Android in the render thread.

Figure 40. onDrawFrame

40

onTouch

Intercept the touch events in an Activity or a View.

Figure 41. onTouch

IsInWorld

This function evaluates for any new position if it is inside the area defined as building. As a

result, return a true (is in the area) or false (is not in the area).

Figure 42. IsInWorld

PointsInvisibles

PointsInvisible sets the feature “setVisibility” to false for all checkpoint signals. That means,

all the checkpoints signals become invisibles.

Figure 43. PointsInvisibles

IsWayOut

Evaluate for any new position if is the Way out or not. In consequence the function modifies

the features of some checkpoint objects. The checkpoint marks as way out change his texture

to green color. All the next checkpoint objects become invisibles.

Figure 44. IsWayOut

http://developer.android.com/reference/android/app/Activity.html#onTouchEvent(android.view.MotionEvent)
http://developer.android.com/reference/android/view/View.html#onTouchEvent(android.view.MotionEvent)

41

CalcPoint_RoomCorr

Check if the current position is in some room area or in the corridor area.

Figure 45.CalcPoint_RoomCorr

Calc_Room

Calc_Room can find in which room is the new camera position. Evaluate the point for each

room area and return a codification integer value. This codification is:

RoomA – 1 RoomB – 2 RoomC – 3 RoomD – 4 RoomE – 5 RoomF- 6

Figure 46.Calc_Room

CalcRuta

This function manages the features of the checkpoint objects to show the signal to the user.

Figure 47.CalcRuta

42

onSensorChanged

Detect when a sensor event is executed thanks to the SensorManager.

Figure 48. onSensorChanged

onAccuracyChanged

Called when the accuracy of the registered sensor has changed.

Figure 49.onAccuracyChanged

panBy

This is the most important function.

In panBy the camera position is moved in a lateral or lineal movement.

In panBy the camera direction is rotated.

In panBy the alignment process is done between the real word and the virtual one. It means that

both worlds are aligned from the north magnetic as a reference.

Figure 50. panBy

10.5 North Magnetic alignment

One of the most important points on this project is to get the alignment between the virtual and

real world. To get this goal two references have been taken. The first one will serve for both

worlds share a common point (0,0,0) calculate by fingerprint technique. The second one

reference uses the north magnetic as a reference. In this point we must remind that the

43

smartphone used has the next sensors: accelerometer, gyroscope, and geomagnetic field sensor

as required. Thus, we can use the geomagnetic field sensor in combination with the

accelerometer to determine a device's position relative to the magnetic north pole. Azimuth,

Roll, Pitch show the angle rotation movement according to the three-axis x, y, z.

Figure 51. Azimuth - Roll - Pitch

-Azimuth (degrees of rotation around the z axis).

This is the angle between magnetic north and the device's Y-axis.

For example, if the device's Y-axis is aligned with magnetic north this value is 0º, and if the

device's Y-axis is pointing south this value is 180º.

Likewise, when the Y-axis is pointing east this value is 90º and when it is pointing west this

value is 270º.

The next points show the steps followed to achieve the alignment process.

1. Azimuth angle monitoring

The sensor data taken from sensors is processed by SensorManger.getOrientation. As a result,

the Azimuth angle value is calculated. It is necessary to translate the angle to degrees. Then the

data is sent to panBy function. The next figure shows the code developed for it.

Figure 52. Azimuth angle monitoring

44

2. Camera rotation

In panBy function, the camera is rotated from Y-axis. The rotated angle meets with the variation

between the current Azimuth angle and the previous Azimuth angle measured. For this reason,

the camera can rotate in clockwise and counterclockwise directions. Then if the difference is

positive the camera rotates in clockwise and if the different is negative the camera rotates

counterclockwise.

Figure 53. Camera rotation

3. Reference initial angle

Previously it was commented that the rotation movement considers the current and previous

Azimuth values and in consequence the camera can rotate.

In this point is necessary to talk about the variable “aux”, this variable is used in the process to

calculate rotation angle. The alignment between virtual world and real-world environments is

achieved by this variable. In the next step is explained.

4. Calibration process

This following point deals with calibration system to achieve the alignment between the virtual

and real-world environments. A range of values will be introducing into the “aux” variable and

for each value it will be checked if the worlds are aligned. Although it is not necessary to test

all 360 possible values. An estimation can be made for taking a range of minor values. For this,

the following picture shows the relation between the mobile device and the representation of

virtual world.

45

Figure 54. Virtual World and Magnetic heading directions

There is a difference of 90º degrees between the direction that the smartphone used to detect

the north magnetic respecting to the world visualization. This fact is due to the screen

orientation is 90º from the magnetic heading smartphone.

It is necessary to consider that the mobile phone cannot rotate according to Z-axis. It has to stay

on the landscape position with the magnetic heading on the left side where the user takes the

phone.

As an example, we will use the UAB engineering school building. The point reference (0,0,0)

is shown in the next image.

Note: It will be supposed as a correct the North magnetic direction marked.

Therefore, the variation between the mobile phone Z-Axis and the north magnetic is 45º which

means the Azimuth value is 45º too. Then, the variable “aux” will be evaluated in the range of

30º- 60º in order to get the alignment of both worlds. As a simple test it will be positioned at

the entrance of the building (where it is situated on the smartphone in the picture below) and

46

be visualized if the virtual hallway matches with the real building. From this point, a complete

360º rotation will be done. When the rotation will be completed, we must orientate in the same

direction as we started. This test proves that both worlds matches, and the calibration process

can be considered concluded.

47

11 Tests and Results

11.1 Tests

The Verification and Validation process is mandatory in all SW project. It is necessary to ensure

the system satisfies the specification. To verify and validate the correct functionality of the

application and as well the correct construction of the application a group of tests are defined.

Normally the tests are defined per categories as Unit tests, Component tests, Integration test,

System tests, Reliability Tests.

The Test plan document allows all members of SW team to analyze some important KPIs:

1. Requirements coverage (tests coverage)

Check the scope of the project is achieved

2. State of the application (tests results)

Shows to developers, testers and product owners the project evolution

This Test plan is composed by a group of tests.

Installation Tests:

Test – The app is installed on an Android 4.4 device correctly and it is functional

Test – The app is installed on an Android 9.0 device correctly and it is functional

Test – The app is installed on an Android Full HD screen and it is functional

Test – The app is installed on an Android FullHD+ screen and it is functional

Test – The app is called “TFM_Prototype1_VX.Y”

Functional Test:

Test – The walls shown on the screen are built in red color

Test – The floor shown on the screen are built in white color

Test – The camera rotates 360º in the virtual world

Test – The camera rotates 360º in the virtual world and meets with 360º real rotation movement.

Test – The camera position moves in lateral ways (right and left)

Test – The camera position moves in linear ways (front and behind)

Test – There are not checkpoint signals shown when the position is no in the building.

Test – The function CalcRuta is well executed taking as initial position the room 1.

Repeat the last test for all the rooms

11.2 Results

All the test described in section 11.1 were executed and the result was OK.

48

In the next pictures are shown some captures of the test execution. The user can execute the

application on his smartphone with FullHD+ screen. The checkpoint signals are shown when

the position is inside the building area.

Figure 55. User 1 - application

Figure 56. User 2 - application

 In the next test we validate the application runs in a device with Android minimum version kit

kat.

Figure 57. Device 1. - Android 4.4 kitkat

49

Figure 58. Device 1.2 - Android 4.4. kit kat

In the next test we validate the world is shown on the phone screen and the checkpoint signals

are not shown. At the same time the name of the application is validated too.

Figure 59. Virtual World

Execute a test where the initial position is inside a room. The checkpoint signal to find the way

out of the room is shown in blue color.

Figure 60. Checkpoint signal Room 1

50

Figure 61. Checkpoint signal Room 2

When the user is in the corridor the next checkpoint signal is shown with blue color.

When the user arrived to the final checkpoint signal this object change to green color indicating

to the user that is in the assembly point.

51

12 Conclusions and Future Works

12.1 Conclusions

After the analysis of the project, it is time to conclude with the objectives that have been

achieved and make an evaluation of all the stages of this project.

The prototype_1 has been successfully finalized. It meets with the requirements of the project.

However, there are limitations that explain the delay on the planning project.

1. The introduction to Android and JPCT environment was very slow. Understand how to

build a world and how to manage the queue in the render process was very hard to plan.

2. The devices requirements used that mentioned are not correct. A new requirement must

be created for the specification of a type of sensors. Since the Azimuth measure has

contained errors, we have suffered significant variations making us doubt in the

development. This fact makes us to review a new option to capture the information

introducing an important deviation on the time planning.

3. The rotation system of the camera was complex to achieve. I tried to make complex

solutions using the provided information by the sensors. After the investigation, I finally

found out in the library the existence of a function that add rotations in the camera.

Due to these complications during the project, only the prototype_1 has been developed. On

the other hand, the development of prototype_1 has permit the verification of the feasibility of

the project and the possibility to face the prototype_2.

As a conclusion, this project was very interesting. During the investigation period, I had the

opportunity to read more about AR and Android projects and I was surprised to discover all the

companies behind these technologies and the community of developers which works around

these technologies.

12.2 Future steps

It is recommended that further works be undertaken in the following areas.

1. The project has clearly demonstrated that this custom-developed solution is adapted to

limited group users. In particular, the users with high-acuity vision as the route signage

is based on visual elements that guide the user through spaces at every moment. In

52

order to extend access to more users, it would be interesting to introduce audios that

describe the next action to do to reach the way out (for instance “follow”, “turn right”,

“turn left”, “stop”, “climb the stairs”, “go down stairs”). In addition, the route signage

would be complemented with floor marking and checkpoint signals.

2. Regarding operating systems, a natural progression of this app solution is to develop it

for IOS. As explained earlier, this current solution is based on Android for his low-cost

OS in comparison of the others and his significant market position. However, it would

be necessary to extend the solution to IOS users due to the fact that they represent more

than 12% of the Spanish market and even more in other countries.

3. Make an exhaustive analysis of the needs in order to improve the requirements by

modifying them or adding the new ones.

53

13 Bibliography and References

1. IEEE Standard Definitions of Terms for Antennas, Yi SUN, Yubin ZHAO, Jochen

SCHILLER. 2015 IEEE Wireless Communications and Networking Conference (WCNC)

2. Viet-Cuong Ta. Smartphone-based indoor positioning using Wi-Fi, inertial sensors and

Bluetooth. Machine Learning [cs.LG]. Université Grenoble Alpes, 2017. English. ffNNT :

2017GREAM092ff. fftel01883828f. https://tel.archives-ouvertes.fr/tel-01883828/document

3.Open Geospatial Consortium. OGC webpage. http://www.opengeospatial.org/.

4. Unigis – Servicio de Sistemas de Información Geográfica y Teledetección. Unigis official

webpage. https://www.unigis.es/posicionamiento-indoor/

5. Android Developers. Android oficial webpage. https://developer.android.com/

6. Oracle Corp. API Java. Oracle official webpage. https://docs.oracle.com/javase/7/docs/api/

7. Oracle Corporation. Java webpage. https://www.java.com/es/about/

8. Universidad de la Rioja. Yanapay: evacuation system based on RFID technology and

Android devices. Dialnet webpage. https://dialnet.unirioja.es/servlet/articulo?codigo=5972717

9. University of Pittsburgh. On Indoor Position Location with Wireless Lans.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.3543&rep=rep1&type=pdf

10. IEEE Survey of Wireless Indoor Positioning Techniques and Systems. Hui Liu, Houshang

Darabi, Pat Banerjee, Jing Liu. 2007 IEEE Transactions on systems, Man and Cybernetics

11. JPCT 3D engine. JPCT official webpage. http://www.jpct.net/

12. Microsoft HoloLKens. HoloLens 2 offical webpage. https://www.microsoft.com/en-

us/hololens

13. Google Glass. Glass official webpage. https://www.google.com/glass/start/

14. IndoorGML. IndoorGML official webpage. http://www.indoorgml.net/

15. Neosentec SL. Neosentec official webpage. https://www.neosentec.com/realidad-

aumentada/

16. UOC. Indoor positioning. UOC blog.

 http://informatica.blogs.uoc.edu/2016/04/21/posicionamiento-en-interiores-indoor-

positioning/

17. Air-fi. Air-fi official webpage. http://www.air-fi.es/finalizacion-del-proyecto-sip-sistema-

de-indoor-positioning/

18. Geospatial World youtube - What is Indoor Positioning System and how does it work?.

Youtube channel. Youtube channel video. https://www.youtube.com/watch?v=rJGl6_crZmw

19. Bluetooth SIG Inc. Bluetooth blog. https://www.bluetooth.com/blog/bluetooth-positioning-

systems/

https://tel.archives-ouvertes.fr/tel-01883828/document
http://www.opengeospatial.org/
https://www.unigis.es/posicionamiento-indoor/
https://developer.android.com/
https://docs.oracle.com/javase/7/docs/api/
https://www.java.com/es/about/
https://dialnet.unirioja.es/servlet/articulo?codigo=5972717
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.3543&rep=rep1&type=pdf
http://www.jpct.net/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.google.com/glass/start/
http://www.indoorgml.net/
https://www.neosentec.com/realidad-aumentada/
https://www.neosentec.com/realidad-aumentada/
http://informatica.blogs.uoc.edu/2016/04/21/posicionamiento-en-interiores-indoor-positioning/
http://informatica.blogs.uoc.edu/2016/04/21/posicionamiento-en-interiores-indoor-positioning/
http://www.air-fi.es/finalizacion-del-proyecto-sip-sistema-de-indoor-positioning/
http://www.air-fi.es/finalizacion-del-proyecto-sip-sistema-de-indoor-positioning/
https://www.youtube.com/watch?v=rJGl6_crZmw
https://www.bluetooth.com/blog/bluetooth-positioning-systems/
https://www.bluetooth.com/blog/bluetooth-positioning-systems/

54

14 Annex - Code

package com.example.threedactivity;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;

import android.hardware.SensorManager;

import android.opengl.GLSurfaceView;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import android.view.MotionEvent;

import android.view.View;

import com.threed.jpct.Camera;

import com.threed.jpct.FrameBuffer;

import com.threed.jpct.Light;

import com.threed.jpct.Logger;

import com.threed.jpct.Object3D;

import com.threed.jpct.Primitives;

import com.threed.jpct.RGBColor;

import com.threed.jpct.SimpleVector;

import com.threed.jpct.Texture;

import com.threed.jpct.TextureManager;

import com.threed.jpct.World;

import com.threed.jpct.util.ExtendedPrimitives;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.opengles.GL10;

public class MainActivity extends AppCompatActivity implements GLSurfaceView.Renderer,

SensorEventListener, View.OnTouchListener

{

 private GLSurfaceView glView;

 private World world;

 private FrameBuffer fb;

 private Light light;

 private Object3D cube, cube2, cube3, cube4, ground;

55

 private Object3D wall_1, wall_2, , wall_3, wall_4, wall_5, wall_6, wall_7, wall_8, wall_9,

wall_10, wall_11, wall_12, wall_13, wall_14, wall_15, wall_16, wall_17, wall_18;

 private Object3D RA,RB,RC,RD,RE,RF,CA,CB,CC,CD,CE,BA,BB,BC,BD,BE,BF;

 // WAY OUT zones

 //private int WayOut = 0; // Exit is check point list CA

 private int WayOut = 1; // Exit is check point list CE

 // world size and error

 private float ground_y = 1f;

 private float ground_z = 94;

 private float ground_x = 114;

 private float world_error = 0;

 private float wall_width = 1f;

 private float wall_height = 10f;

 private float wall_long12 = 12;

 private float wall_long25 = 25;

 private float wall_long40 = 40;

 private float wall_long41 = 41;

 private float wall_long94 = 94;

 // CHECKPOINTS - room

 private SimpleVector PRA = new SimpleVector(wall_width+wall_long40/2,-

wall_height/2,wall_width+30/2);

 private SimpleVector PRB = new SimpleVector(wall_width+wall_long40/2,-

wall_height/2,2*wall_width+30+30/2);

 private SimpleVector PRC = new SimpleVector(wall_width+wall_long40/2,-

wall_height/2,3*wall_width+30+30+30/2);

 private SimpleVector PRD = new

SimpleVector(3*wall_width+wall_long40+30+wall_long40/2,-

wall_height/2,2*wall_width+30+30+30/2);

 private SimpleVector PRE = new

SimpleVector(3*wall_width+wall_long40+30+wall_long40/2,-

wall_height/2,2*wall_width+30+30/2);

56

 private SimpleVector PRF = new

SimpleVector(3*wall_width+wall_long40+30+wall_long40/2,-

wall_height/2,wall_width+30/2);

 // CHECKPOINTS - corridor

 private SimpleVector PCA = new SimpleVector(2*wall_width+wall_long40+30/2,-

wall_height/2,wall_width);

 private SimpleVector PCB = new SimpleVector(2*wall_width+wall_long40+30/2,-

wall_height/2,wall_width+30/2);

 private SimpleVector PCC = new SimpleVector(2*wall_width+wall_long40+30/2,-

wall_height/2,2*wall_width+30+30/2);

 private SimpleVector PCD = new SimpleVector(2*wall_width+wall_long40+30/2,-

wall_height/2,3*wall_width+30+30+30/2);

 private SimpleVector PCE = new SimpleVector(2*wall_width+wall_long40+30/2,-

wall_height/2,wall_long94-wall_width);

 // CHECKPOINTS - borders

 private SimpleVector PBA = new SimpleVector(wall_width/2+wall_width+wall_long40,-

wall_height/2,wall_width+30/2);

 private SimpleVector PBB = new SimpleVector(wall_width/2+wall_width+wall_long40,-

wall_height/2,2*wall_width+30+30/2);

 private SimpleVector PBC = new SimpleVector(wall_width/2+wall_width+wall_long40,-

wall_height/2,3*wall_width+30+30+30/2);

 private SimpleVector PBD = new

SimpleVector(wall_width/2+2*wall_width+wall_long40+30,-

wall_height/2,3*wall_width+30+30+30/2);

 private SimpleVector PBE = new

SimpleVector(wall_width/2+2*wall_width+wall_long40+30,-

wall_height/2,2*wall_width+30+30/2);

 private SimpleVector PBF = new

SimpleVector(wall_width/2+2*wall_width+wall_long40+30,-

wall_height/2,wall_width+30/2);

 // Wall sizes

57

 private SimpleVector size_ground = new SimpleVector(ground_x,ground_y,ground_z);

 private SimpleVector size_wall_1 = new

SimpleVector(wall_width,wall_height,wall_long12);

 private SimpleVector size_wall_2 = new

SimpleVector(wall_width,wall_height,wall_long25);

 private SimpleVector size_wall_3 = new

SimpleVector(wall_width,wall_height,wall_long25);

 private SimpleVector size_wall_4 = new

SimpleVector(wall_width,wall_height,wall_long12);

 private SimpleVector size_wall_5 = new

SimpleVector(wall_width,wall_height,wall_long12);

 private SimpleVector size_wall_6 = new

SimpleVector(wall_width,wall_height,wall_long25);

 private SimpleVector size_wall_7 = new

SimpleVector(wall_width,wall_height,wall_long25);

 private SimpleVector size_wall_8 = new

SimpleVector(wall_width,wall_height,wall_long12);

 private SimpleVector size_wall_9 = new

SimpleVector(wall_long40,wall_height,wall_width);

 private SimpleVector size_wall_10 = new

SimpleVector(wall_long40,wall_height,wall_width);

 private SimpleVector size_wall_11 = new

SimpleVector(wall_long40,wall_height,wall_width);

 private SimpleVector size_wall_12 = new

SimpleVector(wall_long40,wall_height,wall_width);

 private SimpleVector size_wall_13 = new

SimpleVector(wall_width,wall_height,wall_long94);

 private SimpleVector size_wall_14 = new

SimpleVector(wall_width,wall_height,wall_long94);

 private SimpleVector size_wall_15 = new

SimpleVector(wall_long41,wall_height,wall_width);

 private SimpleVector size_wall_16 = new

SimpleVector(wall_long41,wall_height,wall_width);

58

 private SimpleVector size_wall_17 = new

SimpleVector(wall_long41,wall_height,wall_width);

 private SimpleVector size_wall_18 = new

SimpleVector(wall_long41,wall_height,wall_width);

 // Aux. var. camera position in method panBy

 private SimpleVector vector1;

 private int aux = 210;

 private int angulo1 = 0;

 //private SimpleVector size_x = new SimpleVector(1,5,94);

 private float[] vector_array = {1000,1000,1000};

 //**************** SENSORS **

 private SensorManager miManager;

 private Sensor miSensorAc;

 private Sensor miSensorGi;

 private Sensor miSensorPr;

 private Sensor miSensorMa;

 // Aux. var. new camera points

 private int touch_click = 0;

 private int evento = 0;

 private int mCount;

 private int mAzimuth = 0; // degree

 private int mPitch = 0; // degree

 private int mRoll = 0; // degree

59

//**

//**

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Get an instance of the SensorManager

 miManager=(SensorManager) getSystemService(SENSOR_SERVICE);

 // Create our Preview view and set it as the content of our Activity

 glView = new GLSurfaceView(this);

 glView.setEGLContextClientVersion(2);

 glView.setRenderer(this);

 setContentView(glView);

 glView.setOnTouchListener(this);

//**

 miSensorAc=miManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 miSensorGi=miManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

 miSensorPr=miManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

miSensorMa=miManager.getDefaultSensor(Sensor.TYPE_GEOMAGNETIC_ROTATION_

VECTOR);

60

 if(miSensorAc == null) {

 Logger.log("Accelerometer is not available");

 finish(); // Close app

 }

 if(miSensorGi == null) {

 Logger.log("Gyroscope is not available");

 finish(); // Close app

 }

 if(miSensorPr == null){

 Logger.log("Rotation Vector is not available");

 finish(); // Close app

 }

 }

 @Override

 protected void onResume() {

 super.onResume();

 glView.onResume();

 miManager.registerListener(this, miSensorPr, 100000);

 miManager.registerListener(this, miSensorAc, 100000);

 miManager.registerListener(this, miSensorGi, 100000);

 miManager.registerListener(this, miSensorMa, 100000);

 }

 @Override

 protected void onPause() {

 glView.onResume();

61

 super.onPause();

 miManager.unregisterListener(this);

 }

 @Override

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 // INSTANCE OF WORLD CLASS - CAMERA CLASS - TEXTURE CLASS

 world = new World(); //instancia mundo

 Camera a = world.getCamera();

 a.setPosition(57, -7, -25);

 a.rotateCameraY((float) Math.toRadians(0));

 //TEXTURES

 Texture t1 = new Texture(64,64, RGBColor.BLUE); //instancia textura

 TextureManager.getInstance().addTexture("t1", t1); //aplicar textura a

TextureManager

 Texture t2 = new Texture(64,64, RGBColor.RED);

 TextureManager.getInstance().addTexture("t2", t2);

 Texture t3 = new Texture(64,64, RGBColor.WHITE);

 TextureManager.getInstance().addTexture("t3", t3);

 Texture t4 = new Texture(64,64, RGBColor.GREEN);

 TextureManager.getInstance().addTexture("t4", t4);

 // ****** ROOM POINTS

**

 RA = Primitives.getCube(1f);

62

 RA.translate(PRA);

 RA.setTexture("t1");

 RB = Primitives.getCube(1f);

 RB.translate(PRB);

 RB.setTexture("t1");

 RC = Primitives.getCube(1f);

 RC.translate(PRC);

 RC.setTexture("t1");

 RD = Primitives.getCube(1f);

 RD.translate(PRD);

 RD.setTexture("t1");

 RE = Primitives.getCube(1f);

 RE.translate(PRE);

 RE.setTexture("t1");

 RF = Primitives.getCube(1f);

 RF.translate(PRF);

 RF.setTexture("t1");

 // ****** CORRIDOR POINTS

**

 CA = Primitives.getCube(1.5f);

 CA.translate(PCA);

 CA.setTexture("t4");

 CB = Primitives.getCube(1f);

 CB.translate(PCB);

 CB.setTexture("t1");

63

 CC = Primitives.getCube(1f);

 CC.translate(PCC);

 CC.setTexture("t1");

 CC.setCollisionMode(Object3D.COLLISION_CHECK_OTHERS);

 CD = Primitives.getCube(1f);

 CD.translate(PCD);

 CD.setTexture("t1");

 CE = Primitives.getCube(1.5f);

 CE.translate(PCE);

 CE.setTexture("t4");

 // ****** BORDER POINTS

**

 BA = Primitives.getCube(1f);

 BA.translate(PBA);

 BA.setTexture("t1");

 BB = Primitives.getCube(1f);

 BB.translate(PBB);

 BB.setTexture("t1");

 BC = Primitives.getCube(1f);

 BC.translate(PBC);

 BC.setTexture("t1");

 BD = Primitives.getCube(1f);

 BD.translate(PBD);

 BD.setTexture("t1");

64

 BE = Primitives.getCube(1f);

 BE.translate(PBE);

 BE.setTexture("t1");

 BF = Primitives.getCube(1f);

 BF.translate(PBF);

 BF.setTexture("t1");

 // ****** WORLD ELEMENTS

**

 ground = ExtendedPrimitives.createBox(size_ground);

 ground.translate(57f,0.5f,47f);

 ground.setTexture("t3");

 wall_1 = ExtendedPrimitives.createBox(size_wall_1);

 wall_1.translate(((wall_width/2)+wall_long40+wall_width),-wall_height/2f,((ground_z-

wall_width)-(wall_long12/2)));

 wall_1.setTexture("t2");

 wall_2 = ExtendedPrimitives.createBox(size_wall_2);

 wall_2.translate(((wall_width/2)+wall_long40+wall_width),-wall_height/2f,(ground_z-

wall_width-30-(wall_width/2)));

 wall_2.setTexture("t2");

 wall_3 = ExtendedPrimitives.createBox(size_wall_3);

 wall_3.translate(((wall_width/2)+wall_long40+wall_width),-

wall_height/2f,((1.5f*wall_width)+30));

 wall_3.setTexture("t2");

 wall_4 = ExtendedPrimitives.createBox(size_wall_4);

 wall_4.translate(((wall_width/2)+wall_long40+wall_width),-

wall_height/2f,(wall_width+(wall_long12/2)));

65

 wall_4.setTexture("t2");

 wall_5 = ExtendedPrimitives.createBox(size_wall_5);

 wall_5.translate(((wall_width/2)+wall_long40+wall_width*2+30),-

wall_height/2f,((ground_z-wall_width)-(wall_long12/2)));

 wall_5.setTexture("t2");

 wall_6 = ExtendedPrimitives.createBox(size_wall_6);

 wall_6.translate(((wall_width/2)+wall_long40+wall_width*2+30),-

wall_height/2f,(ground_z-wall_width-30-(wall_width/2)));

 wall_6.setTexture("t2");

 wall_7 = ExtendedPrimitives.createBox(size_wall_7);

 wall_7.translate(((wall_width/2)+wall_long40+wall_width*2+30),-

wall_height/2f,((1.5f*wall_width)+30));

 wall_7.setTexture("t2");

 wall_8 = ExtendedPrimitives.createBox(size_wall_8);

 wall_8.translate(((wall_width/2)+wall_long40+wall_width*2+30),-

wall_height/2f,(wall_width+(wall_long12/2)));

 wall_8.setTexture("t2");

 wall_9 = ExtendedPrimitives.createBox(size_wall_9);

 wall_9.translate((wall_width+(wall_long40/2)),-wall_height/2f,wall_width+30+30);

 wall_9.setTexture("t2");

 wall_10 = ExtendedPrimitives.createBox(size_wall_10);

 wall_10.translate((wall_width+(wall_long40/2)),-wall_height/2f,wall_width+30);

 wall_10.setTexture("t2");

 wall_11 = ExtendedPrimitives.createBox(size_wall_11);

 wall_11.translate(((3*wall_width)+(wall_long40/2)+wall_long40+30),-

wall_height/2f,wall_width+30+30);

 wall_11.setTexture("t2");

66

 wall_12 = ExtendedPrimitives.createBox(size_wall_12);

 wall_12.translate(((3*wall_width)+(wall_long40/2)+wall_long40+30),-

wall_height/2f,wall_width+30);

 wall_12.setTexture("t2");

 wall_13 = ExtendedPrimitives.createBox(size_wall_13);

 wall_13.translate(0.5f,-wall_height/2f,47f);

 wall_13.setTexture("t2");

 wall_14 = ExtendedPrimitives.createBox(size_wall_14);

 wall_14.translate(113.5f,-wall_height/2f,47f);

 wall_14.setTexture("t2");

 wall_15 = ExtendedPrimitives.createBox(size_wall_15);

 wall_15.translate(((wall_width)+(wall_long41/2)),-wall_height/2f,(wall_long94-

wall_width/2));

 wall_15.setTexture("t2");

 wall_16 = ExtendedPrimitives.createBox(size_wall_16);

 wall_16.translate((30+wall_long41+(wall_width)+(wall_long41/2)),-

wall_height/2f,(wall_long94-wall_width/2));

 wall_16.setTexture("t2");

 wall_17 = ExtendedPrimitives.createBox(size_wall_17);

 wall_17.translate(((wall_width)+(wall_long41/2)),-wall_height/2f,wall_width/2f);

 wall_17.setTexture("t4");

 wall_18 = ExtendedPrimitives.createBox(size_wall_18);

 wall_18.translate((30+wall_long41+(wall_width)+(wall_long41/2)),-

wall_height/2f,wall_width/2f);

 wall_18.setTexture("t2");

67

//**

 // ADD ALL ELEMENTS TO THE WORLD

 world.addObject(RA);

 world.addObject(RB);

 world.addObject(RC);

 world.addObject(RD);

 world.addObject(RE);

 world.addObject(RF);

 world.addObject(CA);

 world.addObject(CB);

 world.addObject(CC);

 world.addObject(CD);

 world.addObject(CE);

 world.addObject(BA);

 world.addObject(BB);

 world.addObject(BC);

 world.addObject(BD);

 world.addObject(BE);

 world.addObject(BF);

 world.addObject(ground);

 world.addObject(wall_1);

 world.addObject(wall_2);

 world.addObject(wall_3);

 world.addObject(wall_4);

68

 world.addObject(wall_5);

 world.addObject(wall_6);

 world.addObject(wall_7);

 world.addObject(wall_8);

 world.addObject(wall_9);

 world.addObject(wall_10);

 world.addObject(wall_11);

 world.addObject(wall_12);

 world.addObject(wall_13);

 world.addObject(wall_14);

 world.addObject(wall_15);

 world.addObject(wall_16);

 world.addObject(wall_17);

 world.addObject(wall_18);

 // INSTANCE OF LIGHT CLASS

 light = new Light(world);

 light.setIntensity(128,128,128);

 }

 @Override

 public void onSurfaceChanged(GL10 gl, int width, int height) {

 fb = new FrameBuffer(width, height); //INSTANCE OF BUFFER

 }

 @Override

 public void onDrawFrame(GL10 gl) {

 fb.clear(); //Lights and transforms are applied to all stored objects

69

 // CHECKPOINTS ROTATION

 RA.rotateY(0.05f);

 RB.rotateY(0.05f);

 RC.rotateY(0.05f);

 RD.rotateY(0.05f);

 RE.rotateY(0.05f);

 RF.rotateY(0.05f);

 CA.rotateY(0.05f);

 CB.rotateY(0.05f);

 CC.rotateY(0.05f);

 CD.rotateY(0.05f);

 CE.rotateY(0.05f);

 BA.rotateY(0.05f);

 BB.rotateY(0.05f);

 BC.rotateY(0.05f);

 BD.rotateY(0.05f);

 BE.rotateY(0.05f);

 BF.rotateY(0.05f);

 world.renderScene(fb); //the scene is drawn on the frame buffer

 world.draw(fb); //Show the object with all their features

 fb.display(); //printar en buffer el render

 }

 //******* panBy modify camera position; It is possible to modify the speed camera

movement *****

 private void panBy(float dx, float dy, int ang, int app) {

70

 Camera c = world.getCamera();

 vector1 = c.getPosition();

 vector_array = vector1.toArray(); // Returns a float[3]-array containing the components

of the vector

 Logger.log("Camera vector is: " + vector_array[0] +" / "+ vector_array[1] +" / "+

vector_array[2]);

 // Check if the point is inside the world

 if(IsInWorld(vector_array[0], vector_array[1], vector_array[2])){

 if(IsWayOut(vector_array[0], vector_array[1], vector_array[2])){

 }

 else{

 if(CalcPoint_RoomCorr(vector_array[0], vector_array[1], vector_array[2]) == 1){

//1-Corridor

 ground.setTexture("t3"); //White t3 - antes t1 BLUE - CORRIDOR antes

 Logger.log("Is Corridor");

 CalcRuta(7);

 }

 else if(CalcPoint_RoomCorr(vector_array[0], vector_array[1], vector_array[2]) ==

0){ //0-Rooms

 ground.setTexture("t3"); //WHITE - ROOM

 Logger.log("Is a Room");

 CalcRuta(Calc_Room(vector_array[0], vector_array[1], vector_array[2]));

//Check the room where is the position

 }

71

 else{

 ground.setTexture("t4"); //GREEN - ERROR

 Logger.log("Is Out of the World");

 }

 }

 }

 else {

 ground.setTexture("t3"); //White - Antes t2 RED

 PointsInvisible();

 }

 // Rotation Movement Camera

 if(app == 2) {

 angulo1 = ang - aux;

 aux = ang;

 c.rotateCameraY((float) Math.toRadians(angulo1));

 }

 else if(app == 1){

 c.moveCamera(Camera.CAMERA_MOVEIN, dy*0.1f);

 c.moveCamera(Camera.CAMERA_MOVERIGHT, dx*0.05f); //Mueve la cámara

derecha con una determinada velocidad

 }

 else{

72

 }

 }

 private float lastX, lastY; // Aux.Var. to keep the last position used in "onTouch" function

 @Override

 public boolean onTouch(View v, MotionEvent event) {

 touch_click++;

 // It is necessary to count "2"

 // each action of pressing the touch screen 1-ACTION_DOWN and 2-ACTION_UP are

counted 1 each one

 // so it is necessary to count until 2 to count 2 actions

 if(touch_click % 2 == 0)

 {

 evento++;

 }

 switch(event.getAction()){

 case MotionEvent.ACTION_DOWN:

 lastX = event.getX();

 lastY = event.getY();

 return true;

 case MotionEvent.ACTION_MOVE:

 final float dx = event.getX()-lastX;

 final float dy = event.getY()-lastY;

 lastX = event.getX();

 lastY = event.getY();

73

 //Using queueEvent() provides a convenient way of executing a method in the

rendering thread.

 glView.queueEvent(new Runnable() {

 @Override

 public void run() {

 panBy(dx, dy, 1000,1);

 }

 });

 }

 return false;

 }

 // ***** Check whether new point is inside the world

 public boolean IsInWorld(float x, float y, float z){

 if((x <= (ground_x + world_error) && x >= (-world_error)) && (y >= (-wall_height) &&

y <= -1) && (z >= (-world_error) && z <= (ground_z + world_error))){

 Logger.log("The point is inside the Area");

 return true;

 }

 else{

 Logger.log("The point is outside the Area");

 return false;

 }

 }

74

 public void PointsInvisible()

 {

 BA.setVisibility(false);

 BB.setVisibility(false);

 BC.setVisibility(false);

 BD.setVisibility(false);

 BE.setVisibility(false);

 BF.setVisibility(false);

 CA.setVisibility(false);

 CB.setVisibility(false);

 CC.setVisibility(false);

 CD.setVisibility(false);

 CE.setVisibility(false);

 RA.setVisibility(false);

 RB.setVisibility(false);

 RC.setVisibility(false);

 RD.setVisibility(false);

 RE.setVisibility(false);

 RF.setVisibility(false);

 }

 public boolean IsWayOut(float x, float y, float z){

 if(WayOut == 0){ // Way Out is Point CA

 if((x < (30 + wall_width + wall_long41)) && (x > (wall_width + wall_long41)) && (z

< 12 && z > 0)) // Define the condition

 {

 PointsInvisible();

 CA.setTexture("t4"); //GREEN

75

 CA.setVisibility(true);

 return true;

 }

 else{

 CA.setTexture("t1"); //BLUE

 CE.setVisibility(false);

 return false;

 }

 }

 if(WayOut == 1){ // Way Out is Point CE

 if((x < (30 + wall_width + wall_long41)) && (x > (wall_width + wall_long41)) && (z

< (ground_z) && z > (ground_z - 12))) // Define the condition

 {

 PointsInvisible();

 CE.setTexture("t4"); //GREEN

 CE.setVisibility(true);

 return true;

 }

 else{

 CE.setTexture("t1"); //BLUE

 CA.setVisibility(false);

 return false;

 }

 }

76

 else{

 return false;

 }

 }

 //***** Calculate the current position is room or corridor

 public int CalcPoint_RoomCorr(float pos_x, float pos_y, float pos_z){

 // Check if position is in the corridor surface

 if((pos_x < (wall_width/2+wall_long40+wall_width*2+30) && pos_x >

wall_long40+wall_width) && (pos_y > -wall_height && pos_y < -1) && (pos_z < ground_z

&& pos_z > 0)){

 Logger.log("Current Position is Corridor");

 return 1;

 }

 else{

 Logger.log("Current Position is Room");

 return 0;

 }

 }

77

 public int Calc_Room(float pos_x, float pos_y, float pos_z){

 // Room_A (1)

 if((pos_x < wall_long40+wall_width && pos_x > wall_width) && (pos_y > -wall_height

&& pos_y < -1) && (pos_z < wall_width+30 && pos_z > wall_width)){

 Logger.log("1 - Room_A");

 return 1;

 }

 // Room_B (2)

 else if((pos_x < wall_long40+wall_width && pos_x > wall_width) && (pos_y > -

wall_height && pos_y < -1) && (pos_z < 2*wall_width+2*30 && pos_z >

2*wall_width+30)){

 Logger.log("2 - Room_B");

 return 2;

 }

 // Room_C (3)

 else if((pos_x < wall_long40+wall_width && pos_x > wall_width) && (pos_y > -

wall_height && pos_y < -1) && (pos_z < ground_z-wall_width && pos_z > ground_z-30-

wall_width)){

 Logger.log("3 - Room_C");

 return 3;

 }

 // Room_D (4)

78

 else if((pos_x < (ground_x-wall_width) && pos_x > ground_x-wall_long41) && (pos_y

> -wall_height && pos_y < -1) && (pos_z < ground_z-wall_width && pos_z > ground_z-30-

wall_width)){

 Logger.log("4 - Room_D");

 return 4;

 }

 // Room_E (5)

 else if((pos_x < (ground_x-wall_width) && pos_x > ground_x-wall_long41) && (pos_y

> -wall_height && pos_y < -1) && (pos_z < 2*wall_width+2*30 && pos_z >

2*wall_width+30)){

 Logger.log("5 - Room_E");

 return 5;

 }

 // Room_F (6)

 else if((pos_x < (ground_x-wall_width) && pos_x > ground_x-wall_long41) && (pos_y

> -wall_height && pos_y < -1) && (pos_z < wall_width+30 && pos_z > wall_width)){

 Logger.log("6 - Room_F");

 return 6;

 }

 else{

 Logger.log("No information");

 return 7;

 }

79

 }

 //***** Calculate the new route; Precondition: the point_check_corr is verify previously

 public void CalcRuta(int position){

 if(position == 1)

 {

 PointsInvisible();

 BA.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 2)

 {

 PointsInvisible();

 BB.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 3)

 {

 PointsInvisible();

 BC.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 4)

80

 {

 PointsInvisible();

 BD.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 5)

 {

 PointsInvisible();

 BE.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 6)

 {

 PointsInvisible();

 BF.setVisibility(true);

 //CE.setVisibility(true);

 }

 else if(position == 7)

 {

 PointsInvisible();

 if(WayOut == 0){

 CA.setVisibility(true);

 CA.setTexture("t1"); //BLUE

 }

 else if(WayOut == 1){

81

 CE.setVisibility(true);

 CE.setTexture("t1"); //BLUE

 }

 else{

 }

 }

 else if(position == 0){

 }

 else{

 }

 }

 @Override

 public void onSensorChanged(SensorEvent event) {

 if(event.sensor.getType() == Sensor.TYPE_ACCELEROMETER){

 //Logger.log("The value of " + event.sensor.getName() + " is: " + event.values[0] + " /

" + event.values[1] + " / " + event.values[2]);

 }

 if (event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR) {

 // convert the rotation-vector to a 4x4 matrix. the matrix is interpreted by Open GL as

the inverse of the rotation-vector, which is what we want.

 // Rotation matrix based on current readings from accelerometer and magnetometer.

 final float[] rotationMatrix = new float[9];

82

 miManager.getRotationMatrixFromVector(rotationMatrix, event.values);

 // Express the updated rotation matrix as three orientation angles.

 final float[] orientationAngles = new float[3];

 miManager.getOrientation(rotationMatrix, orientationAngles);

 if (mCount++ > 0) {

 mCount = 0;

 mAzimuth = (int) (Math.toDegrees(SensorManager.getOrientation(rotationMatrix,

orientationAngles)[0]) + 360) % 360;

 mPitch = (int) (Math.toDegrees(SensorManager.getOrientation(rotationMatrix,

orientationAngles)[1]) + 360) % 360;

 mRoll = (int) (Math.toDegrees(SensorManager.getOrientation(rotationMatrix,

orientationAngles)[2]) + 360) % 360;

 Logger.log("Compass: " + " X: " + mAzimuth + " / Y: " + mPitch + " / Z: " + mRoll);

 glView.queueEvent(new Runnable()

 {

 @Override

 public void run()

 {

 panBy(0,0, mAzimuth, 2);

 }

 });

 }

 }

 }

83

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

}

