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Abstract: Ecological stoichiometry is essential for understanding the biogeochemical cycle in forest
ecosystems. However, previous studies of ecological stoichiometry have rarely considered the impacts
of forest origins, which could help explain why to date so much uncertainty has been reported on
this subject. In this study, we tried to reduce this uncertainty by examining carbon (C), nitrogen (N)
and phosphorus (P) in roots, litter and soil in both natural and plantation forests throughout China.
The sampled forest sites were divided into three groups according to the identified succession stages:
early (ES), middle (MS) and late (LS) stages. Our results show that soil C, N and P concentrations
were significantly higher in natural (NF) than in plantation (PL) forests. As succession/growth
proceeded, P concentrations significantly increased in litter, roots and soil in NF, while the opposite
occurred in PL. These results indicate that NF are able to use P more efficiently than PL, especially in
the LS. Furthermore, the higher root N:P ratio indicates that the growth of PL was limited by P in
both MS and LS. Our results also suggest that geographical and climatic factors are not the dominant
factors in the differences in P between NF and PL, and, even more clearly and importantly, that
native forests with native species are more capable of conserving P than planted forests, which are
frequently less diverse and dominated by fast-growing non-site native species. These results will
help improve biogeochemical models and forest management throughout the world.

Keywords: C N P stoichiometry; natural forests; plantations; succession stage; climatic factors

1. Introduction

Carbon (C) is one of the base materials that support vegetation growth [1], in which
nitrogen (N) and phosphorus (P) are the two most important limiting elements [2,3]. The
ratios of carbon to nitrogen (C:N), carbon to phosphorus (C:P) and nitrogen to phosphorus
(N:P) can therefore be used to explore the relationships and feedback between organisms
and the environment [4], as well as biogeochemical processes [2]. C, N and P in forest
ecosystems are exchanged between plants, litter and soil [5]. However, the determination
of stoichiometry in root–litter–soil systems still needs clarifying. The importance of roots,
in particular, is often ignored, even though they play a vital role in connecting plants’
aboveground and underground structures [6]. More than 90% of the N and P nutrients in
vegetation are returned to the soil through litter [7].

China possesses abundant forest resources with rich forest types spread over a climatic
gradient that ranges from cold temperate to tropical [8]. These forests, either naturally
regenerated (natural forests, NF) or artificially planted (plantation forests, PL), greatly differ
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in terms of both species composition and management. As previously reported, China’s
PL provide fewer ecosystem services than NF since they are monocultures, and as a result
of inappropriate management, there is excessive use of fast-growing pioneer successional
species, use of non-native species such as Pinus and Eucalyptus, less biodiversity, and
declining forest productivity [9,10]. Thus, there is an urgent need to explore differences
in nutrient cycling between NF and PL, a process that is seldom reported but which is
essential for improving forest management.

Despite intensive studies that have investigated the stoichiometric characteristics of plant
tissues [11–13] and controlling factors at different temporal-spatial scales [3,12,14–16], debate
continues as to the influence of climatic factors on stoichiometric ratios. For example, by
compiling published data relating to global experiments conducted in natural environments,
Yuan and Chen [17] found that the ratio of terrestrial plant N:P decreases with greater
atmospheric concentrations of CO2, increased rainfall, and P fertilization, but increases with
warming, drought, and N fertilization. By comparison, Reich and Oleksyn [3] used a global
data set of 5087 observations of leaf N and P to demonstrate that leaf N and P increase
from the tropics towards cooler and drier mid-latitudes, and that the N:P ratio increases
with mean annual temperature (MAT) and towards the equator. Yet, Townsend [18] found
no relationship between the N:P ratios and either latitude or mean annual precipitation
(MAP) in the tropics. In addition to these discrepancies, the interactions between root–
litter–soil are often not taken into account in studies of the stoichiometric characteristics in
forests, even though they could give rise to important feedbacks between the above- and
below-ground components of ecosystems [19]. As such, the internal mechanisms of C, N
and P balances in different forest stands during succession/growth stages still need to be
further explored.

In this study, we examined the C, N and P concentrations and stoichiometric ratios in
roots, litter and soil in different forest stands in China’s forest ecosystems. We predicted
that the C, N and P concentrations and their stoichiometric ratios in roots, litter and soil are
likely to be closely linked. Therefore, our objectives were to (1) quantify the patterns of C,
N and P concentrations and stoichiometric characteristics in roots, litter and soil during
succession stages in NF and PL throughout China’s forest ecosystems; and (2) determine
the factors affecting C, N and P concentrations and ecological stoichiometry in roots, litter
and soil, and the differences between NF and PL.

2. Materials and Methods
2.1. Samples and Measurement

Root, litter and soil samples were collected in China during the years 2011–2015.
Samplings and laboratory analyses were all conducted following a consistent standardized
protocol [20,21]. We divided the country into three grid sizes (100, 400 and 900 km2) based
on vegetation distribution using a 1: 1,000,000 vegetation map. A grid size of 100 km2

was designed for tropical and subtropical regions with rich species diversity, and 400 and
900 km2 were for temperate and alpine vegetation regions where species diversity is
relatively poor. Then we overlaid the grid maps with administrative maps and randomly
select 3% to 5% of the grid for the field surveys by considering forest origin, age and
type [22]. At each site, a 1000-m2 plot was established (600 m2 in some cases in plantations),
each of which consisted of 10 subplots (10 m × 10 m) for the field survey. In each plot,
plant roots were collected from the commonest tree species (diameter breast height ≥ 5 cm,
1–5 species). We also set up three 1 m × 1 m quadrats in each subplot for litter sampling.
After removing the litter layer, soil samples at 0–50 cm were collected in each plot with a
soil auger. Fertilized sites, sites with missing measurements in any depth of 0–50 cm in the
soil matrix, and missing root of tree samples were filtered, and in total of 1112 sites were
retained for analysis (Figure 1). All the root and litter samples were oven-dried at 65 ◦C to
a constant weight and ground into fine powder with a plant sample grinder. Soil samples
were air dried. C and N concentrations in the root, litter and soil were analyzed using
an elemental analyzer (2400 II CHNS; Perkin-Elmer, Boston, MA, USA). P concentrations
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were determined using the molybdate/ascorbic acid method after H2SO4-H2O2 digestion.
The sampled sites were divided into two groups, natural (NF) and plantations (PL) forests.
Three successional stages or growth stages were identified for each (early, middle and late
stages). Details of the identification of the successional and growth stages can be found in
Yu et al. [22]. Dominant species of different successional stages in different forest origins
were shown in detail in Table A1.
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Figure 1. Sampling locations of the natural forests and plantations in this study.

2.2. Climate Data

Climate data (MAT and MAP) were obtained from the National Ecosystem Research
Network of China (http://data.cma.cn/en, accessed on 16 January 2021).

2.3. Statistical Analyses

The mean and standard error of the investigated variables (including C, N and P
contents, and C:N, C:P and N:P ratios) of root, litter and soil mixtures were calculated
separately. Independent-samples T-tests were used to examine the differences between the
C, N and P concentrations and ratios in the different forest types. One-way analyses of
variance (ANOVA) were used to examine the differences in C, N and P concentrations and
the ratios between the different succession/growth stages. Pearson’s correlation was used
to analyze the association between the studied variables (C, N and P concentrations, and
geographical and climatic factors). All values were considered statistically significant at
p < 0.05 and the results are reported as the means ± standard errors. All statistical analyses
were performed using SPSS v22.0 (IBM Crop.) (Chicago, IL, USA), and the statistical data
were plotted using OriginPro 2021 (Hampton, USA).

3. Results
3.1. C, N and P Concentrations in Roots, Litter and Soil in Forests of Different Origins in China

Significantly higher root C and N concentrations were found in PL than in NF (Table 1,
p < 0.05); root P concentrations were significantly lower in PL than in NF (Table 1, p < 0.05).
For litter C concentrations, no differences were found between PL and NF (Table 1, p > 0.05).
However, litter N concentrations were significantly higher in PL than in NF. In contrast,
litter P concentrations were significantly higher in NF than PL (Table 1, p < 0.05). Soil C, N
and P concentrations were significantly lower in PL than in NF (Table 1, p < 0.05).

http://data.cma.cn/en
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Table 1. Concentrations of C, N, and P in roots, litter and soil in NF and PL in forest ecosystems
in China.

Parameter Forest Origin C Concentration
(g·kg−1)

N Concentration
(g·kg−1)

P Concentration
(g·kg−1)

Root
NF 443.30 ± 1.87 B 4.4 ± 0.12 B 0.73 ± 0.03 A
PL 451.80 ± 2.41 A 6.64 ± 0.26 A 0.56 ± 0.03 B

Litter
NF 412.71 ± 2.69 A 10.48 ± 0. 13 B 0.93 ± 0.03 A
PL 410.40 ± 4.05 A 10.96 ± 0.19 A 0.71 ± 0.02 B

Soil
NF 22.00 ± 0.83 A 1.56 ± 0.05 A 0.48 ± 0.02 A
PL 16.83 ± 0.69 B 1.14 ± 0.06 B 0.39 ± 0.01 B

Note: Capital letters indicate significant differences in C, N and P concentrations in roots, litter and soil between
different forest origins (p < 0.05); n = 667 and 445 for NF and PL, respectively.

The C:N, C:P, and N:P ratios did not significantly differ between NF and PL in soils
(Table 2, p > 0.05). For roots and litter, the N:P ratios were significantly higher in PL than in
NF (Table 2, p < 0.05). By comparison, the C:N and C:P ratios in NF and PL only significantly
differed in roots and litter (Table 2, p < 0.05), respectively.

Table 2. Stoichiometry of the C, N, and P in roots, litter and soil in NF and PL in forest ecosystems
in China.

Parameter Forest
Origin C:N Ratio C:P Ratio N:P Ratio

Root
NF 128.71 ± 2.70 A 1352.19 ± 62.18 A 11.86 ± 0.45 B
PL 109.79 ± 4.16 B 1421.91 ± 50.82 A 16.56 ± 0.65 A

Litter
NF 46.19 ± 1.02 A 674.38 ± 20.95 B 16.19 ± 0.42 B
PL 43.74 ± 1.11 A 853.67 ± 36.52 A 19.22 ± 0.48 A

Soil
NF 17.58 ± 0.75 A 64.18 ± 5.76 A 4.20 ± 0.40 A
PL 19.21 ± 1.27 A 60.64 ± 2.62 A 3.79 ± 0.18 A

Note: Capital letters indicate significant differences in the C, N and P stoichiometry of roots, litter and soil between
the different forest origins (p < 0.05); n = 667 and 445 for NF and PL, respectively.

Although the C concentrations were not significantly different in the three succession
stages, both in NF and PL and in roots and litter (Figure 2a,d, p > 0.05) soil C concentrations
significantly increased with succession/growth stages in both NF and PL (Figure 2g,
p < 0.05). Root N concentrations generally decreased in NF during succession (Figure 2b,
p < 0.05) but did not change significantly in PL (Figure 2b, p > 0.05). However, compared to
the ES and MS, soil N increased significantly in NF and decreased significantly in PL in the
LS (Figure 2h, p < 0.05). P concentrations generally increased in NF during succession in
roots, litter and soil but significantly decreased in PL (Figure 2c,f,i, p < 0.05).

The C:N, C:P and N:P ratios did not significantly differ in NF in roots during succession
(Figure 3, p > 0.05). Root C:P and N:P ratios generally increased in PL during succession
(Figure 3b,c, p < 0.05). Litter C:P and N:P ratios significantly increased with age in PL but
decreased in NF (Figure 3e,f, p < 0.05). Soil C:N and C:P ratios significantly increased in PL
(Figure 3g,h, p < 0.05). The difference in soil N:P ratios in NF and PL during succession
was not significant (Figure 3i, p < 0.05).
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Figure 3. C, N and P stoichiometry in roots (a–c), litter (d–f) and soil (g–i) in different succession 
stages in NF and PL. Note: The error bars indicate standard errors of the means. Capital letters 
indicate significant differences in concentrations in different forest origins in the same succession 

Figure 2. C, N and P concentrations in roots (a–c), litter (d–f) and soil (g–i) in different succession
stages in NF and PL. Note: The error bars indicate standard errors of the means. Capital letters
indicate significant differences in concentrations in different forest origins at the same succession
stage (p < 0.05), while lowercase letters indicate significant differences in concentrations in the same
forest origin at different succession stages (p < 0.05); n = 149, 344, 174, 102, 199 and 144 for NF−ES,
NF−MS, NF−LS, PL−ES, PL−MS and PL−LS, respectively.
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Figure 3. C, N and P stoichiometry in roots (a–c), litter (d–f) and soil (g–i) in different succession 
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Figure 3. C, N and P stoichiometry in roots (a–c), litter (d–f) and soil (g–i) in different succession
stages in NF and PL. Note: The error bars indicate standard errors of the means. Capital letters
indicate significant differences in concentrations in different forest origins in the same succession
stage (p < 0.05), while lowercase letters indicate significant differences in concentrations in the same
forest origin at different succession stages (p < 0.05); n = 149, 344, 174, 102, 199 and 144 for NF−ES,
NF−MS, NF−LS, PL−ES, PL−MS and PL−LS, respectively.
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3.2. Relationships in C, N and P Concentrations and Ecological Stoichiometry in Roots, Litter and
Soil in Different Forests

The relationships in C, N and P concentrations and in C:N, C:P and N:P ratios in root–
litter–soil in NF and PL are shown in Figure 4. In NF, roots, litter and soil C concentrations
were significantly positively correlated. P concentrations were significantly correlated
positively in roots, litter and soil but had a strong negative influence on root N and
litter N concentrations. Moreover, no clear relationship was observed between the soil N
concentrations and root and litter N concentrations (Figure 4a). Roots, litter and soil C:P
ratios were very positively correlated (Figure 4b). Soil C:N and N:P ratios were significantly
positively correlated with soil C: P. Similar patterns were also observed in roots, litter and
soil P concentrations in both PL and NF. (Figure 4c). The C:N, C:P and N:P ratios in roots
and litter were significantly positively correlated. The significant positive correlations
between litter and soil were linked by their C:P and N:P ratios (Figure 4d).
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Figure 4. Pearson’s correlation matrix between plant root, litter and soil C, N and P concentrations 
and stoichiometric ratios in NF and PL. (a,b) The correlation between the concentrations of C, N and 
P and the stoichiometric ratios of C:N, C:P and N:P in roots, litter and soil in NF; (c,d) the correlation 
between the concentrations of C, N and P and the stoichiometric ratios of C:N, C:P and N:P in roots, 
litter and soil in PL. * p < 0.05, ** p < 0.01,*** p < 0.001. 
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Figure 4. Pearson’s correlation matrix between plant root, litter and soil C, N and P concentrations
and stoichiometric ratios in NF and PL. (a,b) The correlation between the concentrations of C, N and
P and the stoichiometric ratios of C:N, C:P and N:P in roots, litter and soil in NF; (c,d) the correlation
between the concentrations of C, N and P and the stoichiometric ratios of C:N, C:P and N:P in roots,
litter and soil in PL. * p < 0.05, ** p < 0.01,*** p < 0.001.

3.3. Relationships in Determinants and C, N and P Concentrations and Ecological Stoichiometry in
Roots, Litter and Soil between NF and PL

C concentrations in roots, litter and soil do not significantly change with latitude,
longitude, MAP, MAT or altitude in different succession stages in PL (Figures A1–A3).
However, in NF, litter C concentrations were positively correlated with altitude in the
ES, but were significantly negatively correlated with altitude in the MS (p < 0.05) and
did not change with altitude in the LS (Figures A1–A3). Root and litter N concentra-
tions were significantly positively correlated with longitude, while soil N concentra-
tions were negatively correlated with longitude over all three succession stages (p < 0.05)
(Figures A4–A6). MAP, MAT and altitude had completely different effects on the N con-
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centrations in roots, litter and soil in NF and PL. Overall, MAP and MAT had positive
influences on root and litter N concentrations and a negative influence on the soil N con-
centrations in NF in all three succession stages. By contrast, MAP was inversely correlated
with root and litter N concentrations and positively correlated with soil N concentrations in
PL across the three successional stages (Figures A4–A6). MAP and MAT were significantly
negatively correlated with P concentrations in roots, litter and soil in both NF and PL, while
latitude had positive correlations with P concentrations in litter and soil in both NF and PL
(except for litter in the ES in NF) (Figures 5–7). The P concentrations of the roots were only
significantly positively correlated with latitude in the MS in NF, and in both the ES and MS
in PL. Furthermore, the P concentrations of the roots, litter and soil decreased markedly
with longitude in both the ES and LS in NF (Figures 5 and 7) (p < 0.05) but did not change
with longitude in the MS (Figure 6). They increased with longitude in both the ES and MS
(Figures 5 and 6) (p < 0.05) but did not change with longitude in the LS in PL (Figure 7).
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Figure 5. P concentration changes with latitude (a,f), longitude (b,g), mean annual precipitation 
(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the 
early stage (ES). The numbers of forest sites are 149 and 102 for NF−ES and PL−ES, respectively. 
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Figure 5. P concentration changes with latitude (a,f), longitude (b,g), mean annual precipitation
(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the
early stage (ES). The numbers of forest sites are 149 and 102 for NF−ES and PL−ES, respectively.
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Figure 5. P concentration changes with latitude (a,f), longitude (b,g), mean annual precipitation 
(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the 
early stage (ES). The numbers of forest sites are 149 and 102 for NF−ES and PL−ES, respectively. 
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Figure 6. P concentration changes with latitude (a,f), longitude (b,g), mean annual precipitation
(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the
middle stage (MS). The numbers of forest sites are 344 and 199 for NF−MS and PL−MS, respectively.
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Figure 7. P concentration changes with latitude (a,f), longitude (b,g), mean annual precipitation 
(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the 
late stage (LS). The numbers of forest sites are 114 and 144 for NF−LS and PL−LS, respectively. 
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4. Discussion
4.1. C, N and P Concentrations and Stoichiometry in Roots, Litter and Soil in Different Forests

Ecosystem C, N and P are transferred and recycled in plants, litter and soil [23],
and play an important role in maintaining the nutrient balance in forest ecosystems. For
example, litter nutrients are important inputs for soil and help sustain the growth of
plants [24]. Roots are not only an organ used by plants to absorb nutrients such as N and
P [25], but are also an important source of nutrients themselves. Indeed, Vogt et al. [26]
found that the carbon and nutrients (N and P) returned to the soil through the turnover of
fine roots exceeded the ground litter in forest ecosystems on a global scale.

Our results showed that C, N and P concentrations were closely correlated between
roots, litter and soil in both NF and PL (Figure 4), and significantly differed between
different forest stands in China’s forest ecosystems. Root C and N concentrations in PL
(451.8 g·kg−1 and 6.64 g·kg−1) were significantly higher than those in NF (443.3 g·kg−1

and 4.4 g·kg−1), and were also higher than the levels (417.8 g·kg−1 for root C, 4.87 g·kg−1

for root N) for China’s terrestrial ecosystems reported by Tang et al. [24]. By comparison,
root P concentrations in PL (0.56 g·kg−1) were significantly lower than in NF (0.73 g·kg−1)
(p < 0.05), and were smaller than the average root P in fine roots (0.78 g·kg−1) at a global
level, as reported by Yuan et al. [27]. This may be related to the different morphological
characteristics of roots and the different environment bases of the two forest stands [28,29].
Previous hypotheses have also claimed greater plant diversity with deeper roots, since
more soil animals can capture and exploit P from the deeper soil [30]. Liu et al. [31]
have reported for surface soil layers (0–10 cm) C (31.01 g·kg−1), N (1.71 g·kg−1) and
P (0.39 g·kg−1) concentrations in China’s forests that are close to the C, N and P concentra-
tions in the PL in our study. We found that soil C, N and P in NF were significantly higher
than those in PL.

Forest restoration is the key factor affecting soil C, N and P concentrations [23]. In
this study, we found that, as succession progressed, the C concentrations in roots and
litter did not change significantly, while the soil C concentrations increased significantly
in both NF and PL (p < 0.05). More specifically, the soil C concentrations were obviously
higher in later successional stages in NF than in PL (p < 0.05). Zhou [32] have shown that
old-growth forests can still accumulate carbon in soils. Our results imply that PL soils
have a high C sequestration potential in China. Gu et al. [33] report that the soil physical
and chemical properties change after vegetation restoration, which can be beneficial to
the development of plant roots and thus to the accumulation of soil organic carbon. In
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addition, increases in community species richness and underground biomass may also
contribute to the accumulation of soil organic carbon. N concentrations gradually increase
as succession progresses, which could be attributable to nutrients released from the litter. In
turn, the increase in soil N increases the soil carbon sequestration capacity of the forest [34].
However, P concentrations in roots, litter and soil significantly increase in NF as succession
progresses but significantly decrease in PL. Plants have different nutrient strategies to
survive and thrive in P-limited soils [35]. Previous studies have indicated that NF might
obtain P from deeper layers of soil via roots and mycorrhizal fungi in the LS [22]. However,
decreased P in PL might be due to its low P-retention ability, which is mainly due to the
loss from erosion, harvest and the low efficiency of the P retention system. Yu et al. [22]
also hypothesized that the P loss caused by horizontal (i.e., surface and subsurface runoff)
and vertical (i.e., leaching into subsoils) transport played an important role in systems with
low P efficiency.

C:N:P ratios are critical indicators of ecosystem processes [17]. The concentrations
and stoichiometry of elements in our study between roots, litter and soil in different forest
stands were highly correlated (Figure 4). From a single tissue to the entire community, a
strong correlation is essential for measuring plants’ responses to global change [24]. The
C:N and C:P ratios of plants reflect the efficiency of a plant’s use of N and P and their
growth rates [4,36]. Litter C:N is also significantly correlated with the litter decomposition
rate [6,37]. In our study, we found that root C:N and C:P ratios were higher than litter, both
in NF and PL, which indicates that plants tend to recycle nutrients to ensure their growth
and development [38]. As the succession/growth progressed, root C:P ratios significantly
decreased (p < 0.05) in NF but significantly increased (p < 0.05) in PL, which also shows
how a low-P soil environment can improve nutrient utilization efficiency in PL compared
to NF. Plant N:P ratios have been proven to be useful for accessing the limitations of N
and P on primary production of terrestrial ecosystems [12,18,39], in which a N:P ratio
below 14 and above 16 can be used as indicators of N and P limitation, respectively [40].
Previous studies have also reported that China’s forests are more generally limited by P
than by N concentrations [31]. Here we found that both the roots and litter N:P in PL
were significantly higher than NF, thereby suggesting a greater P vs. N retention capacity
(e.g., retranslocation) in native than planted forests. As the succession progressed, root
N:P in NF did not change significantly (p > 0.05) but did significantly increase from 12.12
to 19.67 in PL. Such changes indicate that P is not the limiting nutrient in the ES in PL,
but, rather, gradually becomes the limiting factor as the forest grows; this also suggests
that the P retention capacity is worse in PL than in NF. As well, N gradually became the
limiting nutrient in the LS in NF. In general, forests are usually limited by N in the early
stage of succession and will become restricted by both N and P, or by just P, in later stages,
a process that is more evident in PL (as indicated by our study). Soil C:P ratios can act as
indicators of the potential of microbial mineralization in soil organic matter to release P or
to absorb and store environmental P [41]. In our study we found that the soil C:P ratios
in PL increased significantly as the succession progressed (p < 0.05) but did not change
significantly in NF (p > 0.05). Decreasing P concentrations might therefore reduce the P
availability in PL, which may further inhibit microbial activity and reduce long-term C
storage capacity [42,43]. Wardle et al. [44] also found that in most long-term observational
studies the N:P ratio in litter rose as the age of the soil substrate increased. This indicates
that there are similar degradation trends in forest ecosystems from tropical to temperate
zones, which generate a decrease in soil P availability as the succession advances. In our
study, trends were observed to be more intense in PL than in NF. The frequent use of fast-
growing, mostly non-native trees in plantations, above all in wet tropical and subtropical
areas, tends to impoverish soil nutritional quality, which is especially evident in the case
of P conservation in the plant–soil system [9,10]. Native forests, on the other hand, are
generally more diverse and have several adaptations for coping with limited P availability,
mainly in the late successional stages when there is a greater capacity for retaining P in the
plant soil system [9,18,22].
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4.2. Factors Affecting C, N and P Concentrations and Their Stoichiometry in Different Succession
Stages in NF and PL

Recent analyses have shown that temperature [3,12], precipitation [18,27], functional
group [31] and soil and litter nutrients [18,19,45,46] are strongly correlated with plant
nutrients and stoichiometry. However, most of these previous studies have focused on
changes at global or regional scales using published data and did not consider forest origins.
Our results show that the changes in C concentrations along latitude, longitude, MAP and
altitude gradients were similar in NF and PL. Tang et al. [20] report that vegetation and
litter C concentrations decreased with increasing MAT. However, our study shows that
during the three stages MAT had different effects on root and litter C concentrations in
NF (negative) and PL (positive). This may be because of the differences in tree species
composition in forest stands [47]. Sardans and Peñuelas [48] have demonstrated that water
resources are an important driving force for increasing plant nutrient-use efficiency in
ecosystems, and droughts will habitually change the internal N and P cycles in terrestrial
ecosystems. Precipitation decreases from the southeast to the northwest in China, a pat-
tern that shapes the distribution of the soil water content and further limits soil nutrient
availability [49]. Certain studies report that climatic factors only have a weak impact on
plant N concentrations, which are mainly determined by plant functional groups [31].
Moreover, the Temperature-Plant Physiological Hypothesis also indicates that higher N
and P content help enhance the metabolic activity and growth rate of plants, which offsets
the low impact of temperature at high latitude by decreasing the biochemical reaction rate
of N-rich enzymes and P-rich RNA in plants [3,50]. The results of our study show that
latitude and longitude affect the distribution of vegetation N content through temperature
and precipitation. Moreover, MAP and MAT showed opposite effects on the root and litter
N content between NF and PL, while they only had a significantly effect on the soil N
content in the middle and later stage of NF. These results also suggested that plant species,
rather than climatic variation, was the major determinant of plant N concentrations [51].

Like previous studies [3,12,18], climatic factors (MAT and MAP) were significantly
and negatively correlated with P concentrations in both NF and PL (p < 0.05), but were
related to the strong weathering and eluviation of soil in high MAT and MAP areas [52].
As succession progressed, P concentrations in root, litter and soil increased with greater
longitude in the ES and MS stages in PL, but then decreased with longitude in the LS
stages. However, we found that MAT, MAP, latitude, longitude and altitude all had the
same effect on P concentrations in NF and PL in the LS, which indicates that geographical
and climatic factors were not the reasons for differences in P concentrations between NF
and PL. Yu et al. [53] have proved that high long-term N deposition significantly reduces
total soil TP concentrations but has no significant influence on total soil TN concentrations,
which has thus increased the C:P and N:P ratios over the past 60 years in subtropical China.
These studies provide strong evidence that China’s total soil P concentrations have been
decreasing over the past few decades, which has led to P limitations and higher N:P ratios
in its forest ecosystems [31]. However, our results also support the idea that, given P
limitation in forest ecosystems, natural forests (NF) seem to be more able to retain P than
plantations (PL), which are frequently dominated by fast-growing non-native species. The
overarching reason, as pointed out by Yu et al. [22], is that natural native vegetation during
succession grows, retains and accumulates P from deeper soil layers and has a greater
P-retention capacity [9,18,22]. However, we found that MAT, MAP, latitude, longitude
and altitude all had the same effect on P concentrations in NF and PL in the LS, thus
indicating that geographical and climatic factors were not the reasons for the differences
in P concentrations between NF and PL. Instead, our results strongly suggest that species
composition is the main cause of the different evolution of P limitation in soil in PL and
in NF.
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5. Conclusions

Ecological stoichiometry in forest ecosystems were different between forest origins. In
this study, we found that P concentrations significantly decreased in the litter, root and soil
in plantation forests (PL) as succession/growth proceeded, while the opposite occurred in
natural forests (NF). Our results indicate that NF maybe more capable as growth progresses
of storing P nutrients than PL. Different plant N:P ratios in NF and in PL during the progress
of succession/growth also suggests that the difference between forest origins should be
considered in the future research. Our study also reveals that geographical and climatic
factors were not the dominant drivers of the differences in P concentrations between NF
and PL in China, although more studies are still required to confirm this finding.
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Appendix A

Table A1. Tree species of each growth stages in NF and PL.

Forest
Origin n Growth

Stages N Dominant Species

NF 667

ES 149

Quercus wutaishansea Mary, Populus simonii Carr, Betula platyphylla Suk., Betula albosinensis Burk.,
Quercus variabilis Bl., Quercus acutissima Carruth., Pinus tabuliformis Carr., Pinus massoniana Lamb.,
Quercus glandulifera var. brevipetiolata Nakai, Abies fabri (Mast.) Craib, Quercus semicarpifolia Smith,

Pinus yunnanensis Franch., Cyclobalanopsis glauca (Thunb.) Oerst., Lithocarpus glaber (Thunb.)
Nakai, Pinus densata Mast., Picea spinulosa (Griff.) A. Henry, Cunninghamia lanceolata (Lamb.)

Hook., Abies georgei Orr var. smithii (Viguie et Gaussen) Cheng et L.

MS 344

Fraxinus rhynchophylla Hance, Quercus mongolica Fisch. ex Ledeb, Juglans mandshurica Maxim.,
Populus davidiana Dode, Betula dahurica Pall., Quercus aliena Bl. var. acuteserrata Maxim. ex Wenz.,
Robinia pseudoacacia L., Betula platyphylla Suk., Quercus wutaishansea Mary, Pinus armandii Franch.,

Pinus tabuliformis Carr., Picea crassifolia Kom., Sabina przewalskii Kom., Larix gmelinii (Rupr.)
Kuzen., Quercus acutissima Carruth., Acer ginnala Maxim., Quercus variabilis Bl., Juniperus formosana
Hayata, Quercus aliena Bl. var. acuteserrata Maxim. ex Wenz., Vernicia fordii (Hemsl.) Airy Shaw,

Populus tomentosa Carr, Pinus tabuliformis var. henryi (Masters) C. T. Kuan, Cunninghamia lanceolata
(Lamb.) Hook., Pinus massoniana Lamb., Bothrocaryum controversum, Abies fabri (Mast.) Craib,

Pinus yunnanensis Franch., Quercus semicarpifolia Smith, Abies georgei Orr var. smithii (Viguie et
Gaussen) Cheng et L., Picea spinulosa (Griff.) A. Henry

LS 174

Ulmus pumila L., Larix gmelinii (Rupr.) Kuzen., Quercus variabilis Bl., Cyclobalanopsis glauca (Thunb.)
Oerst., Quercus aliena Bl. var. acuteserrata Maxim. ex Wenz., Pinus tabuliformis Carr., Picea crassifolia
Kom., Pinus armandii Franch., Platycladus orientalis (L.) Franco, Quercus wutaishansea Mary, Betula
albosinensis Burk., Quercus acutissima Carruth., Quercus aliena Bl. var. acuteserrata Maxim. ex Wenz.,

Pinus massoniana Lamb., Liquidambar formosana Hance, Quercus glandulifera var. brevipetiolata
Nakai, Pinus yunnanensis Franch., Schima superba Gardn. et Champ., Loropetalum chinense (R. Br.)

Oliver, Castanopsis fargesii Franch., Bothrocaryum controversum, Castanopsis sclerophylla (Lindl.)
Schott., Cinnamomum porrectum (Roxb.) Kosterm., Castanopsis hystrix J. D. Hooker et Thomson ex

A. De Candolle, Castanopsis carlesii (Hemsl.) Hayata., Cunninghamia lanceolata (Lamb.) Hook.,
Abies georgei Orr, Abies delavayi Franch., Abies georgei Orr var. smithii (Viguie et Gaussen) Cheng et

L., Pinus densata Mast., Quercus semicarpifolia Smith, Picea spinulosa (Griff.) A. Henry

PL 445

ES 102

Larix gmelinii (Rupr.) Kuzen., Populus gansuensis C. Wang et H. L. Yang, Robinia pseudoacacia L.,
Platycladus orientalis (L.) Franco, Pinus tabuliformis Carr., Populus simonii Carr, Betula albosinensis
Burk., Populus euramericana cv.‘I-214’, Pinus massoniana Lamb., Abies fabri (Mast.) Craib, Quercus
semicarpifolia Smith, Cinnamomum camphora (L.) Presl., Pinus yunnanensis Franch., pinus elliottii,

Eucalyptus robusta Smith, Cunninghamia lanceolata (Lamb.) Hook., Acacia mangium Willd., Schima
superba Gardn. et Champ., E. urophylla × E. grandis

MS 199

Larix gmelinii (Rupr.) Kuzen., Pinus sylvestris var. mongolica Litv., Picea asperata Mast., Pinus
tabuliformis Carr., Larix gmelinii var. principis-rupprechtii (Mayr) Pilger, Robinia pseudoacacia L., Larix

kaempferi (Lamb.) Carr., Pinus thunbergii Parlatore, Quercus acutissima Carruth., Styphnolobium
japonicum (L.) Schott, Populus tomentosa Carr, Quercus aliena Bl. var. acuteserrata Maxim. ex Wenz.,
Populus tomentosa Carr, Quercus variabilis Bl., Cunninghamia lanceolata (Lamb.) Hook., Cupressus

funebris Endl., Eucalyptus robusta Smith, Acacia mangium Willd.

LS 144

Pinus tabuliformis Carr., Larix gmelinii (Rupr.) Kuzen., Populus davidiana Dode, Pinus densiflora Sieb.
et Zucc., Platycladus orientalis (L.) Franco, Pinus thunbergii Parlatore, Populus simonii Carr, Populus

cathayana Rehd., Populus tomentosa Carr, Larix kaempferi (Lamb.) Carr., Cunninghamia lanceolata
(Lamb.) Hook., Pinus massoniana Lamb., pinus elliottii, Cinnamomum camphora (L.) Presl., Quercus
variabilis Bl., Loropetalum chinense (R. Br.) Oliver, Acacia mangium Willd., Schima superba Gardn. et

Champ., Liquidambar formosana Hance
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Figure A2. C content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the middle 
stage (MS). The number of forest sites are 344 and 199 for NF−MS and PL−MS, respectively. 
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Figure A3. C content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the late 
stage (LS). The number of forest sites are 114 and 144 for NF−LS and PL−LS, respectively. 
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(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins
in the late stage (LS). The number of forest sites are 114 and 144 for NF−LS and PL−LS, respectively.
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(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the early 
stage (ES). The number of forest sites are 149 and 102 for NF−ES and PL−ES, respectively. 
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Figure A5. N content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the middle 
stage (MS). The number of forest sites are 344 and 199 for NF−MS and PL−MS, respectively. 
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Forests 2022, 13, 755 15 of 17

Forests 2022, 13, x FOR PEER REVIEW 15 of 18 
 

 

25 30 35

0

5

10

15

20

25

30

90 95 100 105 110 115 120 400 800 1200 1600 -15 -10 -5 0 5 10 15 20 25 0 1000 2000 3000 4000 5000

20 25 30 35 40 45 50

0

10

20

30

40

100 105 110 115 120 0 300 600 900 120015001800-5 0 5 10 15 20 0 1000 2000 3000 4000

N
 c

on
te

nt
 in

 N
F 

at
 E

S 
(g

·k
g-1

)

a R2=0.08  p<0.05
R2=0.06  p<0.05
R2=0.08  p<0.05

b

R2=0.00  p>0.05
R2=0.00  p>0.05
R2=0.20  p<0.05

c

R2=0.04  p>0.05
R2=0.01  p>0.05
R2=0.05  p<0.05

d

R2=0.13  p<0.05
R2=0.06  p<0.05
R2=0.00  p>0.05

e

R2=0.00  p>0.05
R2=0.00  p>0.05
R2=0.02  p>0.05

f R2=0.09  p<0.05
R2=0.06  p<0.05
R2=0.00  p>0.05

g

R2=0.03  p<0.05
R2=0.05  p<0.05
R2=0.10  p<0.05

h

R2=0.10  p<0.05
R2=0.10  p<0.05
R2=0.03  p<0.05

i

R2=0.07  p<0.05
R2=0.04  p<0.05
R2=0.01  p>0.05

j

R2=0.00  p>0.05
R2=0.06  p<0.05
R2=0.01  p>0.05

N
 c

on
te

nt
 in

 P
L 

at
 E

S 
(g

·k
g-1

)

Latitude (°) Longitude (°) MAP (mm) MAT (℃)

 Root  Litter  Soil

Altitude (m)  
Figure A4. N content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the early 
stage (ES). The number of forest sites are 149 and 102 for NF−ES and PL−ES, respectively. 
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Figure A5. N content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the middle 
stage (MS). The number of forest sites are 344 and 199 for NF−MS and PL−MS, respectively. 
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(MAP) (c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the
middle stage (MS). The number of forest sites are 344 and 199 for NF−MS and PL−MS, respectively.
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Figure A6. N content changes with latitude (a,f), longitude (b,g), mean annual precipitation (MAP) 
(c,h), mean annual temperature (MAT) (d,i) and altitude (e,j) in different forest origins in the late 
stage (LS). The number of forest sites are 114 and 144 for NF−LS and PL−LS, respectively. 
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