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Interactions between proteins and RNA are at the base of numerous cellular regulatory
and functional phenomena. The investigation of the biological relevance of non-coding
RNAs has led to the identification of numerous novel RNA-binding proteins (RBPs).
However, defining the RNA sequences and structures that are selectively recognised by
an RBP remains challenging, since these interactions can be transient and highly
dynamic, and may be mediated by unstructured regions in the protein, as in the case of
many non-canonical RBPs. Numerous experimental and computational methodologies
have been developed to predict, identify and verify the binding between a given RBP and
potential RNA partners, but navigating across the vast ocean of data can be frustrating
and misleading. In this mini-review, we propose a workflow for the identification of the
RNA binding partners of putative, newly identified RBPs. The large pool of potential
binders selected by in-cell experiments can be enriched by in silico tools such as
catRAPID, which is able to predict the RNA sequences more likely to interact with spe-
cific RBP regions with high accuracy. The RNA candidates with the highest potential can
then be analysed in vitro to determine the binding strength and to precisely identify the
binding sites. The results thus obtained can furthermore validate the computational pre-
dictions, offering an all-round solution to the issue of finding the most likely RNA binding
partners for a newly identified potential RBP.

Introduction
Since their discovery and until recently, RNA-binding proteins (RBPs) have been identified by the
presence of one or more RNA-binding domains in their sequences [1]. However, concomitantly to a
new appreciation for RNA as key biological macromolecule acting at post-transcriptional level [2–4],
there has also been a re-evaluation of what constitutes an RBP. Since one of the principal ways by
which RNA exerts its function is by the formation of ribonucleoprotein complexes, every protein
capable of establishing even weak and extemporary interactions with an RNA molecule may be
defined as RBP [5,6]. The interactions of proteins with RNA can be highly dynamic and heavily
dependent on the cellular environment [7], which makes the goal of defining the range of affinities
and specificities quite challenging [8]. In fact, indiscriminate binding of RNA by RBPs is a quite
common phenomenon [9], and the assumption that stronger affinity translates into more relevant bio-
logical functions is not necessarily correct [10]. For the scientific community, the revelation of the
dynamicity and malleability of the partnership between RBPs and RNA allows for the exploration of
new possible interaction mechanisms, networks, genes and protein regulation systems to investigate. It
becomes, therefore, increasingly important to complete the catalogue of eukaryotic RBPs, at present
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containing >315 000 elements (about 6000 orthologues from >150 species) of which 3500 are from H. sapiens
and can be divided in conventionally-defined RBPs and several classes of non-canonical RBPs [5,11,12].
Large-scale identification of new potential RBPs can reveal unexpected biological and pathological functions

and, when confronted with a novel RBP, the identification of its RNA binding partners is a critical step to
define the protein’s cellular and molecular roles. To achieve this goal, increasingly sophisticated high-
throughput methodologies have been developed, spanning from methods that aim to preserve the native cellu-
lar RNA–RBP interactions [13–15] to finely-controlled in vitro techniques that allow to define kinetics and
dynamic parameters for each binding pair [16,17]. However, the field that has probably seen the biggest evolu-
tion in the shortest time span is the one of computational prediction algorithms [18–22]. The wide range of
computational tools available includes several data-driven methods based on learning models, in which the
algorithms are trained using experimental outcomes and databases to identify RNA–RBP binding patterns and
define the genome-wide profiling of RNA–protein interactions [22].
In this short review, we propose a work pipeline for the identification of the RNA binding partners for novel

putative RBPs. Starting from in-cell data harvesting, we would like to guide the reader through the employment
of the different tools offered by catRAPID [23,24], our in-house developed RNA–protein interaction prediction
algorithm, and propose some indications on how to validate the outcome experimentally. Our wider goal is to
support the scientific community in the identification of novel biologically relevant non-canonical RBPs.

Identification of RNA binding partners in cellular context
The validation and training of computational algorithms for the prediction of protein-RNA interactions is
strongly supported by experimental data (Figure 1). Prediction software can be significantly enriched by the
output of techniques able to identify a protein’s RNA partners within the cellular environment; such proce-
dures are key to defining native interaction pairs and to monitoring responses and variations upon physio-
logical stimuli or under pathological stress.

RIP-based approaches
The main tool to obtain information about the RNA binding partners of a target protein in the cellular envir-
onment is immunoprecipitation (IP), a widespread technique to pull down the protein of interest together with
its physiological RNA binding partners. RNA immunoprecipitation (RIP) requires incubation of cell lysates
with an antibody raised against the target protein [25]. RNA molecules bound to the target protein can then be
isolated and analysed to reconstruct physiological native complexes formed within the cell. RIP can be coupled
to either microarrays (RIP-Chip) or high-throughput sequencing (RIP-Seq). In either case, RIP can only deter-
mine the identity of the RNA molecules associated to the target protein, unless digestion-optimized RIP
(DO-RIP) is performed [26]. This variation of RIP introduces an RNase digestion step to preserve only the
portion of RNA bound to the protein, allowing for binding-site mapping [27]. If, instead, the interest is
focused on identifying multi-subunit ribonucleoproteins, the most appropriate RIP variant may be RIP in
tandem (RIPiT), which employs two distinct IP steps performed either with antibodies against different pro-
teins of the complex or with antibodies binding different regions of the same target protein [28]. Information
about native protein–RNA complexes formed within the cell can also be obtained by employing affinity tags
[29], without having to rely on the antibody’s specificity and sensitivity.

CLIP-based approaches
To overcome RIP’s limitations (enrichment of indirectly bound RNAs, detection of interactions not present in
cell but formed after lysis, loss of weaker interactions due to the required stringent washing conditions), cross-
linked RNA immunoprecipitation (CLIP) has been developed [30]. CLIP promotes the stabilisation of the
bonds between a protein and its interacting RNA, generally by UV radiation [31]. A large amount of CLIP var-
iants is available, and most of them can offer high-resolution results at the single nucleotide level. Pioneers
among these are, for example, the high-throughput sequencing CLIP (HITS-CLIP), that enriches the RNA
population for sequences corresponding to the RBP binding sites [32]; the individual nucleotide-resolution
CLIP (iCLIP) [33,34] and enhanced CLIP (eCLIP) [35], that utilise different oligonucleotide adapter configura-
tions to obtain RNAs of different lengths employed to build the interacting fragments at single-nucleotide reso-
lution; and the photoactivatable ribonucleoside CLIP (PAR-CLIP), that relies on metabolic incorporation of
labelled ribonucleoside analogues that yield photo-adducts when cross-linked at selected wavelengths [36].
Radiation-free CLIP variants, such as infrared-CLIP (irCLIP), have also been reported [37]. To overcome the
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restrictions imposed by the use of irreversible UV cross-linking, formaldehyde-based techniques such as fCLIP,
which are more efficient in capturing interactions with dsRNA [38], can also be employed [39]. One limit of
CLIP-Seq approaches is that low crosslinking efficiency makes low abundant transcripts difficult to detect,
while transcripts present at high amounts are usually over-represented in IP samples. This issue can be partial
solved with a proper bioinformatic analysis.

Bioinformatic analysis
High-throughput sequencing of the RNAs isolated through RIP, CLIP and related protocols yields millions of
short ‘reads’, which represent the sequenced portions of cDNA fragments obtained through RNase titration (a
step omitted in standard RIP-Seq), followed by reverse transcription and PCR amplification. The RNase treatment
allows to obtain fragments long enough to be uniquely mappable but short enough to identify the binding site
with the highest possible resolution. Library preparation ends with the production of cDNA fragments flanked by
adapters that allow amplification and sequencing, resulting in the generation of short reads that can undergo bio-
informatic analysis aimed at identifying RNA targets for the RBP (Figure 2). Reads pre-processing steps, including
demultiplexing and adapter trimming, are often required, especially in those cases in which Unique Molecule
Identifiers (UMIs) are used [40]. UMIs are random barcodes which identify unique cDNA fragments, allowing to
detect and remove PCR duplicates that are commonly produced during CLIP-Seq library preparation [34,35].
To identify the RNA molecules from which they derive, reads are aligned to a reference genome using

splice-aware alignment programs commonly used to analyze standard RNA-Seq data, like TopHat2 [41] or Star
[42]. If the RBP under investigation binds mature mRNAs, reads can be mapped directly to the transcriptome
[43] using a splice-unaware mapper like Bowtie2 [44]. Reads coming from HITS-CLIP experiments have high
mutation rates (usually deletions) at the cross-linking site (CIMS, standing for cross-linking induced mutation
sites), which are due to residual amino acids hindering the reverse transcriptase [45–47]. Similarly, the use of 4-
thiouridine (4-SU) or 6-thioguanosine (6-SG) in the PAR-CLIP protocol leads to a high number of transition
events (T to C or G to A, respectively) at the cross-linking sites [48]. Reads mapping can be improved by
taking into account the high rate of such mutations. For instance, the splice-unaware BWA aligner [49] has
been modified in order to incorporate an error model that favours PAR-CLIP specific transitions [50,51]. Reads
produced by iCLIP, and likely eCLIP, experiments do not require such special treatment, since such protocols
enrich for cDNAs truncated at the cross-linking site (CITS, standing for cross-linking induced truncation sites),
while only a minor proportion of fragments represent CIMS-containing read-through cDNAs [43].
Post-processing of aligned reads is a mandatory step in RIP-Seq and CLIP-Seq data analysis. Reads aligning

to multiple genomic positions are usually removed [52]. However, such multi-mapped reads can be used to
identify regulatory RNA sites localized within repetitive regions [53]. To filter out PCR duplicates, reads
mapping to the same genomic position are collapsed; UMIs, when present, can be used to avoid removing
natural read duplicates, common in case of high sequencing depth [54].
In RIP-Seq experiments, target RNAs can be identified either by transcript enrichment analysis of IP versus

control samples [55–57], which can be performed using procedures commonly adopted in differential expres-
sion analysis, or with ad-hoc peak-calling tools [58,59]. Binding site identification in HITS-CLIP experiments
is usually accomplished by means of peak-calling approaches, that identify regions which are enriched in reads
with respect to their genomic context (gene, transcript, metagene region) [59], the background represented by
control experiments (input, IgG, mock IP) [60], or baseline expression profiles [59]. Single-nucleotide

Figure 1. The workflow of discovering RNA partners for an RBP.

Protein and RNA sequence databases, structural information and results from RIP/CLIP experiments feed computational

prediction tools such as catRAPID. The software utilises this information to define RNA sequences with high probability of

interacting with a given RBP and rank them accordingly. Several in vitro techniques allow for the validation of predicted results,

for the calculation of binding strength and the definition of the binding sites.
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resolution in HITS-CLIP data analysis can be achieved by looking for statistically significant CIMS [59]. Such
resolution in binding site identification can also be attained in PAR-CLIP, by searching for transition events
that are not likely to be caused by sequencing noise, single nucleotide polymorphisms or contamination [61].
The first nucleotide of reads from iCLIP and eCLIP experiments most often marks the truncation site and it is
therefore located one nucleotide after the cross-linking site. Statistically significant CITS can be identified by
using tools like iCount [62] and PureCLIP [63].

In silico prediction of protein–RNA interactions
The outcome of the data analysis obtained by means of CLIP-Seq experiments is of enormous value in
approaching the study of a potential RBP with unknown RNA partners. However, there are two major draw-
backs in limiting the investigation to CLIP-Seq approaches: the protein regions in direct contact with the target
RNAs remain unknown, and there are not sufficient data to speculate on the strength of the interaction for
each protein–RNA pair. The use of predictive algorithms such as catRAPID would integrate the results of a
CLIP-Seq experiment with this information [24] (Figure 1).

catRAPID
catRAPID is an algorithm able to compute protein–RNA interaction propensities with strong predictive power
(area under the Receiver Operating Characteristic curve of 0.78 on >1 000 000 interactions) [64], through the
calculation of secondary structures, hydrogen bonding and van der Waals contributions. The algorithm was
trained on PDB crystals [24] and was later adapted to predict CLIP-Seq interactions with long non-coding
RNAs [65]. For large proteins (>750 amino acids) and RNAs (>1000 nucleotides), the algorithm fragments
sequences into overlapping segments and computes the interaction propensity through the analysis of physical–
chemical properties and secondary structures of the molecules. According to the chosen implementation
(Table 1), the method can either reconstruct the overall interaction propensity score for each protein–RNA pair
[66] or rank the fragments according to the predicted interaction strength [67]. The outcome of this analysis
allows to map both protein and RNA binding sites and to estimate the overall strength of the interactions [68],
overcoming the limitations of CLIP-Seq techniques mentioned above. If used in combination with CLIP-Seq
data relative to the protein of interest, catRAPID can be employed to select the best targets based on calculated
binding strength, but it could be also useful in predicting putative targets that are not expressed within the cel-
lular system. If no information about the RNA targets is available, catRAPID can represent a promising tool
for the investigation of the protein’s genome-wide RNA-binding potential against an RNA sequence library.
Here we suggest a pipeline that could be followed in such circumstance:

1. If the RNA binding potential of a given protein is unknown, catRAPID signature [71] can be used to
predict it, along with the putative RNA-binding regions. This approach is particularly recommended if a
potential RBP needs to be selected from a panel of candidate proteins;

2. catRAPID omics [69] can then be used to predict the interactions between the protein and a precompiled or
custom RNA library. The result is a ranked list of protein–RNA pairs;

3. If the protein of interest is human, its co-expression with the putative interactors in different tissues can be
evaluated using catRAPID express [70];

4. Once the most promising binding partners have been identified, catRAPID strength can be employed to
evaluate the strength of each interaction [67];

5. Finally, catRAPID fragments [66] can be run on the highest scoring protein–RNA pairs to predict the
binding sites. Interactions with long RNAs can be analyzed using Global Score [65] or omiXcore [68].

By narrowing down the number of potential targets and by suggesting the most likely binding sites, such
approach can be employed to guide further experimental and computational analyses. Being a predictive tool,
there is always the chance that catRAPID may fail in identifying valid RNA targets. Prediction accuracy
depends on the set provided to train the algorithm. As more and more data become available, retraining of the
algorithm will be necessary to achieve better performances.

catRAPID alternatives
catRAPID is only one of several possible computational methods developed for predicting protein–RNA inter-
actions. We would like to mention here some valid alternatives:
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• LncPro [72]: similar to catRAPID in the employment of RNA secondary structure, hydrogen-bonding and
van der Waals interaction propensities. It is designed to predict whether a specific long non-coding RNA
interacts with one or more protein sequences. Propensities are calculated for both protein and RNA and a
probability score ranging from 0 to 100 is generated;

Figure 2. Bioinformatics analysis of CLIP-Seq and RIP-Seq data.

After being de-multiplexed based on sample-specific barcodes, reads undergo a pre-processing phase. UMIs are not always used, being more

common in iCLIP and eCLIP protocols. When employed, they are sometimes used to remove PCR duplicates directly at this stage, but in most

cases reads are simply marked based on UMI sequence, as shown by the colours assigned to trimmed reads. After the alignment of reads to the

genome or to the transcriptome is performed, post-processing is needed to filter out multi-mapped reads and to collapse reads mapping at the

same position, that are likely to represent PCR duplicates; if UMI-based read marking occurred, natural duplicates, which map at the same place

but have different UMIs, can be retained, as shown here. RNA target identification and binding site detection strategy depend on the protocol.

Roughly, such approaches can be divided into transcript enrichment analysis (RIP-Seq), which is analogous to differential expression analysis, and

peak-calling (all protocols). Single-nucleotide resolution can be achieved using CIMSs in HITS-CLIP, transitions in PAR-CLIP and CITSs in iCLIP/

eCLIP. HITS-CLIP experiments do not always produce clear and usable CIMS patterns.
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• RPISeq [73]: protein and RNA sequences are encoded into features that are then used to train Support
Vector Machine (SVM) and Random Forests classifiers;

• RPI-Pred [74]: it combines RNA and protein sequences with predicted or actual 3D structures. The features
are then used to train an SVM classifier;

• iDeepS [75]: a deep learning-based method that exploits convolutional neural networks (CNNs) trained on
RNA sequences and predicted secondary structures. At the end of the pipeline, a classification layer is

Table 1 A summary of the different catRAPID implementations

Name of
the
algorithm Description Input Output

catRAPID
fragments
[66]

It divides inputted protein and RNA into
fragments and computes the
interaction propensity between each
fragment.

• A protein sequence in
FASTA format.

• An RNA sequence in
FASTA format.

• Interaction profile plota.
• Interaction matrixb.
• Table of interacting
protein–RNA fragments.

Global
Score [65]
omiXcore
[68]

A variant of catRAPID fragments
calibrated on CLIP-Seq data, it is able
to predict interaction with >1000 nt
long RNAs and to provide an overall
interaction score.

• A protein sequence in
FASTA format.

• An RNA sequence in
FASTA format.

• Interaction profile plota

• Interaction matrixb.
• Table of interacting
protein–RNA fragments.

catRAPID
omics [69]

It computes the interactions between a
molecule (protein/RNA) and the
reference set (transcriptome/
nucleotide-binding proteome) of a
model organism.

• Protein/RNA sequence
in FASTA format.

• Reference set of
protein/RNA sequences.

• Graphical representation
of protein sequence/
domains.

• Pie chart with ranking
distributionc.

• Table of interacting
protein–RNA pairs.

catRAPID
express
[70]

It allows the identification of
co-expressed protein–RNA pairs in
human tissues.

• A protein sequence in
FASTA format

• An RNA sequence in
FASTA format.

• (Only one protein
sequence or one RNA
sequence is required for
the omics option).

• Correlation coefficient
representing the
coexpression of the
protein–RNA pair.

• Interaction heatmapd.
• Table of tissue expression.

catRAPID
signature
[71]

It scans a protein sequence for
RNA-binding regions.

• One or more protein
sequences in FASTA
format.

• Overall binding score.
• Binding propensity plote.

catRAPID
library [69]

It allows the creation of a new reference
set for catRAPID omics.

• One or more protein or
RNA sequences.

• A library ID that can be used
in catRAPID omics.

catRAPID
strength
[67]

It computes the interaction strength of
a protein–RNA pair with respect to a
reference set of sequences of similar
length.

• A protein sequence in
FASTA format

• A RNA sequence in
FASTA format.

• Table of interaction strength
(significance of interaction
propensity).

• Cumulative distribution
function plots of protein-RNA
interaction scoref.

aThe interaction profile plot represents the interaction score (y-axis) of the protein along the RNA sequence (x-axis), giving information about the
transcript regions that are most likely to be bound by the protein;
bThe interaction matrix is an heatmap showing the interaction propensity between each possible fragment of the protein (y-axis) and the RNA
(x-axis);
cThe pie chart shows the proportion of targets having High, Moderate and Low star rating score. Star rating score weights the interaction based on
the interaction propensity, the presence of RNA/DNA binding domains and the presence of known RNA motifs;
dThe interaction heatmap shows the interaction score of the individual amino acid-nucleotide pairs;
eThe binding propensity plot reports, for each amino acid (x-axis), the propensity to be part of a binding region;
fThe Cumulative distribution function plots report the interaction score of the query protein–RNA pair within the distribution of the interaction scores
from the reference set.
A more detailed explanation of the different algorithms is available on catRAPID tutorial page (http://s.tartaglialab.com/static_files/shared/tutorial.html)
and documentation page (http://s.tartaglialab.com/static_files/shared/documentation.html).
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Table 2 Methods for in vitro characterisation of protein–RNA binding

Method Principle of detection Sample requirements Detection range Sample capacity
Direct
measurements

EMSA [90] Detection of RNA–protein
complex’ electrophoretic
mobility properties,
typically different
compared to free RNA.

• Labelled RNA.
• nM concentrations
of RNA and protein.

≥10−18 mol RNA. 0.5–500 ml
depending on
electrophoresis
setup.

Kd, n

Filter binding
assay [88]

Quantification of
32P-labelled RNA via
imagine screen or
scintillation counter.

• About 0.1 mM
labelled RNA
(usually with 32P).

• Purified protein
serial dilutions.

≥10−15 mol RNA. Multi-well plate
dot-blot setup.

kon, koff, Kd, n

Fluorescence
anisotropy
[91,92]

Changes in fluorescence
anisotropy or polarisation
of excitation light upon
binding.

• Fluorescent labelling
of one of the
partners.

• 1 nM RNA.

nM ranges of
fluorophores.

Multi-well plates. Kd

FRET [93,94] Energy transfer of between
fluorophores detected as a
change in fluorescence
intensity.

• Two fluorophores,
either one on each
partner or strategically
placed on one for
structural studies.

single-molecule
experiments.

Single molecule to
multi-well plates.

Kd, kon, koff,
distance between
fluorophores.

SPR [95] Variations in the refractive
index of polarised laser
light upon molecular
binding.

• About 200 ml 25 nM
RNA/sensor.

• Variable conc. of
protein (ideally
100-times Kd), up to
4 ml of sample.

• Immobilisation of one
partner required.

1 pM < Kd < 1 mM Up to 16 channels
with microfluidics.

Kd, kon, koff

BLI [96] Detection of the variation
of refracted white light
upon the binding of the
interaction partner to the
immobilised ligand on the
optical fibres.

• 1–50 mg/ml of ligand,
immobilised on
biosensor.

• 1 nM–mM of receptor.
• 5–250 ml of sample
per measurement.

1 nM < Kd <
10 mM

Single channel,
5 min per
measurement
(BLItz) or multi-well
plate, 1–8
simultaneous
channels.

Kd, kon, koff

MST [97] Variations in
temperature-induced
fluorescence emission of a
target as a function of the
concentration of a
non-fluorescent ligand.

• 1–20 ml, nM–mM
concentrations.

• Fluorescent labelling.

pM < Kd<mM Up to 96 samples
per run in a
multi-capillary
system.

Kd

switchSENSE
[98]

Voltage-dependent
variations of the movement
of short fluorescent DNA
nanolevers attached to a
gold surface upon binding
of an analyte.

• Immobilisation of one
binding partner.

• 20 ml of 1 mM RNA for
biochip saturation.

• 250 ml of 0.2 mM
protein.

nM < Kd <mM Four flow channels
with six
microelectrodes for
sampling per chip

Kd, kon, koff, Rh

ITC [99] Measuring the heat
consumed/released during
titration of sample with the
ligand in regard to
reference cell.

• 200 ml–2 ml of
1-2 mM receptor.

• 40–500 ml 10×
concentration ligand.

• Kd > nM (direct
measurements).

• Kd > pM
(competitive
binding).

single cell. Kd, ΔH, n

Kinetic constants are measured directly and are used as basis for equilibrium thermodynamic parameters calculations, apart from ITC where the
reaction enthalpy can be obtained without relying on kinetic data. Kd: equilibrium dissociation constant; kon: association rate constant; koff:
dissociation rate constant; n: stechiometry of binding; Rh: hydrodynamic radius (radius of a theoretical sphere with the same translational diffusion
coefficient); ΔH: reaction enthalpy.
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responsible for RBP binding sites prediction. Deep learning models are generated individually for each RBP
based on available CLIP-Seq data, allowing the formulation of predictions on a limited set of proteins.

Functional characterization of RNA targets and binding
sites
Once the RNA targets of a protein have been determined, further analyses are necessary in order to verify the
reliability of the results and to gain insights into the biological function of the RBP. Both tasks can be
approached by looking at the function of target RNAs. A common way to do that is to perform an Over
Representation Analysis (ORA) [76], which consists of identifying over-represented functional categories in a
list of genes. Enrichment is evaluated against a background composed of all the expressed genes. A more
sophisticated approach, called Gene Set Enrichment Analysis (GSEA) [76], involves ranking genes based on a
certain score and evaluating if some categories are enriched at the top or the bottom of the ranked list. An
implementation of this method that is specific for CLIP-Seq data is provided by the Seten tool [77]. This
program requires as input a set of CLIP-Seq peaks, each with a score assigned by the peak-caller, but it could
also work starting from predicted binding sites, as long as an interaction score is provided.
Another common analysis consists in scanning the identified binding sites in order to detect common pat-

terns highlighting RBP binding preferences (motif analysis). Sequence motifs recurring in large sets of binding
sites can be discovered using different tools, like MEME-ChIP [78] and SeAMotE [79]. Both tools start from a
set of sub-sequences identified in the positive sequence set and evaluate their enrichment with respect to a
control sequence set (unbound RNAs). A more recent tool, named mCross, exploits the single-nucleotide reso-
lution offered by CLIP-Seq techniques to enhance the accuracy of de novo motif discovery [80].
Sequence alone may not be sufficient to fully explain the binding specificity of an RBP: a sequence motif

could be accessible only when put in a proper secondary structure context. Tools like GraphProt [81], ssHMM
[82] and BEAM [83] are able to detect motifs encoding both sequence and secondary structure information.

In vitro validation of predicted RBP–RNA interactions
To validate the prediction accuracy of the computational analysis proposed so far, it is ideal to evaluate each
interacting pair within a controlled environment. A most accurate validation should start from the screening of
potential binders, followed by the precise determination of binding sites and kinetic and thermodynamic para-
meters, and completed with structural insights into the drivers of the interaction (Figure 1). A comprehensive
review of the methodology is beyond the scope of this article and for more details we refer to a number of
recent reviews of the field [16,17,84–86].

Kinetics and thermodynamics of RBP–RNA interactions
As for other molecular interactions, the binding between a protein and an RNA molecule is kinetically charac-
terised by the rate at which they associate (kon) and dissociate (koff ). Conventionally, the dissociation constant
(Kd), which is the ratio between koff and kon at the chemical equilibrium, is used to express the binding affinity:
the lower the Kd, the greater the affinity. It is however important to note that binding pairs with the same Kd

may have different kon and koff and therefore different binding mechanisms. To add another layer of complex-
ity, many RBPs have multiple binding regions that may vastly differ in their affinity towards the same RNA
[87].
There are several established methods for determining the kinetic and thermodynamic parameters of

binding (Table 2). Techniques such as electrophoretic mobility shift assay (EMSA) and filter binding assay can
be useful to estimate binding affinities with basic molecular biology tools [88,89]. Both these methods represent
a viable first step analysis, especially because of short protocols and limited amounts of samples required. The
latter criterion can be crucial in protein–RNA interaction studies, since some RBPs can be very difficult to
isolate, tagged RNA synthesis can be expensive and advanced methods for more reliable and accurate determin-
ation of molecular binding characteristics generally have specific sample requirements and higher operation
costs. Despite these advantages, since EMSA and filter binding experiments are performed within conditions
very distinct from the in vivo ones (polyacrylamide gel and nitrocellulose filter, respectively), more reliable
kinetic data may be obtained by other techniques. Examples of such methods are bio-layer interferometry
(BLI), multi-channel surface plasmon resonance (SPR), microscale thermophoresis (MST), the employment of

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1536

Biochemical Society Transactions (2020) 48 1529–1543
https://doi.org/10.1042/BST20191059

https://creativecommons.org/licenses/by/4.0/


fluorescence resonance energy transfer (FRET), and the most recent switchSENSE (Table 2, [86–89, 95]). Some
of these require the labelling of one of the interactors with fluorescent dyes, as in the case of MST and FRET,
or sample immobilisation on biosensors, as needed for SPR and BLI experiments. These requisites can impose
certain structural restraints and thus compromise the binding and the results obtained. Comparing how the
same RBP binds to RNA molecules that differ only in one nucleotide can help the identification of the RNA
portion physically interacting with the protein. However, the determination of the exact nucleotides involved in

Table 3 A short overview of the major structural biology techniques with a comparison of their advantages and
disadvantages for the study of protein–RNA interactions

Method
Principle of
detection Resolution Sample requirements Pros/Cons

NMR [111,114] Detection of the
electric current,
induced by the
magnetization of the
non-equilibrium
spins in a magnetic
field. Upon Fourier
transform, the
results can be used
to determine
structural constraints
and produce a
molecular model.

atomic
(<2 Å).

• Isotope labelling,
side-chain deuteration
essential for larger
complexes to avoid
lengthy relaxation times.

• Protein concentration
varies according to MW.

• Solution-based, can
observe time-resolved
experiments and kinetics,
most accessible on the
list, possibilities of
differential isotope
labelling, saturation
transfer experiments and
more.

• Poor signal-to-noise ratio,
line broadening and
complex spectra with
higher molecular mass
complexes.

X-ray
crystallography
[115,116]

Detection of
diffracted X-ray
photons, scattered
by the crystal, from
which an 3D
electron density map
is calculated, which
is then used to build
the molecular
structure model.

atomic
(<2 Å).

Crystals of the protein–RNA
complex, frozen in liquid
nitrogen.

• Highest resolution limit
with free electron lasers.

• Relies on quality crystals,
often difficult to obtain.

Cryogenic
electron
microscopy
[117]

Based on electron
microscopy, the
sample images are
grouped into specific
projections, with a
3D model calculated
based on them.

high (<5 Å). Monodisperse sample
blotted onto grids and
frozen under cryogenic
conditions.

• Solution based, flexible
buffer components, no
need for crystals etc.

• Maximum resolution limit
around 3.5 Å for molecules
with a MW ∼50 kDa.

• Very difficult to obtain
sufficient quality data for
determination of
structures of elements
with MW< 150 kDa under
the resolution of 5 Å.

Small angle
scattering
[110,112,118]

Detection of
diffracted X-ray
photons (SAXS) or
neutrons (SANS) on
sample solutions
under small angles
(typically <10°), from
which a scattering
curve and a 3D
shape can be
calculated.

medium
(>10 Å).

• Monodisperse sample,
dilution series from
1 mg/ml to 20 mg/ml.

• Possible deuteration or
isotope labelling for SANS
studies.

• Investigation of molecule
shape as well as other
information, selective
deuteration can provide
valuable contrast (SANS).

• Need for monodisperse
sample, rather high protein
concentrations for the
dilution curve, no exact
molecular structure.
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the binding can be highly challenging without structural studies. Once the RNA targets have been precisely
characterised, selective mutations on the protein region thought to be responsible for the binding may be useful
to determine which amino acids are directly responsible for the interaction. The same approach could be
extended to mutating selected nucleotides or regions of the RNA molecules for further characterisation of the
binding spots without obtaining an atomic resolution structure.
Kinetic studies are essential for determining the binding propensity and validating different binding partners

[10]. However, experiments conducted in vitro with isolated components often do not allow studies under
physiologically relevant conditions. Isolated proteins can be sensitive to higher temperatures, especially under
prolonged experiments that far exceed their in-cell lifespans. Since chemical equilibriums are temperature-
dependent, in vivo kinetics may thus significantly differ from those measured in vitro. The thermodynamics of
binding can also reveal the energetic landscape of protein–RNA interactions [100–102]. It is therefore very
important to measure the thermodynamics parameters directly, when experimentally possible, or to calculate
them. Isothermal titration calorimetry (ITC) allows direct measurements of the equilibrium constant, stoichi-
ometry and reaction enthalpy (ΔH) at a given temperature [99]. Using the van’t Hoff equation, these can then
be used to determine the temperature dependency of the equilibrium constant. SPR and MST also allow calcu-
lation of thermodynamic data based on the stable temperature of the measurement cell, while BLI is considered
less reliable.

Structural approaches of studying RBP–RNA interactions
Kinetic and thermodynamic data obtained from interaction studies provide a good numerical description of the
binding and, through the use of RNA-centric methods, a library of RNA sequences with high binding propen-
sities [103]. However, protein and RNA sequences alone may not be sufficient to fully characterise their
binding specificity. This is especially true in the case of non-canonical RBPs that do not contain a consensus
RNA-recognition sequence [104]. RNA structure has been shown to be the driver behind most non-canonical
RBP binding events, with highly structured RNAs having bigger protein interactomes [105,106]. The
approaches to determine the structure of separate components have been extensively reviewed [107,108].
Among the most pertinent techniques to determine the macromolecular structure of a complex, there are X-ray
crystallography, nuclear magnetic resonance (NMR) and cryogenic electron microscopy (cryo-EM) (Table 3).
However, the definition of structural details by these methodologies can be challenging [107]. A large number
of RBPs contain intrinsically disordered regions and tend to form macromolecular condensates, making their
crystallisation impractical; NMR, that bypasses the need for crystals, is dependent on the molecular weight of
the complexes that can make relaxation times slow and signal-to-noise ratio poor; obtaining results at atomic
resolution with cryo-EM remains difficult [108]. These limitations make a strong case for the employment of
complementary structural biology techniques [107]. A particularly promising development is the advance of
small angle scattering and computational methods for data analysis, in particular small angle neutron scattering
(SANS) [109]. Selective deuteration enables a higher degree of contrast between binding partners and can
therefore provide a rough position for each component of the complex [110]. Data obtained from the above
mentioned methods can be used as structural restraints for molecular dynamics simulations and data-driven
docking [111,112] and can be integrated together in a hybrid multi-level approach for studying RNA-protein
complexes, thus completing the full circle of integrated methodologies [75,113,119,120].

Perspectives
• Our understanding of many physiological and pathological phenomena cannot be exempted

from an in-depth knowledge of protein–RNA interactions underlying them.

• Such comprehension, which goes from the identification of targets RNAs to binding modes
characterization, requires a multidisciplinary approach involving biochemistry, molecular
biology, bioinformatics and physics.
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• As new and more powerful high-throughput methods and predictors are being developed, an
integrated and productive usage of both approaches becomes more and more feasible. For
instance, predictive tools such as catRAPID, which is general enough to be applied to any
protein–RNA pair, could also be employed to improve the specificity of omics studies.
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