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In his house at R'lyeh, dead Cthulhu waits dreaming

— H. P. Lovecraft
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Resum

El disseny enzimàtic es troba al cor de la biotecnologia moderna i, cada cop més de les

anomenades química fina i química verda. Dissenyar un enzim per a aplicar-lo en contextos

industrials o de bioremediació, per exemple, implica disposar d’un coneixement profund dels

sistemes enzimàtics, per tal de poder proposar canvis racionals que millorin les seves propietats

catalítiques. En els darrers anys, s'ha desenvolupat un gran nombre de mètodes computacionals

amb l'objectiu de dissenyar o millorar nous enzims. No obstant això, aconseguir, mitjançant

aquests mètodes, que les prediccions de nous enzims assoleixin el poder dels enzims naturals

és encara un repte científic no assolit.

En aquesta tesi, proposem la combinació de dues metodologies robustes per idear un marc

computacional de disseny i evolució d'enzims. D'una banda, una metodologia exitosa de disseny

de proteïnes, l’entorn de treball Rosetta, i, de l'altra, un mètode eficient per l'avaluació de

reactivitat química basat en simulacions moleculars, el mètode de l’Empirical Valence Bond.

Ambdues eines —treballant col·lectivament— són una proposta atractiva per afrontar reptes

capdavanters en el camp del disseny enzimàtic.

Després d'aplicar la nostra metodologia en un sistema químic habitualment utilitzat com a prova

de concepte, la reacció catalítica de la Kemp eliminasa, hem trobat un seguit d'obstacles que cal

abordar abans de crear un marc reeixit per al disseny computacional i l'evolució d'enzims. En

aquest treball, explorem aquests reptes en profunditat i suggerim noves direccions per millorar

diferents aspectes de la metodologia proposada. En concret, per una banda fem una dissecció

acurada de les energies d’interacció que proporciona Rosetta, aspecte clau per a una millor

predicció de marcs (o scaffolds) estructurals sobre els quals construir nous dissenys enzimàtics.

Per una altra, proposem una nova implementació pràctica d’un model de simulació basat en

estructura en el paquet OpenMM de simulacions moleculars. Ambdós elements són un pas de

gran rellevància en la consecució de l’objectiu de disposar d'una “caixa d’eines” eficient i robusta

per a l’exploració del mapa estructura-funció dels enzims dissenyats.
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Abstract

Enzymatic design is at the heart of modern biotechnology and, increasingly so, the so-called fine

chemistry and green chemistry. Designing enzymes for applications in industrial or

bioremediation contexts, for example, involves having a deep knowledge of enzymatic systems to

propose rational changes that improve their catalytic properties. In recent years, a large number

of computational methods have been developed to design or improve new enzymes. However,

achieving enzymatic predictions through these methods to reach the power of natural enzymes is

still an unattained scientific challenge.

In this thesis, we propose the combination of two robust methodologies to devise a

computational framework for enzyme design and evolution. On the one hand, a successful

protein design methodology— the Rosetta modelling environment— and on the other, an efficient

method for evaluating chemical reactivity based on molecular simulations— the Empirical

Valence Bond method. Both tools, working collectively, are an attractive proposition for tackling

state-of-the-art challenges in the field of enzymatic design.

After applying our methodology in a proof-of-concept chemical system, the catalytic reaction of

Kemp eliminase, we found a series of obstacles that need to be addressed before creating a

successful framework for the computational design and evolution of enzymes. This work

explores these challenges in-depth and suggests new directions to improve different aspects of

the proposed methodology. Specifically, on the one hand, we make a careful dissection of the

interaction energies provided by Rosetta, a key aspect for a better prediction of structural frames

(or scaffolds) on which to build new enzymatic designs. On the other hand, we propose a new

practical implementation of a structure-based simulation model in the OpenMM package of

molecular simulations. Both elements are a critical step in achieving an efficient and robust

"toolbox" for exploring the structure-function map of designed enzymes.
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Introduction
Enzymes are Nature’s biological catalysts to accelerate biochemical change. At the most basic

level, the need for living cells to oppose entropic decay constrains biochemical reactions to be

carried out at increased speeds. This requirement means that all necessary chemical processes

not occurring spontaneously in an aqueous solution at physiological temperature compel a

biological catalyst, positioning enzymes at the heart of all cellular metabolic processes.

In addition to their fundamental role in cellular biochemistry, enzymes have an important place in

human applications. From their ancient use in food fermentation to their more recent

applications in industrial endeavours,1 enzymatic activity is still finding new ways to be applied in

modern chemical processes. They offer clear advantages to using standard organic chemical

synthesis by leveraging the use of high temperatures, pressures, and concentrations of organic

solvents. Enzymatic chemistry can be carried out in an aqueous solution at environmental

temperatures with high selectivity and specificity. Moreover, enzymes can also be adapted to

work at drastically different temperatures, pH, and even in low concentrations of organic

solvents,2 making them adaptable systems for a diverse set of applications. All these features

make enzymes attractive targets for developing new highly efficient green-chemistry operations.3

In the physicochemical landscape of biophysical behaviour, the mechanisms by which enzymes

catalyse reactions have been the subject of a large amount of scientific literature. A sizable

chapter of experimental and theoretical studies has shed light upon this question; however, there

is no definitive consensus on how enzymes physically work.4 The pioneering proposition of Linus

Pauling5 devised enzymes to work by stabilising the reactions’ transition state (TS) to a greater

extent than its ground state (i.e., substrate), leading to diminished activation energies and thus to

accelerated chemical reactions. The discovery that transition state analogues (TSA) can act as

specific enzymatic inhibitors6 or be used as haptens to elicit catalytic antibodies for target

reactions7 has supported this idea. However, despite this apparently simple rationalisation of

enzymatic action, connecting enzymatic structure with its catalytic activity has proven an

enormous challenge.8–14
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Enzymes catalyse diverse types of reactions, therefore, a plethora of experimental results has led

to a broad set of interpretations on the molecular origins of their catalytic effect. Examinations to

explain enzymatic activity should include all aspects of the physical process, encompassing

structural and dynamical facets of the enzymatic molecular system, and, perhaps, more

importantly, a thorough characterisation of their different thermodynamics contributions. In this

regard, computer simulations have aided in interpreting the complex enzymatic behaviour by

connecting fundamental physical theory with the kinetics of enzymatic processes.15 This

interpretation has been of fundamental importance to advance our understanding of chemical

catalysis since there are no yet physical or spectroscopic methods capable of observing the

structure of the short-lived TS in enzymatic reactions.

In the last decades, rational enzyme design has become the holy grail search for proof on how

enzyme catalysis works. The field got to a turning point when artificial enzymes were

computationally designed for a series of chemical reactions with unknown natural counterparts.

Although this did not come without controversy,16,17 enzymes for retro-aldol reaction, Kemp

elimination (KE), Diels-Alder, among others,18–22 were successfully expressed and tested in many

proof-of-concept experiments. The success was mainly based on applying optimisation methods

using a knowledge-based score function23 that had already performed successfully on protein

folding prediction experiments24 and de novo scaffold design25 but now applied to improve the

protein interactions with a virtual TS model. The whole method was later deemed the inside-out

approach,26 and it is still a popular method for active-site design, especially when attempting to

endow proteins with de-novo catalytic activities.

Despite the success of computational methods in giving active enzymes for reactions not known

to be catalysed by any natural enzyme, they are still considered flawed regarding attained

catalytic efficiencies.27 The first attempts screened tens of proposals, but only a few turned out to

be active.26 Paradoxically, the experimental structures of many active designs were highly close

to their computational models; however, catalytic rates were orders of magnitude below what

could be expected when considering the activities of natural enzymes.28,29 Further studies later

revealed that there were important flaws in the prediction of bound ligands,30 which could explain

the low success rates obtained.18–20 These results led to questioning the catalytic hypothesis on

how enzymatic catalysis could be achieved by these computational design methods and opened
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the field into an exciting pursuit to understand the physical aspects that contribute most to the

catalytic phenomena.

Nobel laureate Arieh Warshel's work made essential contributions to characterising the physical

contributors to enzyme catalysis and deemed electrostatic preorganisation one of the main

contributors to the process.31 The idea was supported by computer simulations that queried

many natural enzymatic reactions by comparing how the reactions behaved in water and the

solvated protein system.9,31–34 In the enzymatic active site, electrostatics played an essential role

in lowering the activation energy since protein electrostatic dipoles were pre-oriented towards

stabilising the target reaction's TS. On the contrary, water dipoles were not pre-oriented towards

binding the reaction's TS, incurring high reorganisational energy as the reaction progresses from

substrate to TS. Notably, the estimated activation energy differences between the water and

enzyme simulations agreed with the observed catalytic effects of natural enzymes. These

comparisons could not have been possible by traditional quantum chemical (QC) methods since

they are still too costly to explore the conformational dynamical aspects of the solvated

enzymatic system. However, the empirical valence bond (EVB) approach,35 devised by Warshel in

these studies, was able to simulate the protein and reacting system dynamics, using

parameterized energy functions as low-cost proxies for the QC interactions, allowing better

exploration of protein and water conformations throughout the reaction coordinate.

The EVB method’s success in predicting activation energies of natural enzymatic processes has

positioned it as an appealing method for screening computational designs. Several attempts

have been used to explore the catalytic effect of mutations, either by rational choice36 or by

mutational scanning of active site residues.37 Despite this, few reported enzymatic optimisations

or new designs using these methodologies to obtain improved variants have been published. One

reason could be that single-point mutation approaches, such as alanine scanning strategies,

rarely significantly impact catalytic activity; multiple coordinated mutations are usually needed to

improve enzymatic activity.38 On the other hand, most molecular dynamics (MD) methods are still

too costly to sample the protein conformational landscape in a convergent manner, limiting the

explored reacting trajectories to conformations near the native structure, thus, sometimes,

overlooking relevant competing configurations that enzymes could adopt.12
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Despite the failure of current computational methods in delivering high catalytic rates for artificial

enzymes, once activity can be measured on a new scaffold, directed evolution (DE) methods can

increase these activities further, giving sometimes rise to full-fledged enzymes, capable of

catalytic rates comparable to the power of natural enzymes.39 Most of what we know about how

enzyme catalysis can be improved towards native-like activities comes from these experiments,

in which several rounds of mutagenesis (and sometimes recombination) and selection are

iterated to screen variants with improved activity. Despite attaining great success, the DE method

is not fully rational since there is no clear principle about how these mutations improve the

enzyme’s catalytic activity, and, often, computational methods must be used to assess their

physical origin.27,38 Notably, some DE evolutionary trajectories have been structurally recorded by

crystallizing relevant variants along the full optimisation path, giving meaningful, although still

small, datasets to study the enzymatic structure/activity relationship.40–42

There are many intriguing aspects of enzymatic activity optimisation through DE. First, many of

the selected mutations are not in direct contact with the substrates and some are very distant

from the active site. This finding has led to speculation about the effect of distant mutations over

catalytic rates. The most conspicuous hypothesis seems to be allosteric effects over the

preorganisation of active site residues,12 while others also propose that electrostatic fields could

help boost transition-state stabilisation.11 It is not clear how allosteric effects can be propagated

to the active site; however, MD and crystallographic studies have shown that a network of

interactions could help to propagate and constraint interactions to pre-organise active site

residues.43–45

Other works in computational enzyme design have suggested that the optimisation potential of

active sites depends upon the properties of the selected scaffolds. In this regard, reconstructed

phylogenetic nodes, representing ancient evolutionary enzymes, have been deemed "more

evolvable" for protein optimisation given their increased thermostability, which could allow them

to accept an increasing number of mutations before losing their characteristic folds.46 As an

applied case, the best artificial Kemp Eliminase was designed in a TIM barrel fold, which is

deemed exceptionally well suited for the evolvability of enzymatic activity.45

A pivotal point in understanding the importance of these catalytic factors occurring in enzymatic
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reactions is to be able to guide their rational design and refinement. Despite the great advances

made through experimental mutational studies, a quantitative understanding of these factors

would not be possible without the use of computer simulation experiments. In this regard,

guiding the computational design of enzymatic reactions, from first principles and using a

defined catalytic hypothesis, would be a major establishment of their importance.

This work focuses its first effort on combining two state-of-the-art methodologies, each

successful in enzymatic studies and design. On the one hand, the EVB method, which by MD

simulations of the catalytic system, can address the effect that a particular environment has over

the free energy of a specific chemical reaction. On the other hand, the Rosetta approach to

protein design, that helps optimise and suggest putatively improved variants towards high

catalytic activities.

Both methods are complementary since they address the design protocol at different stages.

First, designs are suggested based on active-site optimisation to create variants that stabilise a

TS model of the target reaction. Second, the catalytic activity of the suggested variants is

evaluated using EVB simulations that can rank the simulated variants and pinpoint which

residues are responsible for the catalytic improvements or mechanisms. Therefore, a

fully-computational iterative approach could be devised in which the idiosyncrasies learned

through simulations can be transferred to the protein design protocol to suggest variants with an

improved likelihood of increasing the catalytic activity of designed systems.

The working hypothesis of this thesis relies on the computational studies of enzymatic reactivity

carried out with the EVB framework, in which electrostatic preorganisation has been defined as

the driving force of the catalytic activity of natural proteins. However, this hypothesis is not the

central question of this work, since the main objective is setting up a computational framework to

deliver variants for enzymatic systems with improved catalytic constants. Nonetheless, this

hypothesis is a good starting place to address the interpretations derived from applying

simulations to assess the catalytic activity of designed enzymatic variants.

From the initial hypothesis, though, the work has been deriving towards the exhaustive

characterisation of the potential energy surface by means of simplified structure based models
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and proper balance between minimisation and molecular simulations protocols, in an attempt to

build some of the tools that hopefully will ultimately lead to a complete protocol for rational

design of enzymatic scaffolds for non-naturally occurring chemical reactions. Both the objectives

and the structure of the thesis below reflect the critical steps in achieving a proper protocol for

enzyme design.

Hypothesis

“Differential atomic charge distributions developed over the reaction coordinate accounts for the

major differences observed in ground-state versus transition-state stabilisation upon enzyme

binding. It is possible to exploit this differential stabilisation using the EVB model through an

exhaustive sampling of the available conformational space to optimise computationally designed

enzymes.”

Objectives

Main goals

➢ To combine complementary methodologies to set up a fully-computational evolutionary

scheme for enzymatic design.

➢ To identify theoretical and practical challenges derived from applying the proposed

computational enzyme design evolutionary scheme.

➢ To circumvent the challenges arising from the implementation of the computational

enzyme design evolutionary scheme.

Specific Goals

➢ To test the combined implementation of the Rosetta enzymatic design protocol with EVB

evaluations using a redesign strategy.

○ To validate the Rosetta energy function to model the target system interactions.

○ To test different enzyme design protocols to generate enzyme variants with

improved catalytic properties.

○ To rank the designed models using a rapid and systematic assessment of their

catalytic capabilities.
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○ To validate the EVB simulations of the target reaction for delivering proper

catalytic parameters.

○ To apply EVB simulations to assess activation free energies for a ranked subset

of the designed variants.

➢ To understand the catalytic effect of the original and improved enzymatic systems over

the target reaction.

○ To run single-residue-uncharged simulations to assess the catalytic effect at the

residue level.

○ To explore through an LRA analysis, between the substrate and the transition

state region, the catalytic effects of individual residues.

○ To assess the effect of enzymatic positional constraints over the prediction of

activation free energies.

After addressing the previous specific objectives, we identified theoretical and practical

challenges for improving the enzyme design framework, and the following additional specific

objectives were derived:

➢ To validate the Weighted Contact Number (WCN) as a fast metric to predict protein

residue-level dynamics.

○ To validate the use of the WCN for predicting experimental dynamic profiles of

protein systems.

○ To explore the effect of WCN in a binding prediction test case.

➢ To validate the use of binding free energies, derived with the Rosetta score function, as a

tool to predict binding activities.

○ To compile a binding dataset for a statistically-significant validation of the binding

free energy metric.

○ To validate the binding free energy metric to explain experimental binding data.

○ To understand the physical origin of the predicted binding free energies.

➢ To create a library for running structure-based simulations on the OpenMM platform
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○ To create a Python-based library to complement the OpenMM API to write SBM

force fields.

○ To validate the library in generating the correct force field energies.

○ To validate the application of SBM to explore native basin simulations.

○ To demonstrate the use of the library in a biophysical question.

Structure

This thesis is divided into four chapters, each describing different points at which the work was

focused.

The first chapter deals with applying the Rosetta design methodology in conjunction with EVB

simulations to evaluate the activity of the designed variants. The starting point is a reconstructed

beta-lactamase ancestral fold in which Kemp Eliminase activity was built in a secondary active

site. The new active site was created by a few mutations, achieving important initial catalytic

activity. This activity is still below the value of other KE enzymes, however, and given the

properties of reconstructed ancestral folds, there is still room for improving this secondary active

site in a search for higher catalytic activity. The results obtained point to several shortfalls of the

methodology, which should be addressed before successfully applying the evolutionary protocol

to improve enzyme activity. Among them, there is the need of:

1. Create better filtering metrics for the designed variants before moving to the most costly

screening steps (chapter 2).

2. Create an optimisation target function able to capture the preorganisation of active site

residues (chapter 3).

3. Find better and faster methods to sample the protein configurational space (Chapter 4).

As indicated, subsequent chapters deal with most of these challenges and provide possible ways

to solve these problems.

The second chapter uses a knowledge-based score function (e.g., the Rosetta score function) to

predict binding free energies using the Major Histocompatibility Complex I (MHC-I) receptor and
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a dataset of bound peptides as a model system. This validation is relevant for the step of quickly

screening designs before being evaluated by more costly MD simulations.

The third chapter addresses the use of the WCN metric, capable of capturing the relationship

between structure, dynamics, and evolution. The metric is validated to predict dynamics profiles

from protein structures and in predicting protein-protein interaction sites based on evolutionary

and chemical analysis. This metric is promising to develop a score capturing the preorganisation

of active site residues.

Finally, in chapter four, a Structure-Based Model (SBM) simulation package, the SBMOpenMM

library, is implemented for the fast exploration of protein conformational landscapes. The method

is validated and exemplified in the study of a protein folding reaction. The method can be helpful

in efficiently sampling enzyme conformations.

An appendix containing brief descriptions of the methodologies employed in this thesis is

included at the end for consultation.
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Chapter 1 - Enzyme optimisation: the Kemp Elimination

case
Improving the catalytic performance of a low-activity variant is still a big challenge for

computational enzyme design methods. It requires simultaneously predicting the effect of

multiple mutations over the scaffold stability and the activation free energy of the target reaction.

Scaffold stability design has been addressed by optimising the sequence/structure space using

energy functions capable of discriminating between native and non-native conformations and

giving agreeable energies for protein mutational changes. The Rosetta score function47 has been

developed towards this goal and employed to create new scaffolds and other protein design

applications.48,49 However, it is still unclear how to use it successfully to optimise and select

enzymatic variants with improved catalytic activities.

Most enzyme design strategies that employ the Rosetta energy function attempt to create

active-site complementarity to bind the target reaction TS model. The optimisation target is the

system’s total energy, or, sometimes, the interface score (interaction energy) between the

TS-ligand and the protein system. These optimisation parameters are used as targets to improve

the catalytic activity during the design algorithm; therefore, they are critical players in the

generation of new enzymatic proposals.

After the design optimisation is carried out, the produced designs are filtered and ranked by using

a set of metrics such as total score (enzyme complex energy), ligand-binding interface score,

hydrogen bonding, active-site geometry, packing scores of the active-site cavity, among others.26

Many of these metrics complement the Rosetta score function; however, they do not directly

account for catalytic activity and are guided by the designer’s chemical intuition about enzymatic

structures.

Given the difficulty in predicting catalytic activities for the designed variants, all computational

activity predictions, if any, are usually carried out after the design process has ranked and

selected a set of optimised variants or, as has been previously done, they are assessed after

being tested experimentally.30 A standard tool to explore catalytic activity, either directly or

indirectly, are MD simulations of the enzymatic system. They aid in showing the dynamical
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progression of the system as a whole and can shed light upon the stability of particular

conformations.

The main limitation of these MD studies is that they do not directly evaluate the kinetic barriers,

instead, they use a series of geometric cues to classify conformations into catalytically

competent or otherwise. An alternative to classic MD simulations is the EVB method that can

directly query the activation free energy of the simulated chemical reaction. In this fashion,

designed enzyme models could be simulated and ranked upon the correct physicochemical

parameter being pursued.

We explored combining the Rosetta design methodology50 with EVB simulations for the screening

step in an enzymatic redesign strategy to suggest improved catalytic variants (see Appendix 1 -

Methodologies for more details on these methods). We employed as a model system a

reconstructed beta-lactamase ancestral fold with initial Kemp Eliminase activity.

The scaffold has its enzymatic activity built upon a Precambrian beta-lactamase resurrected

through ancestral sequence reconstruction.51

The strategy to design this catalytic system was a single amino acid substitution of a conserved

tryptophan (W) to an aspartate (D) residue. The objective of this substitution was two-fold; first,

the W side-chain is quite similar to the KE substrate (Figure 1B); second, the D side chain is small

and has proton abstraction ability to act as the catalytic base in the KE reaction (Figure 1A). Of

course, in any given scaffold substituting a W with a D will not immediately create an enzyme

with KE catalytic activity; however, reconstructed enzymes have different dynamical properties

than their modern counterparts. Ancestral enzymes have greater flexibility and deformability and,

therefore, can adopt alternative pocket conformations, giving rise to promiscuous activities.46

Evidence for this is suggested by the fact that the W to D substitution strategy worked only on

resurrected scaffolds, but not in modern beta-lactamase variants.51

Despite the simple strategy of a single amino acid substitution to come up with a de novo protein

catalyst, the designed Kemp eliminase has a high catalytic activity, comparable to more complex

computational enzyme design strategies, which involved a more significant number of mutations

on their protein scaffolds in creating their de novo activity.20 However, its catalytic activity is still
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magnitudes lower than other artificial enzymatic counterparts obtained through DE strategies.42

Because of this, it is reasonable to hypothesise that this designed enzyme have still room for

further improvements.

Figure 1. A) the mechanism of the KE reaction. B) The KE substrate (left) in comparison with the

Tryptophan side chain (right).

Results

Validating the Rosetta score function to model KE enzymatic interactions

The de novo Kemp eliminase variant is based on the W229D mutation over a last common

ancestor of Gram-negative bacteria beta-lactamase class A (GNCA4) scaffold. The structure of

the GNCA4-W229D variant is available in complex with the KE reaction TSA (Figure 2). Besides

the mutation W229D, in which D was incorporated as the catalytic base, H291, makes a critical

interaction to stabilise the oxyanion hole developed at the TS region.

Before attempting an optimisation process to find TS-stabilising mutations in the active site, it

was essential to validate the score function employed to describe the crystallographic ligand

pose as a minimum energy conformation. We tested this by self-docking the TSA of the KE

reaction upon the GNCA4-W229D structure (Figure 3). The interface score between the KE

reaction TSA and the protein was calculated for each docked conformation and was plotted

together with the ligand root-mean-square deviation (RMSD) to the crystallographic ligand

conformation (Fig. 3A).
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Figure 2. Active site structure of the GNCA4-W229D variant with Kemp eliminase activity in complex with

the KE reaction TSA (6-nitrobenzotriazole). Interactions between the catalytic base (D229) and stabilizing

the oxyanion hole (by residue H291) are shown as dotted black lines. The side chains of other residues

surrounding the TSA in the active site are also depicted.

The self-docking test describes a low-RMSD population of conformations that does not have the

best interface scores. The conformations with the best interface score are at 4 to 5 Å RMSD from

the TSA’s crystallographic conformation. The interface score is a helpful metric to calculate

interaction energies between the ligand and the protein system and is widely adopted in docking

calculations to select the best-docked conformations.52 However, this metric is not a predictor of

the most populated conformation of the system. Therefore, to better describe the sampled

conformational landscape of the docked system, we plotted the system total Rosetta Score to

map where these low-interface-score docked conformations lay in the potential energy surface

(Figure 3B).

Despite having good interactions between the ligand and the protein system, the minimum

interface score conformations were not necessarily the minimum-energy conformations of the

system. In these cases, the overall system sacrifices stabilising interactions to adopt ligand

conformations with increased protein-ligand interactions, making these conformations less likely

(although not inconsequential) to be adopted in a thermodynamic ensemble. The RMSD to the

native pose (colour bar in Figure 3B) shows that indeed the minimum-energy conformations

correspond to the lowest RMSD structures. This result confirms the ability of the score function
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to model protein-ligand interactions to describe the native ligand pose as the minimum energy

conformation, and suggest caution when using or validating intermolecular interaction metrics

for selecting poses in ligand-docking ensembles.

Figure 3. Self-docking test of the KE reaction TSA over the GNCA4-W229D active site. This docking test

docks the TSA over the same protein conformation that binds the TSA to generate decoys evaluated by

the energy function. The docking ligand conformational landscape is shown as the interface score vs the

ligand RMSD to the crystallographic pose (A) or as the complex (GNCA4-W229D + TSA) total score vs the

interface score of the bound TSA for each docked pose, with the ligand RMSD shown in a coloured

dimension (colour bar) as a logarithmic scale for easy visualization (B).

Generating newly redesigned variants for the Kemp Elimination catalysis

The strategy to suggest new variants is based on the simultaneous optimisation of backbone,

ligand, and side-chain (sequence-space) degrees of freedom. This optimisation was carried out

upon the highest activity variant available (GNCA4-W229D-F290W) of our model system.51 The

method uses catalytic restraints to ensure the catalytic base D229 is positioned at a proton

abstracting distance and also defines different distance cut-offs from the ligand to select which

protein residues will be designable (i.e., change their amino acid identity) or repackable (i.e.,

treated as flexible but maintaining their identity). Original versions of the enzyme design

algorithm used a fixed (or minimally flexible) backbone approach to propose new designs.53 Here,

we have selected a fully-flexible-backbone approach that expands the repertoire of scaffold

conformations and, thereby, is expected to generate an increased number of different proposals.

We employed the two design protocols to test this hypothesis: EnzDes,53 a rigid backbone
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approach, and FastDes,54 a flexible-backbone approach (for details on these protocols, see

Methods).

The starting scaffold for the optimisation protocol is the GNCA4-W229D-F290W variant including

the F290W mutation over the wild type background, which stabilises the KE reaction

ligand-system through a face-to-edge interaction made by the tryptophan side chain.51 Each

method produced ten thousand design trajectories that were analysed by their ligand RMSD to

the starting ligand position, total score, and interface score energies (Figure 4).

Figure 4. Potential and binding energy landscape of the enzymatic designs based on the

GNCA4-W229D-F290W for the KE reaction. The interface score (up) or the total score (down) was used to

visualise the distribution of ligand RMSDs for each design trajectory. The EnzDes strategy (red dots)

generates structures with low RMSD and low variability in the energy scores. On the contrary, the FastDes

strategy creates a high dispersion in total and interface scores, with increased, although not too high,

RMSD values.
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The EnzDes protocol produces a much narrower distribution of total and interface scores and

very low ligand RMSD values than the FastDes protocol. On the other hand, this latter protocol

allows an exploration of lower total and interface scores, and a more diverse set of ligand

conformations, in agreement with the idea that backbone flexibility is required to make scaffold

conformations more compatible with TS binding.

However, it is unclear if lower total scores produced by the FastDesign protocol came from

mutations very far from the active site. To confirm the behaviour of the design algorithm, we

evaluated the different amino acid identities explored by each design protocol at each protein

position (Figure 5). On the one hand, the rigid backbone protocol changed very little the amino

acid identity of the protein during optimisation. This result validates the score function in

recognising the protein native sequence as the optimal sequence for the input conformation but

also renders the rigid backbone protocol purposeless for enzymatic redesign strategies unless,

previously, compatible backbone conformations were sampled, and an ensemble of precomputed

structures were used as input for this protocol.

Figure 5. Mutational frequency of each amino acid position in the GNCA4-W229D-F290W scaffold. Few

positions were changed with the EnzDes method (blue line), while numerous did when the FastDes (red

line) protocol was used. The atomic distance between the residues’ alpha carbon (CA) atoms and the TSA

closest atom (green dashed line) is shown to control how far mutations were produced relative to the

ligand starting position.
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On the other hand, the flexible-backbone protocol explored the sequence landscape more richly

when searching for optimal protein sequences to stabilise alternative protein backbone and

ligand conformations. As is expected, there are regions not covered by the sequence search

since they are far away from the ligand, confirming the protocol’s restriction to avoid changes in

their identities (Figure 5). The fixed-backbone protocol only introduced one, and rarely, two

mutations per design, while the flexible-backbone protocol introduced a minimum of four and a

maximum of twenty-four mutations, with an average of twelve mutations per design.

Figure 6. EVB free energy of reactive trajectories for the KE reaction. Trajectories for the reference

reaction in water (red curves) were parameterized to match an activation free energy of 21.2 kcal/mol. The

same parameters were used to analyse the enzymatic reaction occurring in the  GNCA4-W229D-F290W

variant (black curves).

Validation of the Kemp elimination EVB simulations

We set up EVB simulations to query the catalytic activity of a selection of FastDesign-produced

models. We first parameterized a reference simulation in aqueous solution by adjusting the EVB

parameters to match the ab initio activation free energy, as published in other works.38 Using the

same parameters obtained for adjusting the reference water reaction, we ran the KE simulations

in the active site of the GNCA4-W229D-F290W variant. We obtained a 14.44 ± 1.70 kcal/mol value
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for this EVB simulation, which agrees with the experimental value for this enzymatic variant of

16.62 ± 0.12 kcal/mol51 (Figure 6). These results show that the EVB simulations for the KE

enzymatic reaction have the correct trend and could, in principle, be applied to screen the

catalytic effect of other enzymatic variants over the KE reaction.

Relationship between Rosetta interface scores and EVB activation free energies

Querying activation free energies with MD simulations is computationally costly. So, to maximize

the fraction of good designs to be tested with EVB simulations, it is essential to find metrics to

filter out designs with low chances of being catalytically active. Therefore, we ran EVB

simulations of selected enzymatic designs to find a possible relationship between the

EVB-calculated activation free energies and the Rosetta TS interface scores.

Figure 7. Selected designs for EVB assessment. A) Selected minimum-energy designs encompassing a

wide range of interface scores. B) A preselection of a hundred designs with the lowest interface (50) or

total score (50) to be ranked according to Rosetta-derived binding free energies.
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First, we selected designs covering a wide range of interface score values by taking the minimum

energy models that spanned most of the designed interface score range (Figure 7A).

A hundred independent EVB trajectories were run for each selected model, and the estimated

activation free energy was taken as the average value of all sampled trajectories. On the other

hand, designed models were locally sampled by removing the catalytic constraints and using the

Rosetta energy function to generate conformational ensembles of the designed enzymes in

complex to the TS ligand. From these ensembles, the expectation value of the interface score

was calculated from a Boltzmann distribution based on their total scores (see “Local

conformational search of designed enzyme” below for details on the method). From now on,

these Boltzmann-averaged interface scores will be referred to as TS binding free energies.

For the 20 models evaluated, the correlation between their EVB-estimated activation free

energies and their interface scores obtained from the design protocol is 0.2344. However, when

compared with the TS binding free energies, the correlation value increases to 0.3978. These low

values could reflect that TS binding free energies are not a direct measure of activation free

energies, among other possible artifacts (see Discussion for more details). However, since the

correlation was higher when deriving the TS binding free energies from an ensemble of

conformations, it seems reasonable to select models using this metric for further screenings

with EVB simulations.

Screening a set of designed variants with EVB simulations

Given the cost of obtaining convergent results with MD simulations, it seems infeasible to sample

all designed models. Therefore, we focused on selecting designs according to two general

metrics (Figure 7B). On the one hand, we selected the 50 models with the lowest interface score,

which ensures designs with good interactions between the TS ligand and the protein. In addition,

we selected the 50 designs with the lowest total score, increasing the likelihood that designed

models are more stable to fold into the designed conformation correctly. The one hundred

designs selected this way were subjected to a local conformational sampling to estimate their TS

binding free energies. For further EVB assessment, we only selected the 20 models with the best

TS binding free energies. 25% of these models came from the lowest total scores selection, while

75% were from the ones selected by the lowest interface scores.
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We only obtained good EVB reaction free energy profiles for 18 of the 20 designs (Table 1). Most

designs have higher activation free energies than the EVB-derived value of the starting

GNCA4-W229D-F290W variant (14.4 ± 1.70 kcal/mol). Only the 5FQK_KET_0487_00523 variant

had a significantly better activation free energy (13.9 ± 0.70 kcal/mol) than the original variant,

although this value was only 0.5 kcal/mol better.

The low success obtained from this screening stage raises concerns regarding the current

strategy’s ability to optimise in silico low-activity enzymatic variants. Three main reasons could

have affected these results. First, there is no certainty that the enzyme design strategy, in its

current state, can produce models that have better catalytic properties than the starting variant.

Second, the filtering stage is still deficient and has not been validated to deliver correct binding

free energies; additionally, because of computational limitations, not all 10000 models produced

in the design stage were considered for this filtering, and only a subset of 100 models was.

Finally, there was no high-quality validation that the implemented EVB simulations could correctly

rank the models regarding their catalytic ability.

We first decided to explore a more thorough validation of the EVB simulations, specifically their

ability to rank related enzymatic variants with increased catalytic activity.

Evaluating KE directed-evolution trajectories with EVB simulations

The ability of the EVB set up to correctly rank the free energy of related KE enzymatic variants

can be queried using a dataset of available structures and experimentally obtained catalytic

constants. To this end, we employed a small dataset of enzymatic structures representing the DE

of the HG-3 artificial Kemp eliminase system.42 This system represents different structure-activity

points on the evolutionary trajectory towards improving the catalytic activity for the KE reaction

(Table 2).

For the variants in Table 2, we carried out EVB simulations analogous to the ones employed to

screen the catalytic activity of the KE enzymatic designs. However, to match more closely the

experimental activation free energies of these variants, we changed the reference reaction to

match the starting point of the DE optimisation experiment, i.e., the HG3 variant.30 We also
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include the HG2 variant as a control since it has no reported catalytic constant because it was

not detectable in the original publication.30 The HG2 variant is the precursor of the HG3 variant

and was designed computationally from knowledge derived from ground state molecular

dynamics.30

Design Name ΔGcat (kcal/mol) S.D. (kcal/mol)

5FQK_KET_0487_03769 13.5 3.0

5FQK_KET_0487_00523 13.9 0.7

5FQK_KET_0487_09862 15.4 2.4

5FQK_KET_0487_03439 15.8 2.4

5FQK_KET_0487_00207 16.2 2.7

5FQK_KET_0487_09645 16.3 2.2

5FQK_KET_0487_04400 16.3 1.6

5FQK_KET_0487_04913 16.5 1.5

5FQK_KET_0487_03912 16.9 2.4

5FQK_KET_0487_09509 17.4 1.9

5FQK_KET_0487_09594 17.5 2.9

5FQK_KET_0487_05456 17.7 1.9

5FQK_KET_0487_09827 17.8 2.0

5FQK_KET_0487_08314 18.0 1.4

5FQK_KET_0487_00549 18.2 4.8

5FQK_KET_0487_00750 18.4 1.4

5FQK_KET_0487_06142 18.5 1.3

5FQK_KET_0487_01128 19.3 2.5

Table 1. EVB-derived activation free energies of selected designs. All values are in kcal/mol. S.D.:

Standard deviation.

A comparison between the resulting EVB activation free energies and the experimental values for

each specific variant is shown in Figure 8. There are problems when comparing the theoretical

(calculated) and experimental (observed) absolute values. The calculated energies show that the

reference reaction (i.e., the HG3 variant) has the best (lowest) activation free energy of all the
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simulated models; all evolved variants have higher calculated energies than the HG3 variant, even

though they represent superior points in the path of directed-evolution optimisation. Nonetheless,

the HG2 variant30 has higher activation energy than the HG3 variant, which denotes a prediction

with the correct trend.

Despite the failure in defining absolute free energies, all evolved variants show the correct trend

in their calculated activation free energies among them, agreeing with the idea that EVB could

serve the purpose of ranking computational designs. This result is relevant when screening for

future experimental validation since correct absolute free energy predictions should not severely

affect the ranked selection, given the same trends are maintained. Regardless, a more thorough

examination of this specific EVB simulation procedure must still be assessed to understand the

origin of the incorrect absolute free-energy predictions.

Variant Kcat (S-1)
ΔG‡cat

(kcal/mol)
Mutations

HG3 3.0 ± 0.1 16.8 ± 1.0 -

HG3.3b 14 ± 2 15.9 ± 0.6 V6I, K50H, M84C, S89R, Q90D, A125N

HG3.7 310 ± 130 14.1 ± 0.4 V6I, Q37K, K50Q, M84C, S89R, Q90H, A125N

HG3.14 490 ± 100 13.8 ± 0.5 V6I, Q37K, K50Q, M84C, Q90H, T105I, A125T, T208M, T279S, D300N

HG3.17 700 ± 60 13.6 ± 0.8
V6I, Q37K, N47E, K50Q, G82A M84C, S89N, Q90F, T105I, A125T, T208M,

W275A, R276F, T279S, D300N

Table 2. Catalytic parameters of the HG3 evolved variants. Activation free energies are calculated from the

Eyring-Polanyi equation at a temperature of 298K. Kcat uncertainties are expressed as standard deviations.

Free energy errors are determined by calculating the average error of the conversion of the maximum and

minimum (i.e., kcat ± SD) values to free energies. Sequence changes over the HG3 sequence background

are indicated. Numbering is according to the original publication.42

A detail that stands out about the EVB activation free energies obtained for the HG3 variants

(Figure 8) is their high standard deviations. This high variability comes from the different

activation free energies of individual trajectories, each one exploring a finite portion of phase

space representing possible ways the reaction could occur inside the enzymatic active site.
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Figure 8. Observed vs. calculated free energies for the HG3 variants in the DE trajectory. Error bars

correspond to those reported in Table 2.

Two questions arise about the origin of these high standard deviations. One concerns the

simulation time required to obtain convergent results when carrying out EVB simulations. The

second one is about the physical origin of the spread in the activation free energies. The first

issue can be addressed by exploring more extended simulations (simulation length and number

of replicas) to obtain the reaction free-energy profiles.55 While this can show when a specific EVB

setup can start to converge, it does not necessarily mean that simulations have converged over

the complete conformational space of the system at the simulated temperature. Indeed, very

long simulations show that enzymatic systems can adopt several conformations with different

catalytic capabilities.12 Since the process of showing convergence in MD simulations is

computationally too costly, in this work, we have focused primarily on the latter issue, i.e., the

physical origin of the large standard deviations in the EVB free energy profiles.

Examining the effect of conformational entropy in EVB simulations over the

calculated activation free energies.

We set up additional EVB simulations using positional restraints over the protein coordinates for

the GNCA4-W229D-F290W variant. These restraints allow the reaction to occur in a protein

environment that stays fixed near the conformation that binds the TSA (i.e., the crystallographic
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conformation). We compared the restrained simulations' reactive free energy profiles with the

ones derived from the unrestrained simulations (Figure 9).

While the unrestrained simulations have a high standard deviation (1.70 kcal/mol), the restrained

simulations have a much lower standard deviation (0.22 kcal/mol). This diminished standard

deviation in the restrained simulations is because all reactive trajectories take place similarly,

entailing similar energetics among them. More importantly, all the restrained-simulations KE

trajectories involve very low activation free energies, as low as the lowest activation free energies

sampled by the unrestrained simulations. The average activation free energy difference between

these two simulations is 4.45 kcal/mol, implying a change in the reaction's velocity constant of a

million fold. This significant energetical difference highlights the potential of pre-organising an

enzymatic active site, even without any modification to its interaction potential (i.e., keeping its

residue composition constant).

Figure 9. Effect of applying protein constraints over the EVB free energy reaction profiles. Free energy

changes for the reactive trajectories of the KE reaction with (gray curves) and without (red curves)

positional constraints over the protein atomic positions are shown along the reaction coordinate (energy

gap).
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Per-residue electrostatic energy contributions

When designing new enzymatic mutations, it is helpful to assert the individual energetic

contribution of each residue in the active site. This can aid in identifying possible hotspots for

catalytically-improving mutations.

We started by analyzing electrostatic free-energy contributions of individual residues for the

(unrestrained) EVB simulations of the GNCA4-W229D-F290W variant, using the linear response

approximation (LRA)56 between the substrate and TS regions (Figure 10).

Figure 10. LRA residue-level electrostatic free energy contribution to the activation free energy of the

GNCA4-W229D-F290W enzyme over the KE reaction. The error lines represent the standard deviation of

applying the LRA analysis to all EVB trajectories.

In Figure 10, contributing residues are ordered by the magnitude of their per-residue electrostatic

free energy contribution. The most contributing residue is the catalytic base (D204), followed

closely by residue D203, just beside it (see Figure 11). On the other hand, residue D26 is an

anti-catalytic residue, and it happens to be at the opposite side of residue D204 relative to the TS

orientation along the bond being broken. It appears to be a pattern in the electrostatic free energy

contribution for charged residues depending on their location relative to the TS ligand. At the TS's

left side (Figure 11), positively charged residues contribute favourably to the catalytic energy,
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while negatively charged residues contribute unfavourably. This effect is inversely mirrored at the

other side, with positively charged residues at the TS's right side contributing unfavourably, and

negatively charged ones do so favourably when at the TS's left side. This catalytic contribution

makes sense in the context of the bond-breaking character developed at the KE reaction TS: there

is a negative charge accumulation at the TS oxygen (oxyanion formation, pointing left in Figure

11), and a positive charge accumulation at the nitrogen of the bond being broken (pointing right

in Figure 11). This charge polarisation suggests an electrostatic field mechanism responsible for

the differential stabilisation of the TS regarding the ground state.

Figure 11. Structural depiction of the electrostatic free energy contribution of individual residues to the

catalysis of the GNCA4-W229D-F290W variant.

Another possible practice to evaluate electrostatic contributions of different residues is running

EVB simulations using an uncharged version of the residue in question (i.e., all the residue’s

atomic charges are set to zero). To explore the effect that removing a specific charge would have

over the activation free energy of the reaction, we ran separate simulations in which the seven

residues with the highest LRA free energy contribution magnitudes were individually modified for

their uncharged versions. The activation free energies of the full simulations were plotted

together with the LRA free energy contribution of the uncharged residue (Figure 12). If the LRA
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free energy contribution is favourable for a particular residue (i.e., it has a negative ΔΔGelec (RS ->

TS) value), it would be expected that the predicted activation free energy would increase when

uncharging this residue. The opposite should be valid for residues with an anti-catalytic LRA

contribution (i.e., having a positive ΔΔGelec (RS -> TS) value).

The previous idea was plotted in Figure 12, where it would be expected that residue contributions

should be mapped into the first (for anti-catalytic residues) and fourth quadrant (for catalytic

residues). However, it can be seen that either the uncharged simulation did not change the

activation free energies significantly or did it so counterintuitively. The case of the R31 residue

(red circled in Figure 12) is the most extreme, in which the activation free energy drops in

approximately 1 kcal/mol when uncharging it.

We decided to look deeper into the counterintuitive result of the R31 uncharged simulation. We

depict in Figure 13 several superimposed snapshots of the trajectories simulated with and

without the R31 residue’s charges. The conformations between both simulations differ quite

significantly; in the charged version, the R31 side chain is solvent-exposed, while, in the

uncharged simulation, it makes hydrophobic contacts with the sidechain of residue W263. This

result raises concerns on the interpretability of uncharged simulations to study electrostatic free

energy contributions since uncharging a large residue, such as R31, comes with the unintended

effect of creating a large hydrophobic residue. This behaviour explains the previous

counterintuitive effect of discharging the R31 catalytic residue; removing its charges produced an

even lower kinetic barrier, probably by stabilizing the contribution of residue W263 or the active

site packing.

These results align with the intuitive idea that removing catalytic charges will increase activation

free energies and that removing anti-catalytic charges will diminish them. However, it would not

be that simple for a real physical system since dynamical behaviours can be unpredictable, and

residues with high degrees of freedom (e.g., solvent-exposed) could behave outside the scope of

their native structural context to create counterintuitive results upon mutations. These results

highlight the importance of running conformational sampling when evaluating (bio)chemical

activities.
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Figure 12. Unrestrained EVB uncharged-residue simulation analysis. Each point represents a simulation

run uncharging the specified residue. The activation free energy, derived from this simulation, is plotted

against the LRA free energy contribution of the specified uncharged residue. The vertical dashed line

represents the average activation free energy of the fully charged simulation (i.e., with normal charges).

The error bars represent the standard deviations of all the EVB replicas used in the analysis.

Comparison of residue electrostatic energy contributions for enzymatic designs

To explore the electrostatic catalytic effect developed by a computational design over the

reaction coordinate, we repeated the LRA-per-residue electrostatic analysis with the catalytically

improved design 5FQK_KET_0487_00523 and compared it with the one for the

GNCA4-W229D-F290W original variant (Figure 15).

The catalytic base D204 and other residues: D27, D205, R198, R206, R33, W226, R167, and E8,

maintain their catalytic activity in both variants. Residue R230 has a non-obvious impact over the

catalysis of 5FQK_KET_0487_00523 by acting as a neutral catalytic position in some trajectories,

while in others as a prominent anti catalytic position. This position behaved as a robust catalytic

position in the original variant, acting as a stabiliser of the developed oxyanion hole in the TS

(Figure 16).

There is a significant shift in the ligand position in the design variant relative to the original one.

This shift creates a different contact angle between the ligand and the R230 side chain in the

design variant, which can no longer act as an oxyanion hole stabiliser and becomes disorganised.
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The shift in the ligand position is provoked by a strong interaction between the ligand’s nitro

group and a newly designed H237 position (Figure 16). As a positive residue, this interaction

creates a catalytic effect unique to the designed variant, which was non-existent in the original

design since a hydrophobic residue occupied this position.

Figure 13. Comparison of conformations for the R31 residue when simulated with and without its atomic

charges. EVB simulations’ snapshots of R31 residue conformations are compared when the R31 residue

contains full charges (orange) or is uncharged (purple). A characteristic snapshot of the uncharged

simulation is shown (circled close up) to depict the interaction developed between R31 and W263

residues. Conformations of the KE reaction TS ligand are also shown for both simulations to indicate its

relative position to R31.

Many other per-residue contributions are unique either to the designed variant or to the original

one. In other cases, like R32, a better catalytic contribution is found in the original variant than in

the designed one. This residue has a different rotameric position in both models (Figure 16),

explaining the differential catalytic effect.
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Figure 14. Restrained EVB uncharged-residue simulation analysis. Each point represents a simulation run

uncharging the specified residue with positional restraints imposed over all protein atoms. The activation

free energy derived from this simulation is plotted against the LRA free energy contribution of the

specified uncharged residue. The vertical dashed line represents the average activation free energy of the

fully charged simulation (i.e., with normal charges). The error bars represent the standard deviations of all

the EVB replicas used in the analysis.

Discussion

Our target was to combine two successful methodologies to create an improved optimisation

framework for computational enzyme design. On one side, the Rosetta suite of programs for

macromolecular modelling has successfully generated enzyme design proposals that create de

novo catalytic activity in previously inactive protein scaffolds. On the other hand, the EVB model

has established the physical basis of protein catalysis by predicting relevant physicochemical

parameters through detailed simulations of enzymatic systems. Combining the two methods

seemed an obvious choice to create a robust framework for enzymatic design in which variants

from the enzyme design algorithm are later evaluated with EVB simulations.
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Figure 15. LRA residue-level electrostatic free energy contribution comparison between the starting and a

designed enzyme. The LRA electrostatic analysis was done for the GNCA4-W229D-F290W variant (gray)

and the 5FQK_KET_0487_00523 designed model (salmon).

We selected the case of redesigning a de novo active site of experimentally proven enzymatic

activity to test our idea. This system is based on a resurrected ancient beta-lactamase scaffold

and has a catalytic activity for the KE reaction comparable to other computational design

strategies.51 We explored two Rosetta design methodologies to generate optimised variants for

this system based on optimising the Rosetta total score of the enzymatic complex. This target

score allowed, on the one hand, to optimise interactions towards improving protein stability, and

on the other, since mutations were only allowed to occur near the ligand position, to improve

active site interactions with the TS model.

The EnzDes strategy, based on an almost fixed-backbone optimisation of the rotameric states of

the active site, generated very few mutations, indicating that the active site was near its

sequence optimum for its native backbone conformation. This result was not surprising since the

Rosetta score function has been trained to recapitulate the native sequence of scaffolds based

on rotameric optimisation in a fixed backbone protocol.57 While this strategy could have

previously worked for de novo design applications,20 it does not help in redesigning efforts to

improve enzymatic variants.
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Figure 16. Comparison of residue positions with different catalytic effects between the designed

(magenta) and the starting (cyan) enzymatic variants.

The FastDes methodology, on the other hand, allows complete flexibility of the backbone, ligand,

and rotameric state. This strategy generated a diverse set of designs that encompassed a wide

range of total and interface scores. This strategy is more suitable for enzyme redesign since it

can diversify the possible ways the protein scaffold binds the TS state. The need for backbone

flexibility is in line with other works in which it was essential for the success of protein design

approaches.58–60

When we evaluated a ranked selection of Rosetta designs with EVB simulations, very few models

were evaluated as improved regarding the original variant, establishing questions and challenges

when combining both methodologies:

First, there is no certainty that the design algorithm can generate improved models since the

optimisation target employed (i.e., the total score) does not explicitly capture catalytic activity.

There is a need for a computationally cheap metric to capture catalytic trends for the target

reaction that can be used as the optimisation target or in combination with the current one, either

included as a constraint or in a multi-objective optimisation algorithm.
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Our results indicate that the preorganisation of key catalytic residues could significantly impact

the activation free energy since configurational entropy plays an important role in defining how

the reaction can occur in the active site. We observed high variability in the activation free

energies of different EVB trajectories, notably decreased upon restricting the protein movements

to the conformation that binds the TSA. This effect was accompanied by a significant diminishing

in the activation free energies of all individual EVB replicas, pointing to an improved catalytic

effect based on residues being preorganised in a catalytically competent conformation

throughout the whole enzymatic reaction. In this regard, metrics predicting individual residue

dynamics could be helpful to capture preorganisation levels at key enzymatic positions and

significantly improve optimisation strategies seeking to enhance active site preorganisation.

Second, due to the limitations of running MD simulations, not all designs can be directly tested by

the EVB method. It is, therefore, crucial to have a ranking system of the designed variants to test

only the ones most likely to succeed in improving the catalytic activity. As we mentioned before,

most of these selections have been carried out by the chemical intuition of the designer,26

rendering the success of the methodology ambiguously defined. A systematic, practical, and

computationally cheap first screening should be applied to ensure that the more accurate and

computationally intensive techniques (e.g., EVB simulations) only evaluate models with the most

promising catalytic characteristics.

We explored the possibility of uncovering alternative TS binding modes by sampling the

enzymatic system while removing the constraints employed during the design methodology. This

new sampling was done since there was no guarantee that the structures derived from the

design algorithm would be at their minimum energy conformations. Thus, we predicted TS

binding free energies using Boltzmann distributions to integrate all the energetical information

from the sampled conformations. However, this binding free energy score did not significantly

correlate with the activation free energies derived from EVB simulations. This poor correlation

could indicate a difference in the sampling coverage between both methods, a faulty score

function for evaluating protein-ligand interactions61 or, possibly, that TS binding does not

necessarily correlate well with activation free energies for this system. Nonetheless, this binding

free energy score correlated better with the EVB activation free energies than the interface scores

derived directly from the designed structures alone and could, in principle, be applied to select
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designs for further characterisation. Improving this correlation by refining the current method or

developing new alternative ones would be key for optimising the computational enzyme design

pipeline.

Third, predicting catalytic activities with EVB is in itself challenging, requiring suitable

parameterisation and validation before being applied for computational design screening. A

requirement for the validation step is the availability of a dataset large enough to establish

statistical significance. These datasets should comprise variants with low to high catalytic

activities for a specific reaction, hopefully paired with structural information for the binding of the

reactive system (i.e., substrate, TSA, or product). There are relatively few datasets with these

characteristics that are large enough to be statistically significant; however, experimental

techniques for obtaining structural information from sequence alone,62 and for the rapid and

simultaneous evaluation of multiple variants are starting to catch up with these goals.63

Our validation of the EVB method was partially successful in reproducing trends in a small

validation dataset containing evolved enzymes for the KE reaction, failing mainly to predict

absolute activation free energies. While essential to validate the simulated results, failure in

predicting absolute catalytic parameters would not impede the filtering out of designs, especially

since designs will ultimately be tested experimentally. Establishing a ranking of the most

promising models can still help increase the ratio of success of our evolutionary strategy.

Nevertheless, the failure of our EVB implementation in predicting catalytic parameters needs to

be addressed more thoroughly. Special attention needs to be paid to the method’s convergence,

which has been seldom addressed in the EVB literature.55 Also since proteins can adopt multiple

configurations differing in catalytic activity, running simulations only focusing on the minimum

energy conformation could seriously disregard the full effect of the protein’s configurational

entropy over the predicted catalytic barriers.12 This is particularly true for enzymatic designs

whose sampled configurational space can differ significantly from the original scaffold. There is

an all-important need to overcome this problem of configurational sampling that, in our specific

case, given the large number of variants to be tested, should be as computationally cheap as

possible.
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Despite not being successful in uncovering improved designs, the application of the EVB method

to assess computationally designed enzymes helped us reveal important hypotheses for

improving the catalytic activity of the studied reaction:

The electrostatic contribution analysis showed that the location of charged residues followed a

trend in agreement with the idea that electrostatic fields11 can help to stabilise the differential

charge developed at the TS due to its bond-breaking character. However, as we observe in many

of our EVB simulations, the strategy cannot be simply applied by changing the charge of surface

residues since their mobility can be hard to predict. Unexpected dynamics can occur given the

alternative positions these residues can adopt relative to the location of the reactive ligand,

specially for residues with low preorganisation (i.e., solvent exposed). Residue mobility

predictions should be used to ensure that positioned charges maintain the correct polarisation

throughout the full enzymatic dynamics.

Studying the system using positional constraints over the protein revealed the importance of

configurational entropy over the catalysed reaction. Improving active site preorganisation helps

more reactive trajectories to occur optimally, indicating that optimisation should not only focus

on improving the interaction potential of the system but also on stabilising the preorganisation of

key target residues. This fact is highly important for residues stabilising the bond-breaking

polarisation developed at the TS of the KE reaction, at which correctly positioned charged

residues are essential.

Finally, comparing the predicted catalytic effects of different residues in enzymatic variants is

challenging. Subtleties in the ligand position and additive effects of multiple mutations over the

reaction coordinate generate unique idiosyncrasies regarding how the catalytic effect is achieved.

Nonetheless, these comparisons can inform and guide the improvement of catalytic activities by

highlighting effects profited by specific variants, which could be later combined to improve the

computational enzyme design strategy. Specifically, we observed the novel effect of a positive

charge over the nitro group in the KE reactive system, whose catalytic effect demands a more

in-depth exploration.
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Conclusions

Our attempt to combine the Rosetta enzyme design methodology with EVB screening failed to

uncover a significant number of improved variants according to the predicted absolute activation

free energies. It could still be the case that improved variants exist among the set of designs

since our application of the EVB method did not excel for absolute activation energy prediction

and was better at ranking them. More thorough validation and parametrization of the EVB

simulations can improve these predictions by encompassing convergence studies and assessing

the effect of including alternative protein configurations when evaluating activation free energies.

We identified several key aspects to improve the Rosetta and EVB pipeline: the development of a

cheap metric to capture residue preorganisation to include it in the optimisation algorithm, a

rapid systematic assessment method to select the most promising variants for further and more

intensive evaluation, and to improve the robustness of the EVB protocol to predict activation free

energies. These aspects inspire the subsequent work carried out in this thesis.

Finally, it is of the utmost importance that the information derived while developing this

framework for computational enzyme design be experimentally tested to corroborate and

demonstrate the hypotheses derived from it, thus validating the overall value of the methodology.

Methods

Small-molecule Docking

TSA-ligand self-docking into the GNCA4-W229D variant was carried out using Rosetta scripts.64

The target complex was downloaded from the PDB65 with code 5FQJ. TSA parameters were

obtained directly through scripts inside Rosetta for ligand preparation.52

The ligand docking protocol consists first of a random initial placement that searches the rigid

body and torsional degrees of freedom of the ligand relative to the protein receptor. Then, small

perturbations of the ligand and repacking the receptor side-chains. Finally, the entire system is

minimized using gradient-based minimization, including the ligand, receptor side-chain, and

backbone atoms. The first two steps (i.e., ligand positioning and side-chains repacking) are
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optimised with a Monte Carlo algorithm using the Metropolis criterion. The entire protocol ligand

docking protocol using Rosetta Scripts is described in 52.

Quantum chemical calculations

The geometry of the KE reaction TS model was calculated from QC modelling of the reaction at

the B3LYP/6-31+G(d) level of theory, optimised with the CPCM implicit solvent model using a

water dielectric. The TS was confirmed via an oscillatory mode frequency analysis, characterised

by a single imaginary frequency connecting the product and substrate of the reaction when

integrated through its intrinsic reaction coordinate. QC calculations were carried out with the

Gaussian 09 program.66

Charges employed in all calculations for the KE substrate, product, TSA, and TS ligands were

calculated with the RESP method using the RED tools program67 with default options.

Enzyme design protocol

The enzyme design protocols were executed through the Rosetta Scripts platform.64 The

GNCA4-W229D-F290W variant starting model was downloaded from the PDB database65 with

code 5FQK. The TSA bound into this structure was replaced by a TS model of the KE reaction

(see “Quantum chemical calculations” section in Methods), and the entire complex was

minimised with Rosetta’s Relax protocol54 10000 times. The lowest energy model produced was

selected for applying the enzymatic design protocols.

All enzyme design protocols apply a single catalytic constraint during the optimisation,

maintaining the hydrogen bond distance between the KE reaction TS and the catalytic base D229

at a proton transfer distance. Other degrees of freedom associated with this bonded distance,

i.e., angles and torsions, were also constrained to maintain the proper TS state geometry.

The enzyme design protocols define which residues will be designed (change sequence),

repacked (maintain sequence but optimised), or fixed (not included in the according to 4 cutoffs.

The first cutoff is set for residues with their CA atoms within 6.0 angstroms from any ligand

atom. All residues within this cutoff are allowed to change their amino acid identity (i.e., design)

by repacking their side chains from a library containing all 20 natural amino acids, except for the
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catalytic base, which was maintained as an aspartic acid residue. The second cutoff, at 8.0

angstroms, allows residues with their CA atom inside the cutoff but with their beta carbon closer

than the CA to any ligand atom to be designable. The third cutoff, at 10.0 angstroms, sets

residues with their CA atom inside it to be repackables (side chains are optimised without

changing their amino acid identities). Finally, at 12.0 angstroms, the fourth cutoff defines

residues containing the CA inside the cutoff, but with their beta carbon closer than the CA to any

ligand’s atom, to be repackable. Each cutoff is applied in order, and any residue that fulfils a

cutoff is excluded from applying the following restrictions.

The EnzDes protocol works in two stages. The first stage is when residues are allowed to change

their identity through a Monte Carlo search through the sequence space by rotamer optimisation,

followed by a gradient-based minimisation that includes ligand rigid-body, side-chain and

backbone degrees of freedom. The second stage follows the same steps as the first stage;

however, no design (only repacking) occurs during the rotamers optimisation.

The FastDes protocol consists of the application of the Relax protocol54 with design capabilities

at the repacking stages. The Relax protocol searches the local conformational space of residues

included in the optimisation, using cycles of repacking and minimisation that scale the repulsive

term (‘fa_rep’) of the Rosetta score function.47 The weights used are 0.02, 0.25, 0.55 and 1.00 of

the original ‘fa_rep’ weight. During minimisation, ligand rigid-body, side chain, and backbone

degrees of freedom movement are included in the optimisation scheme. The rotameric behaviour

of residues during repacking are assigned according to the rules of the four cutoffs defined for

designability (see above).

Local conformational search of designed enzyme

A sampling of the conformational space of enzyme design models was applied to characterise

their binding modes. The protocol consisted of an unconstrained (i.e., catalytic constraints were

removed) search of the local conformational space employing the Rosetta Relax protocol to the

whole system. Each model was sampled with 200 trajectories, and the total and interface scores

were used to calculate their binding free energy contributions.
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The binding free energies of designed models were calculated from a Boltzmann distribution

based on the total scores of sampled conformations. The binding energy values were calculated

as the expectation value of the interface score between the transition state and the enzyme,

using a Boltzmann distribution based on the total complex energy:

(1)

Here, is the expectation value of the interface score, is the total number of sampled

conformations, and is the interface score of the ith conformation. The interface score for each

enzyme design conformation is calculated as:

(2)

With is the total energy of the enzyme-TS complex structure, the unbound TS

ligand energy, and the unbound enzyme energy. Probabilities ( ) are obtained from a

Boltzmann distribution using the sampled enzyme-TS conformations scores as:

(3)

Here, is the characteristic energy partition, and Q represents the partition function

calculated as:

(4)

EVB analysis

The EVB model, used for studying chemical reactions in enzymes and solution, begins by

describing a chemical reaction using a valence bond approach. In the EVB, the system
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wave-function is represented by a linear combination of the most essential ionic and covalent

resonance forms (diabatic states) of the system.68

Reactant and product are treated as basis states that are mixed to describe the reacting system.

The potential energies of the diabatic states (Hii and Hjj) and the mixing term (Hij) are represented

by the Hamiltonian matrix elements in equations:

(5)

(6)

R and Q represent the atomic coordinates and charges of the reactants or products (i.e., the

solute) in the diabatic states, and r and q are the coordinates and charges of the surrounding

water or protein (i.e., the solvent). αi
gas is the energy of the ith diabatic state in the gas phase,

where all the fragments are taken to be infinity. Ui
intra(R, Q) is the intramolecular potential of the

solute system (relative to its minimum) in this state. Ui
inter(R, Q, r, q) represents the interaction

between the solute atoms and the surrounding solvent atoms. Ui
solvent represents the potential

energy of the solvent. The adiabatic ground state energy Eg and the corresponding eigenvector Cg

are obtained by solving the secular equation:

(7)

Using the Hellmann-Feynman theorem69 for obtaining the first analytical derivatives of Eg, the EVB

energy surface can be sampled directly by MD simulations. However, in practice, this is done by a

combined free energy perturbation and umbrella sampling (FEP/US) procedure70,71 that provides

the free energy function needed to calculate the activation free energy.

The free energy associated with the transformation of a molecular system from state i to another

state j, described by the potentials Vi and Vj, respectively, can be calculated using the perturbation

formula represented by the equation:

(8)
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The angular brackets denote the average ensemble calculated with MD simulations, using the

potential Vi. Although the perturbation formula is exact, it is only applicable when the states are

so similar that configurational sampling using Vi also samples relevant (i.e. low-energy)

configurations on Vj. By introducing a set of intermediate mapping potentials (representing

unphysical states) as linear combinations of Vi and Vj, sufficient sampling can be attained,

provided that these intermediate potentials are sufficiently closely spaced. This sampling is

carried out given that the following equation is satisfied:

(9)

Here, Vm is the effective mapping potential formed as a linear combination over all N states using

the consecutive mapping λm = (λ1, λ2, …, λN-1, λN). The total free energy change is then calculated

as a sum over all steps between the end-point potentials, as shown in equation:

(10)

Where N is the total number of steps (mapping potentials), and the above equation gives each

sum term.

Finally, and considering only the case of two diabatic states, the free energy functional that

corresponds to the adiabatic ground state surface, Eg is obtained by:

(11)

Where εm is the mapping potential that keeps the reaction coordinate x in the region of x’, The

angular brackets denote the average ensemble calculated with MD simulations using the εm

potential, β=(kBT)-1 , with kB as the Boltzmann’s constant and T the temperature. If the changes in

εm are sufficiently gradual, the free energy functional ΔG(x’), obtained with several values of m
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overlaps over a range of x’ values, gives the complete free-energy curve for the reaction when the

full set of ΔG(x’) are patched together.

Electrostatic free energy contributions at the residue level were calculated using the LRA

approach 56 between substrate and TS state regions. The evaluated configurations are taken from

simulations employing the specific mapping potentials (εm) that most contribute to these states.

The residue level electrostatic energies were calculated with the Qcalc6 routine of the Q MD

package.72

EVB simulations

We set up EVB simulations using as starting point structures extracted directly from the PDB

database,65 or derived from the different enzyme design protocols, specifically the models for the

HG3-related enzymes, with IDs: 3NYD (HG3) and 4BS0 (HG3.17). The remaining models (i.e.,

HG2, HG3, HG3.3b, HG3.7, HG3.14) were generated through mutation and minimization with the

Relax protocol.54 The lowest energy model among 10000 produced trajectories, with bound KE

reaction TS model, was selected for EVB simulations.

For all simulations, the AMBER14SB forcefield73 was employed to represent protein solvent

molecules. Bonded and nonbonded parameters, except for charges, were derived from the GAFF

force field.74 Charges for the solute substrate and TS system were calculated using the RESP

fitting method.75 Product charges were defined to match the TS charges at the TS region (i.e.,

when λm = 0.5, see “EVB analysis” section above) with the following formula:

(12)

Where Qi
P, Qi

TS, Qi
S represent the charges of the ith atom in the product, transition, and substrate

state, respectively.

The solution reference reaction for the KE reaction was set up in a 25 angstroms radius sphere of

water centred at the solute system. Water molecules were represented with the TIP3P water

model.76 The sphere integrity was maintained with the SCAAS method.77 For each replica, the

system was slowly heated up to 298K for a total of 120 ps applying a positional constraint of 100

57

https://paperpile.com/c/iCLYoi/cUBE
https://paperpile.com/c/iCLYoi/M4QK
https://paperpile.com/c/iCLYoi/QMru
https://paperpile.com/c/iCLYoi/NBVP
https://paperpile.com/c/iCLYoi/6A1B
https://paperpile.com/c/iCLYoi/NNB3
https://paperpile.com/c/iCLYoi/gvGL
https://www.codecogs.com/eqnedit.php?latex=Q%5EP_i%3D2Q%5E%7BTS%7D_i-Q%5ES_i#0
https://paperpile.com/c/iCLYoi/uBbs
https://paperpile.com/c/iCLYoi/JhRj


PhD thesis Martin Floor Pilquil

kcal·mol−1 Å−2 in all solute atoms. Later, the system was equilibrated during 1.5 ns gradually

removing constraints during the first 100 ps. Each replica was further simulated during 50 FEP

windows (mapping potentials) of 50 ps each (i.e., 2.5 ns per replica). Energies, coming from 100

replicas (i.e., a total of 250 ns), were collected during this last step of the simulation to obtain the

EVB activation free energy profiles of each variant simulated.

Enzymatic simulations for the KE reaction were set up by building a sphere of water molecules

with a radius of 25 angstroms centred on the ligand. Any charged protein residue outside the

sphere was modelled as its neutrally-charged version to avoid unwanted electrostatic effects

over the solute system due to unscreened charges in vacuo. The water sphere integrity was

maintained with the SCAAS method,77 and any protein atom outside the simulated sphere is

positionally restrained with a harmonic force constant of 200 kcal mol−1 Å−2. For each replica, the

system was slowly heated up during 300 ps with soft positional constraints over protein atoms

(10 kcal mol−1 Å−2) and hard constraints over solute atoms (100 kcal mol−1 Å−2). The system is

later equilibrated during 1.5 ns, gradually removing the constraints over protein and solute atoms

during the first 100 ps but maintaining a half harmonic restraint (0.5 kcal mol−1 Å−2) between the

geometric centres of the catalytic base and the KE solute. This soft distance restraint is applied

to ensure the solute is near the catalytic base side chain to engage it in the reaction. Finally, the

system is simulated during 50 FEP windows (mapping potentials) of 50 ps each (i.e., 2.5 ns per

replica). Energies, coming from 100 replicas (i.e., a total of 250 ns), were collected during this

last step of the simulation to obtain the enzymatic EVB activation free energy profiles.
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Chapter 2. Predicting binding free energy in

MHC-I-peptide complexes
An essential requirement to explore methods for predicting free energies is using appropriate

experimental datasets. For enzyme design, very few datasets relate experimental activity with

structural information for the system; while many trajectories for the DE of enzymes pair the

sequence of the improved variants with their catalytic activity, few have a significant number of

solved structures for the relevant points along the evolutionary trajectories. This lack of a

statistically significant dataset hinder efforts that correlate structural modelling data with

experimental activity.

While the above issue is specific for enzymatic design, some protein systems contain appropriate

datasets to predict free energy changes in biochemical processes. In this regard, protein-protein

and protein-small molecule interaction datasets have had an enormous relevance in validating

methodologies to predict changes in binding free energies.78–83 Although predicting activation

free energies is in principle different from predicting binding free energies, most methods in

enzyme design employ almost the same principles as when approaching binding studies. Many

are based on the binding of a fixed-TS model modelled with force fields typically employed to

study systems in their ground state. Moreover, there are approaches for computational enzyme

design directly employing the binding of substrates or products to create active catalytic sites.84

Also, many simulation methods that query catalytic activities using simulations focus solely on

the Michaelis complex to study the conformational dynamics of enzymatic systems.12,85

Therefore, validating methods to predict binding free energies in protein-protein or protein-small

molecule systems can still be highly relevant for computational design endeavours.

A popular benchmark system for protein-protein interactions is the Major histocompatibility

complex class I (MHC-I) receptors. This receptor is a central piece in defining the repertoire of

antigenic peptides that can activate the cytotoxic response of CD8+ lymphocytes.86 A ternary

complex between the MHC-I receptor, the antigenic peptide, and the T-cell receptor of the CD8+

lymphocyte must form for proper activation of a T-cell-CD8+ clone.87 The MHC-I receptor binds

peptides between 8 to 11 residues in length with a highly promiscuous specificity. The binding

mode of peptides to MHC-I receptors is highly characteristic, with the peptide lying extended in
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the MHC-I pocket with their termini frequently anchored at the same MHC-I receptor regions (see

Figure 17).

Figure 17. HLA structural set of peptide conformations. Fifty peptide conformations (purple) were derived

from clustering a set of 534 PDB structures only containing the three human leukocyte antigens (HLA)

MHC-I groups (HLA-A, HLA-B and HLA-C) bound to different peptide antigens. For simplicity, only the

binding pocket domain (red) of the HLA-A receptor is shown.

The MHC-I-peptide complexes have several characteristics that make them ideal for exploring

methods to predict binding free energies in systems dominated by protein-protein interactions.

On the one hand, there is numerous experimental and structural information available for the

system that relates the MHC-I receptor-peptide (MHCp) complex structures and their

immunogenic activities, which is directly correlated to the binding activity of the peptides for their

MHC receptors.88 On the other hand, the characteristic peptide binding to MHC receptors makes

these systems simpler to explore since conformations tend to be highly similar for all bound

peptides (see Figure 17). Finally, any developed method displaying good predicting performance

for MHCp binding can be used in the design of peptide-based vaccines.89,90

In this chapter, we have used MHC-I binding data to query the Rosetta Score function to predict

peptides' binding activity towards a specific MHC-I allotype. This validation is relevant for a

proof-of-concept demonstration that binding free energies can be predicted employing this

knowledge-base scorefunction.

Building a compelling MHC-I peptide experimental dataset to predict binding free

energies

The dataset was compiled from a single publication employing the same methodology to

estimate all immunogenic activities.91 This way of obtaining experimental data ensures that the
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activity values are self-consistent, avoiding excessive experimental noise that could interfere with

correlation predictions. The selected experimental dataset pertains to the HLA-A*02:01 allotype

and encompasses diverse peptide sequences and binding activities (measured as IC50 values).

We filtered all peptide activity data to contain only nine-mers and group them using a hierarchical

clustering strategy based on their pairwise sequence similarities (see “The PyCBBL library” in

Appendix 2 - Code for more details). A threshold for the sequence similarity was defined to

partition the group of sequences into 50 clusters. Only each cluster's centroid sequence was

selected to compile the dataset, thus maximizing the diversity of peptidic sequences considered.

The distribution of IC50 values of the final selected peptides is diverse and spans a wide range of

experimental binding values (Figure 18).

Figure 18. Distribution of log(IC50) values for the HLA-A allotype HLA-A*02:01 contained in the selected

dataset.

Modelling MHC-peptide complexes

We aim to predict the binding free energies for MHCp complexes for a dataset composed of

diverse peptide sequences and a wide range of experimental activities (from now on, the binding

dataset). The approach consisted of sampling an ensemble of conformations from a discrete set

of experimental peptide conformations extracted from the PDB database (from now on, the

structural dataset).

Each MHCp complex in the binding dataset was modelled by setting 50 trajectories, each using a

different peptide conformation from the structural dataset. The corresponding peptide
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sequences were first threaded into each peptide backbone conformation, and then the complexes

were minimized by searching their local conformational space (for more details, see Methods).

For each MHCp complex structure, we ran 30 cycles of the fastrelax protocol54 by allowing the

peptide and the neighbouring receptor residues to sample backbone, side chain, and rigid body

degrees of freedom. The progression of the scores for all replicas modelled is shown in Figure

19, where it can be seen that total and interface scores converged early in the search, at less

than five fastrelax cycles.

Figure 19. Convergence of the Interface and total score along the fastrelax optimisation. Each modelled

trajectory is plotted individually. For clarity, the y-axis was truncated to depict only values close to the final

converged scores.

Binding free energies correlations with the experimental data

The total and interface scores distributions for all sampled conformations of each peptide in the

dataset are plotted in Figure 20. Peptides were ordered by their log(IC50) values to aid in the

visualization of trends between the scores and the experimental activity values. The minimum

total score values sampled by each peptide (Figure 20 upper plot) correlate poorly with the

log(IC50) experimental values, with a Pearson Correlation Coefficient (PCC) of 0.4412. On the

other hand, when correlating the lowest sampled interface scores (Figure 20 lower plot), the PCC

increases to 0.7586. From the boxplot of interface score values distributions (Figure 20 lower

plot), it is apparent that the average values of the distributions have a higher correlation with the

experimental data, with an actual PCC of 0.8053.
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Figure 20. Distribution of total (up) and interface (down) scores for each peptide in the binding database.

Each distribution summarises all values for each cycle step and all trajectories. Their log(IC50) values

order peptide sequences displayed in the x-axis. If outliers exist in a distribution, only the lowest-score

outlier is shown.

The fact that the interface score averages correlate better than the minimum sampled interface

score values indicates that the ensemble of conformations can be more informative of the

experimental activities than the lowest interface scores alone. This result can be rationalized by

looking at the bidimensional distributions of total and interface scores (i.e., the conformational
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energy landscapes, Figure 22). We observe that the lowest interface scores rarely coincide with

the system's lowest-energy conformations. Because of their higher energy, these lowest-interface

score conformations should be less populated than the system's lowest energy microstates.

Therefore, a more proper way of counting the contribution of each conformation to the binding

energy would be through applying a proper statistical-mechanics distribution.

We calculated the binding free energies of each MHCp complex by setting a Boltzmann

distribution for all sampled conformations based on their total score values. The calculated

probabilities allowed us to estimate the binding free energy as the expectation value of the entire

distribution of sampled conformations (see Methods section for details on these equations).

However, the energy-partition parameter of this distribution (i.e., the KT parameter) has not been

adequately characterised for the knowledge-based potential employed here.47 Thus, we decided

to explore the PCC as a function of this parameter (Figure 21).

The PCC increases readily, reaching a maximum of 0.8185 at 11.0 Rosetta Energy Units (REU),

after which it drops very slowly at larger KT values. To explore the origin of this behaviour, we

decided to repeat the analysis by dividing the peptides into two equally-sized groups based on

their hydrophobicities. We estimated theoretical LogP values for each peptide, and the groups

were defined based on the LogP median value. According to the estimated LogP values, most

peptides have a hydrophobic nature (Figure 21, right plot). Despite this, we designated the 50%

less hydrophobic peptides as the Hydrophilic group and the other more hydrophobic half as the

Hydrophobic group. The Hydrophilic group presents a behaviour similar to the one when all the

peptides were analyzed. The PCC peaks notoriously at a KT value of 6.6 REU to a PCC of 0.8185

and then decreases appreciably at larger KT values. On the other hand, the Hydrophilic group has

significantly lower PCC values than the Hydrophilic group and presents a monotonous, although

very slight, increase of the PCC at increased KT values, converging to a PCC of 0.6841.
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Figure 21. PCC at different KT values. (left) PCC variation is shown for three sub-groups of peptides in the

dataset. The full subset of peptides (All peptides) was subdivided into two groups if they were above

(hydrophilic) or below (hydrophobic) the median value of their predicted LogP values. (Right) Predicted

LogP distributions for peptides in the binding dataset. The median LogP value is indicated with a dashed

line.

To explore more in-depth the previous result, we performed a leave-one-out analysis to observe

the effect of each energy term over the PCC (the Rosetta score function is defined as a linear

combination of 19 terms).47 In Figure 23, we plot the four terms with the highest effect over the

calculated PCC values. Leaving out the ‘fa_sol’’ or ‘fa_atr’ term significantly decreases the

correlation with the experimental data; leaving the ‘fa_atr’ term generates a curve with a

pronounced maximum PCC of 0.2255 at 0.8 KT; similarly, when the ‘fa_sol’ is left out, the

correlation PCC maximum is less notorious and has a value of 0.1638 at 4.2 KT. The other two

terms, ‘fa_elec’ and ‘hbond_bb_sc’’, barely affect the PCC, behaving similarly to the full score

function with PCC maxima of 0.7922 and 0.7933, respectively.
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Figure 22. (previous page) Total and interface energy landscapes for all peptides in the binding set. The

total and interface score values for all sampled conformations are plotted as black dots. Plots are sorted

by the peptides’ log(IC50) values.

We repeated the PCC analysis only including individual energy terms to observe their behaviour

(Figure 24). As expected, the ‘fa_atr’ and ‘fa_sol’ terms show good correlation curves when

contrasted against the experimental log(IC50) values. The ‘fa_atr’ has a slight maximum PCC of

0.5596 at 4.1 KT, while the ‘fa_sol’ has a more notorious maximum PCC of 0.6078 at 1.1 KT. This

behaviour agrees with what happens in the leave-one-out analysis of energy terms (see Figure

23). When both terms are combined, the PCC curve is close to the “Full score” curve (Figure 24),

with a maximum PCC of 0.7783 at 1.1 KT. On the other hand, the ‘fa_elec’ component behaves

oppositely to the experimental binding values, with a negative asymptotic PCC behaviour

reaching a minimum PCC of -0.4411.

Figure 23. Leaving-one-out analysis of the score function energy terms. The curves show the PCC

dependency on KT when using all energy terms (Full score curve) or leaving individual terms outside the

interface score calculation (Removed curves).

Simulation convergence

We next consider the convergence of our sampling method according to specific sampling

parameters. As we showed above, already at five or fewer relax cycles, low values were reached
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for both interface and total scores (see Figure 19) while still retaining shallow variability at a

higher number of relaxing cycles. Inspection of the PCC convergence concerning the same

parameter shows that the curve has almost converged at around four relax cycles (Figure 25).

Jointly, this shows that the convergence of the minimization of the HLA-A*02:01-peptide

complexes using our strategy was fully achieved early regarding the number of minimization

relax cycles applied.

Figure 24. Effect of Individual Rosetta score function energy terms over the PCC. The curves show the

PCC dependency on KT when using all energy terms (Full score curve) or only including individual terms

(Only curves) to calculate the interface scores. Also, the effect of combining the two most important

terms (Only:  ‘fa_sol + fa_atr’ curve) is shown.

Our sampling method starts from a predefined and representative set of 50 peptide backbone

structures. Since our protocol only generates a local search around these backbone

conformations, we evaluated the convergence of the PCC as a function of the number of starting

backbone conformations. This analysis was carried out by bootstrapping trajectories coming

from specific starting backbone conformations. The PCC was calculated by repeating the

bootstrapping at a progressively increased number of starting structures (Figure 26). The PCC

converges when around half of the representative starting backbone conformations are being

used, with good correlations even when only 5 to 10 conformations are employed.
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Figure 25. PCC convergence as a function of the relaxed cycles applied. Each curve considers the PCC at

different KT values, only considering energy values from conformations generated until the specified

relaxation cycles.

To look further into which starting conformations were more beneficial in terms of energy

optimisation, we plotted the Boltzmann probability contribution of each starting conformation to

each of the peptides in the binding dataset (Figure 27). This probability was calculated by

summing the Boltzmann probabilities for all conformations whose trajectories originated from a

particular peptide conformation in the structure dataset.

All peptide conformations have a non-zero probability contribution to the Boltzmann distribution

of each peptide in the binding dataset. However, a cluster of related peptide conformations has

higher Boltzmann weights for all peptides in the dataset (Figure 27). This result suggests that

most peptides bound to specific MHC receptors seem to adopt prefered backbone conformations

independently of their sequence.
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Figure 26. PCC convergence as a function of the number of initial backbone conformations. The average

of the bootstrapped PCC is shown, and error bars represent its bootstrapped standard deviation.

Bootstrapping was carried out by resampling trajectories starting from different numbers of peptide

backbone conformations.

Structural binding analysis

A set of predicted free energy values that correlate with experimental data allows us to look at

the physical interactions behind MHC-specificity more confidently. Since the rosetta score

function is residue-decomposable, we mapped the Boltzmann-averaged interface energies into

the surface of the minimum-energy sampled complex structures (Figure 28). The MHC receptor

seems to have considerable plasticity to bind each peptide. Residues on top of the

peptide-binding pocket, which are fairly solvent-exposed, are very dynamic and help

accommodate diverse peptide side chains, sometimes contacting peptides of different sequence

positions. Still, peptides make strong interactions at their N- and C-termini with the MHC pocket's

anchorage points, while very little at middle-bottom regions. These regions with absent or loose

interactions are expected to have higher conformational dynamics when unbound, thus possibly

changing when binding with the T-cell receptor.
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Figure 27. Boltzmann probability contribution of each starting structure to the modeling of peptides in the

validation dataset. Peptides are ordered by log(IC50) values and starting peptide structures by a

dendrogram based on their pairwise RMSD values.
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Figure 28. (Previous page) Surface mapping of interaction energies in the MHC receptor. Three MHC of

high (YVMTMILFL), medium (SLNSMYTRL) and low (EAAAATCAL) affinity for the MHC receptor are shown.

The minimum energy structures sampled are used to depict each residue's interaction free energy values

in the MHC pocket. (Up) Side view of the MHC peptide-pocket showing the lowest energy peptide

conformation over it. The peptide polarity is indicated from the N-terminus to the C-terminus. (Down) Top

view of the MHCp complex. Each peptide sequence is indicated at the bottom for each complex.

Discussion

We have selected a MHCp system to benchmark our method for predicting binding free energies.

Despite not being directly related to activation free energies, predicting binding free energies can

be a close and relevant proof-of-concept scenario in which substrate, TS, and product binding

could later be related to enzymatic catalytic parameters.92 More importantly, the Rosetta energy

function has not usually being employed in predicting free energies, and since it has been mainly

trained and validated to model protein-protein interactions, benchmarking it first in the MHCp

system at which these interactions dominate could alleviate artefacts coming from

small-molecule modelling and parameterization. In this regard, a recent benchmark concluded

that the latest Rosetta energy functions performed worse than previous versions in predicting

protein-ligand interactions.61

The advantages of the MHC system for studying binding rely on their comprehensive

experimental characterisation, but also in that these systems have characteristic binding modes

while retaining high promiscuity of the peptidic sequences bound to each MHC receptor, making

the predictions challenging, especially at the enthalpic level and less so at the entropic level.

Our simulations correlated well with experimental data for a diverse dataset of peptide

sequences and experimental values. The modelling, however, required experimental knowledge of

characteristic binding modes to sample peptide conformations. Although this strategy severely

limits the application of our method for other MHC allotypes, our primary goal was to benchmark

the Rosetta energy function for generating trustable free energy values. In this sense, we reached

high correlations (PCC 0.8185) with the experimental dataset, indicating that the binding free

energies, derived with the Rosetta energy function (i.e., the Boltzmann-averaged interface

scores), applied to a set of sampled conformations, capture experimental trends for
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protein-peptide binding. Further benchmarks, however, would be necessary to demonstrate the

generalizability of our method to predict thermodynamic parameters in other systems.

When looking in detail at the origin ohe correlation with experimental data, we noted the need for

a high KT value when calculating the Boltzmann partition function of the conformational

ensemble. The Rosetta energy function combines physical- and knowledge-based energy terms.47

These knowledge-based terms make the energy function bear arbitrary units (REU); however, this

function was recently parameterized using thermodynamic data to convey values in kcal/mol

units.93 The KT constant for a statistical ensemble at room temperature is 0.593 kcal/mol.

However, our PCC peaked at a very different value of 11.0 kcal/mol. Although at this point, we

cannot discard overfitting to our data or problems with the Rosetta energy function

parameterization to kcal/mol, the significant difference remains puzzling.

We decided to look deeper at the composition of our dataset since there are many hydrophobic

residues in the peptide sequences. As expected, most peptides were predicted to be hydrophobic;

however, the more hydrophobic half had a very different behaviour when predicting correlations

than the less hydrophobic half. The KT peaked at lower values (6.6 kcal/mol) for the former group

than for the latter, whose PCC did not peak and continued increasing at larger KT values. This

result indicates that a biased dataset composition could have affected the fact that the maximal

correlation was obtained at a high KT value. Other datasets with different peptidic compositions

should also be tested to shed light on this matter.

Two Rosetta energy terms were responsible for most of the conveyed correlation. The ‘fa_atr’

term represents the attractive part of the Van der Waals interactions, and the ‘fa_sol’ term

represents a penalty for desolvating atoms (i.e., the implicit solvent term). The combination of

both terms was almost wholly responsible for the obtained correlation, leaving almost negligible

contributions for other energy terms. On the contrary, when removed, the ‘fa_elec’ term had little

influence on the correlation and, when compared alone, negatively correlated with the

experimental data. These results make sense if we consider the mainly hydrophobic composition

of the dataset: for hydrophobic residues, electrostatic interactions are minimal, and the Van der

Waals term is primarily responsible for their non-bonded interactions. Besides, a significant
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driving force for the binding of hydrophobic molecules in solution is the hydrophobic effect,

which is indirectly captured by the implicit solvation term, ‘fa_sol’, of the Rosetta energy function.

Since many MHC binding modes have already been characterised, the sampling was started from

a comprehensive set of relevant experimental peptide structures. Peptides were subjected to a

local exploration from these starting conformations, thus generating structures close to them.

We showed that the method generated good correlations with the experimental data with just a

few of these starting structures. Moreover, modelled peptides, almost independently of their

sequence, preferred a structurally-related subset of these conformations to generate their lowest

energy conformations. This result points to a mechanism in which most peptides are bound to a

particular MHC using distinctly related backbone conformations. This fact could have significant

effects on modelling MHC interactions since discovering these preferred binding conformations

could allow for faster structural modelling of peptide interactions for specific MHC allotypes.

Since the Rosetta energy function is also residue decomposable, we could map the interaction

energy contributions into the MHC pocket residues. This analysis confirmed the canonical view

that peptides make the most substantial interactions at anchorage points in the MHC pocket. The

pocket also presented high plasticity, with many solvent-exposed residues located at the top of

the helices, helping accommodate peptide side chains of different sequence positions in different

peptides. On the other hand, interactions were absent in the middle regions of the pocket. This

lack of interactions makes sense in the mechanism of T-cell receptor recognition, in which many

peptides seem to bulge out at their middle section, helping them reach out of the pocket for

interacting with the T-cell receptor.94 These loose interactions will also allow for larger dynamics

of the peptide at this middle regions, allowing the peptide to adopt alternative conformations for

T-cell interaction, as has been observed in specific cases of T-cell recognition.95

Conclusions

We have validated the use of the Rosetta energy function to predict experimental activities by

using conformational sampling in combination with a statistical-mechanics ensemble analysis.

The architecture of the energy function allowed us to understand the physical origin of the
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predictions and track these contributions at the residue level, which is highly important for

experimental design since mutations target changes residue wise.

The results obtained are relevant for developing fast techniques to predict thermodynamic

activities since the simplifications made over the energy function seem to have maintained a

good balance between physics- and knowledge-based energy terms that allows for fast sampling

of protein conformations. Although further benchmarks are necessary, this method could also be

used to predict protein-small molecule experimental data and, if properly validated, adequately

help filter model proposals in protein design algorithms.

Methods

Peptide conformational dataset

A structural dataset containing MHCp complexes was compiled to assess how different peptide

conformations affect binding affinity predictions. A set containing only HLA-A, HLA-B, and HLA-C

MHC-I receptors was built from a list of 534 PDBs. MHCp complexes (i.e., MHC alpha,

β2-microglobulin, and peptide chain) were built and filtered to leave only complexes with

nonameric peptides and no missing coordinates at residues near the peptide binding pocket. The

selected MHCp complexes were further clustered, based on peptide pairwise RMSD, to select a

set of 50 representative peptide conformations.

Modelling MHC-I and peptide bound conformations

All PDB structures of the HLA-A*02:01 MHC receptor were used to build MHC complexes

consisting only of the MHC alpha chain and its corresponding β2-microglobulin chain. Using the

Rosetta all-atom score function, these models were subjected to an all-atom minimisation,47 and

the best scoring pose was chosen for modelling the peptide conformations (PDB code 3UTQ).

Each peptide in the binding dataset was modelled into the MHC receptor using all peptide

conformations in the previously built peptide conformational dataset. The peptide sequence was

threaded into each conformation and then subjected to 30 cycles of local backbone, side-chain,

and rigid body optimisation using Rosetta's50 fastrelax algorithm54 with default options. For each

cycle we stored the total system energy (total score) and the binding energy between the peptide

and the MHC-I receptor (interface score). Flexible residues at the backbone and side-chain levels
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included peptide residues and receptor residues near 8 Å of the peptide coordinates. This list of

residues was updated at the beginning of every cycle. The fastrelax method minimises the

complex by searching its local conformational space by decreasing the repulsive term and

increasing the attractive term of the score function in the early inner cycles, scaling back to the

default weights as the minimisation progresses. Ten replicas of this complete procedure were

carried out to estimate the method's convergence, totalling 750000 conformations for the full set

of peptides (15000 for each MHCp complex).

Binding energy calculations

Binding energy values were calculated as the expectation value of the interaction (interface)

score between the peptide and the MHC receptor, using a Boltzmann distribution based on the

total complex energy:

(13)

Here, is the expectation value of the interaction score, is the total number of sampled

MHCp conformations, and is the interaction score of each specific MHCp conformation. The

interaction score for each MHCp conformation is calculated as:

(14)

With is the total energy of the MHCp complex conformation, the unbound peptide

conformation energy, and is the MHC receptor conformation energy without the bound

peptide. The probabilities are obtained from a Boltzmann distribution using the sampled

MHCp conformations scores:

(15)
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Here, is the characteristic energy partition, and Q represents the partition function

calculated as:

(16)

Bootstrapping analysis

Peptide backbone conformations were bootstrapped by taking resampling with replacement

subsets of conformations increasing in number. The PCC analysis was repeated by only using

conformations that started from the selected conformations. After all the resamplings were

carried out, the average and standard deviation of the PCC distributions were calculated and

reported.

79

https://www.codecogs.com/eqnedit.php?latex=KT#0
https://www.codecogs.com/eqnedit.php?latex=Q%20%3D%20%5Csum_%7Bi%7D%5E%7BN%7D%7Be%5E%7B-E_i%2FKT%7D%7D#0


PhD thesis Martin Floor Pilquil

80



PhD thesis Martin Floor Pilquil

Chapter 3. Dynamical and binding predictions using the

WCN metric
The WCN is a metric developed to estimate the packing density around a specific residue or atom

in a protein structure. It has been described to correlate well with dynamic96 and evolutionary97,98

profiles in proteins and to be helpful to characterise protein-protein interfaces99 and conserved

catalytic residues in enzymes.100,101 On the one hand, the possibility of predicting dynamic profiles

from the structure alone and with little computation, makes the WCN an attractive metric that

capture the preorganisation of residues for being used directly in an enzyme design algorithm. On

the other hand, the degree of agreement between the WCN and evolutionary data could aid in

determining functional patterns in proteins with uncharacterised functions.

To demonstrate the practicality of the WCN in modelling protein dynamics and functional

characterisation, we sought to validate its use two-folds:

We first decided to explore the ability of the WCN to predict dynamic profiles of diverse protein

structures, using as a an experimental descriptor the Debye-Waller or temperature factor

(B-factor), derived from X-ray crystallography experiments.102,103 This parameter indirectly

measures the squared atomic displacement of the atoms in the crystal system, which is

associated with the uncertainty in the x-ray scattering patterns. The origin of these variabilities

can be related to the different conformational substates of the protein in the crystal and their

corresponding vibrational modes, but also to other factors like lattice disorders and translational

and rotational diffusions. Despite these possible non-dynamical artefacts, B-factors describe

structural fluctuations occurring at very different timescales, from femtoseconds to seconds,

provided that relevant conformations are highly populated in the crystal lattice.104 This

description gives rich information about protein motions, which is fundamental to understanding

the relationship between the dynamic structure-activity that underlies their biochemical

functions.

Secondly, we sought to define a general method to map possible regions of protein-protein

binding. For this goal, we used the problem of characterising the unknown binding mode between

the IκBα protein and its binding partner, the histone H4.105 Canonically, the IκBα receptor binds to
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the NF-κB transcription factor in the cytosol, preventing its migration to the nucleus, and thus

inhibiting its action as a transcriptional regulator.106 It has been proposed that the IκBα protein

can also bind the N-terminal tail of histones H2 and H4, which adds a new role to the IκBα protein

as a histone-code regulator.105 While the interaction of IκBα with NF-κB has already been

characterised at the structural level, the interaction of IκBα with the histone's N-terminal tails is

yet to be characterised.

We start this chapter by analysing the ability of different WCN variants to predict dynamic

profiles, and we continue with the derivation of a general score helpful to map residues with

essential functions beyond their structural role.

Results

Validation of the WCN to predict dynamical profiles

We first decided to test the ability of WCN to predict the dynamic profiles of a diverse dataset of

protein structures. We compared three different WCN profiles against experimental B-factor

values considering separate atoms subsets. The dataset comprises 153 single-chain proteins

with 1.5 Å or better resolutions, diffracted between 95K and 105K (for more details, see the

“Protein dataset collection for dynamical predictions” section in methods). Two coarse-grained

models of WCN, considering only backbone CA atoms (WCNC-alpha) and backbone CA atoms plus

sidechain centroid values (WCNCentroid), were contrasted to the per-residue-averaged B-factor

profile of each protein. An average Pearson(Spearman) correlation coefficient (CC) of

0.676(0.697) and 0.684(0.715) was obtained for each model, respectively. The best and worst

predictions are shown in Figure 29 to gain insight into the performance of these WCN models.

Analogously, we calculated a higher resolution WCN profile, considering all the atoms in the

protein structures (WCNAll-atom), and compared it to the all-atom B-factor profile of each protein. An

improved average Pearson(Spearman) correlation coefficient of 0.691(0.733) was estimated for

the entire data set. The worst and best predictions for this model are shown in Figure 30.
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Figure 29. Best and worst predictions for the WCNC-alpha and WCNCentriod profiles. The

Pearson(Spearman) CC between the WCNC-alpha profile and the B-factor profile is shown in the title

together with the PDB code of the structural entry being compared.

Figure 30. Best and worst predictions for the WCNAll atom profiles. The Pearson(Spearman) CC between

the WCNAll atom profile and the B-factor profile is shown in the title together with the PDB code of the

structural entry being compared.
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These results validate that predictions made with alternative versions of the WCN, differing in the

granularity, significantly agree with the crystallographically-derived dynamic profiles of different

protein folds.

We now proceed to explore the utility of WCN in the prediction of binding regions based on

evolutionary information.

The IκBα and NF-κB complex

IκBα has an ankyrin repeat fold that exposes a large interaction surface. It binds the two subunits

of the NF-κB dimer (i.e., the p65 and the P50 subunits) at different sides of its ankyrin repeat fold

(Figure 31). The crystal structure shows six ankyrin repeats forming the central module of the

IκBα protein; however, there is missing structural information at the N- and C-terminus. The

C-terminal domain of the Rel Homology Regions (RHR) of the p65 subunit forms ample

interactions with IκBα, while the N-terminal RHR domain makes scarce interactions. Only the

C-terminal RHR domain of the p50 subunit interacts with IκBα using a different region than the

p65 domains with scarce interface overlap. The nuclear localisation signal (NLS) of the NF-κB

p65 subunit extends away from the p65 C-terminal RHR domain and adopts an alpha-helix

conformation that contacts the first and second ankyrin repeats of the IκBα domain.

Figure 31. The crystallographic structure of IκBα in contact with two subunits of NF-κB. IKBA is shown in

yellow with 6 stacked ankyrin repeats. The RHR of the p65 (green) and the P50 (red) subunits contact

different interfaces of the IκBα protein. The complex is rotated by 90º in the right relative to the left model

— PDB structure 1NFI.
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Correlations between WCN and evolutionary information

WCN profiles for the IκBα structure were built using only the contacts present in the IκBα

single-chain structure (WCNsingle-chain) or using the contacts present in the structure in complex

with NF-κB (WCNcomplex). These two profiles were compared to the sequence conservation (SC)

data derived from the Consurf107 web server (Fig. 40). The WCNsingle-chain profile, derived using the

single-chain structure of the IκBα domain, follows the SC profile with many differences in several

regions (PCC: 0.3515). However, when contact information from the IκBα structure in complex

with NF-κB is included in the WCN calculation (i.e., WNCcomplex), the correlation augments

significantly (PCC: 0.5080), evidencing that NF-κB positions participating in binding are

conserved among the set of homologous proteins considered to produce the SC profile.

Figure 32. WCN and SC profiles for IκBα. The WCN profiles for the single-chain (blue line) and complex

(dashed black line) structures are shown together with the SC data (red line) derived from the comparison

of homologous proteins. All profiles represent their normalized Z-score values.

With this result and to validate the prediction of interface residues, we next wondered which IκBα

residues of its interface with NF-κB could be predicted by only considering the WCNsingle-chain and

the SC profile for the IκBα protein.
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Predicting binding interface residues using WCN and evolutionary information

The SC profile represents the variation in amino acid identity at each residue position of the IκBα

protein, calculated by comparing a set of homologous proteins. As measured above, the

WCNcomplex profile is closer to the SC profile than the WCNsingle-chain profile. This more significant

similarity stems from the fact that the conserved biological unit is the IκBα protein in complex

with the NF-κB subunits, and not the monomeric IκBα structure. Residues conserved on the

surface of IκBα are better explained by the WCNcomplex profile since residues in contact between

the two proteins must have certainly co-evolved.108 Therefore, it is reasonable to think that

differences between the SC profile and the WCNsingle-chain could reflect residues with further

evolutionary constraints than only maintaining the IκBα domain folded structure.

We derived a simple score to estimate IκBα residues with additional roles besides maintaining its

ankyrin repeat fold. The score is deemed FEEC (Fold-Excluded Evolutionary Conservation) and is

defined as the difference between the WCNsingle-chain minus the SC values. Based on this definition,

residues with a positive FEEC score could have additional conservation constraints than those

imposed by the protein’s tertiary structure alone. To validate this score, we classify which

interface residues between IκBα and NF-κB could be predicted using the FEEC score alone. The

interface residues were defined as having more than 20% of their solvent-accessible surface area

hidden (SASAh) upon complexation.

From the 45 IκBα residues in the IκBα/NF-κB complex, 36 belong to the interface with the NF-κB

p65 subunit and 11 to the interface with NF-κB p50 subunit (two residues are shared between

these interfaces). From the 213 IκBα residues in the crystallographic structure, 121 residues have

a positive FEEC score. For the interaction with NF-κB p65 subunit, 83% (30/36) of the interface

residues with IκBα are correctly included in this set of residues, being also true for 73% (8/11) of

the interface residues interacting with the NF-κB p50 subunit.

To visualize the pattern of surface residues with positive FEEC scores, we mapped their FEEC

values onto the surface of the IκBα protein (Figure 33 top). Positive FEEC values are clustered in

specific regions of the protein, and they seem to be higher at the terminal residues of the IκBα

structure. It is relevant to point out that residues with extreme FEEC values appear to be an

artefact of missing structural information of the available IκBα structure. Terminal segments of
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the protein are not represented in the structure, which significantly affects the WCN calculation of

nearby residues (see Figure 32), resulting in very high FEEC values. Because of this artefact, the

selected high-end colour cutoff, representing the mapping of the positive FEEC score values into

the protein surface, was kept low to depict better the FEEC-delineated regions (Figure 33 top).

Figure 33. Different metrics characterising surface residues on the IκBα structure. (Top) Surface mapping

of FEEC values of residues with positive FEEC scores. (Middle) hidden SASA value upon complexation

calculated from the IκBα and NF-Kb complex structure. (Bottom) Binding scores calculated from sampling

local conformations of the IκBα and NF-Kb complex structure. Each structure to the right represents a 90º

turn of the visualization of the structure to its left — PDB structure 1NFI.
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To compare the FEEC scores distribution with the distribution of residues participating in the

interface of IκBα with the NF-κB subunits, the per-residue SASAh values were also mapped into

the IκBα surface (Figure 33 middle). Interestingly, there is a similar distribution pattern between

residues with positive FEEC scores and residues hidden upon complex formation. While SASAh is

derived from a geometric definition of residues belonging to the interface, it does not account for

chemical interactions nor their strength. Thus, it is expected that residues not participating in

significant interactions are still included in the interface because they are occluded by nearby

interface residues. Therefore, we mapped per-residue binding scores to define more

quantitatively the residues’ role in the IκBα and NF-κB interface. When mapped into the IκBα

surface, the binding scores values also show a similar distribution to FEEC values (Figure 33

bottom).

When classifying residues belonging to the interface, it is essential to study the effect of

changing the threshold that defines which residues pertaining to the interface. Thus, the

percentage of residues in the interface correctly classified by the FEEC score at different SASAh

threshold percentages was plotted in Figure 34. The number of residues classified as being at the

interface drops almost linearly when the SASAh threshold percentage is increased. However, at

least 80% of residues had a positive FEEC score at all threshold values. A 100% of interface

residues have positive FEEC scores when the SASAh threshold is 74% or higher, although, at this

threshold value, the interface is only composed of the innermost 16 residues.

We repeated the threshold analysis using now per-residue binding energies (Figure 35). The

number of residues in the interface with favourable binding energies (i.e., negative values) slowly

increases when the binding energy threshold increases, with most residues having lower binding

energy contributions to the interface. At least 79% of residues with negative binding energy

values have positive FEEC values. 100% of interface residues have positive FEEC scores when the

binding energy threshold is -2.1 kcal/mol or lower, with the interface containing nine or fewer

interface residues.
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Figure 34. FEEC-classification of interface residues as defined by their SASAh values. The percentage of

correctly classified interface residues by the FEEC score (red line) is shown as a function of the SASAh

threshold percentage used to define which residues belong to the interface. The number of residues

included in the interface for each specific SASAh threshold (green line) is also shown.

Figure 35. FEEC-classification of interface residues as defined by their interface scores values. The

percentage of correctly classified interface residues by the FEEC score (red line) is shown as a function of

the interface score threshold value used to define which residues belong to the interface. The number of

residues included in the interface having a score less or equal to each interface scores threshold (green

line) is also shown.
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A putative binding site for H4 N-terminus to IκBα protein

Having investigated the predicting ability of the FEEC score to map regions where the NF-κB

protein can bind to IκBα, a definition of a putative region for the binding of the H4 histone

N-terminal region is addressed. The sequence of the H4 histone N-terminal region that binds IκBα

is: SGRGKGGKGLGKGGAKRHRKVLR.105 The sequence contains many arginine and lysine residues

(red letters) which makes the overall region highly positively charged. Therefore, it is reasonable

to propose that any region binding this protein segment should have a complementary

electrostatic surface (i.e., a region with many negatively charged residues). To narrow down

possible binding regions, we searched for all negatively-charged surface residues with positive

FEEC values (Figure 36).

Figure 36. Mapping of negatively charged residues with positive FEEC score on the IκBα surface. The

dashed red circle marks the largest negatively-charged region, with four negative residues — PDB

structure 1NFI.

The N-terminal side of the IκBα protein comprises the more significant number of negatively

charged residues with positive FEEC values (red circle in Figure 36). In this region, five negatively

charged residues are found, E72, D73, D75, E85, and E86, coincidentally also part of the IκBα and

NF-κB p65 subunit interface (Figure 37). Notably, this region binds the NLS of NF-κB, also

containing a high number of positively charged residues.
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Figure 37. A) The IκBα (white) and NF-κB/p65 (translucent green) and p50 (translucent yellow) complex is

shown to indicate the relative location of negative surface residues with positive FEEC values (red

surfaces). The NF-κB/p65 nuclear localisation signal (NLS) region is drawn as a green cartoon. B)

Interaction of NF-κB/p65 NLS motif with IκBα ANK1 and ANK2 repeats. Polar IκBα residues interacting

with the NLS are depicted yellow, the NLS motif, KRKR, is shown in licorice. They are numbered according

to Uniprot entries Q04206 (NF-κB/p65) and P25963 (IκBα) — PDB structure 1NFI.

When comparing the sequences of the NF-κB NLS and the H4 N-terminus regions, they have a

shared motif of positively charged residues (Figure 38), suggesting this five-residue-containing

region as the putative binding region of H4 histone N-terminus to bind the IκBα protein at the

defined region (see Fig. 36).

Figure 38. Alignment of the NF-κB/p65 NLS region to the H4 N-terminal tail. Similar positions are

indicated in blue rectangles; similar and identical residues, inside a position, are in red and white letters,

respectively. Red arrows indicate NF-κB/p65 residues participating in IκBα binding. The

secondarySecondary structure shown above was calculated from PDB structure 1NFI.

Discussion

Residues conserved in a particular set of homologous proteins need to fulfil a relevant

thermodynamic or kinetic role for the given biomolecular system. This role can be the folding
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structure's maintenance, or it can regulate other phenomena that, without being exhaustive, could

mediate protein-protein interactions, maintain protein solubility, speed up folding kinetics, or

affect the preorganisation of interface or catalytic residues. A three-dimensional protein structure

contains the chemical contact information necessary to adopt its folded conformation. The

greater the number of chemical contacts a residue participates in, the more restricted it is to

change its identity without compromising essential interactions that support the folded structure.

Likewise, if the residue is not involved in many chemical interactions, it can vary more freely

along the structurally-permitted sequence landscape.

The atomic contact density, measured here continually as the WCN metric, has been shown to

correlate well with the dynamic and evolutionary profiles of proteins.96,98 The latter correlation is

higher when the WCN values are derived using the full biological complex structure.98 Since the

WCN values only consider the contact information derived from a particular protein structure,

residue positions with higher SC than the one dictated by the WCN metric could have different or

additional roles than maintaining the folded configuration. Based on this logic, we defined a FEEC

score as the value of the WCN minus the SC scores. Based on this definition, if a residue’s FEEC

score is positive, additional conservation constraints than those imposed by the protein’s tertiary

structure alone can apply to them.

When positive FEEC scores were mapped on the surface of the IκBα structure, it delineated

regions highly similar to those employed by the protein to interact with its partner protein, NF-κB.

All IκBα residues, either deeply located in the interface core or having considerable interaction

energies at the interface, were correctly classified by the FEEC score metric. This result is

remarkable since the FEEC score derivation is carried out only with the unbound IκBα structure

and the sequence information of orthologous proteins. Thus, this metric seems promising to help

experimentalists narrow down binding interface location for partner proteins.

We employed the FEEC metric to define the binding region between the IκBα protein and the H4

histone protein. Experimentally, the N-terminus region, specifically the first 23 residues, was

shown to bind the IκBα protein,105 however the exact mechanism of the interaction is unknown.

Employing the FEEC metric, we were able to narrow down the H4 histone binding to a specific

region, which, according to the crystallographic structure of the IκBα protein in complex with the
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NF-κB subunits, was also bound by the NLS of the NF-κB p65 subunit. Interestingly, the NLS and

the H4 histone N-terminus sequences share a significant motif of charged residues, indicating

that these two segments could have a similar binding mechanism and, therefore, compete for

binding IκBα. Ongoing studies have confirmed that this region is indeed the region used by the H4

histone to bind to IκBα and that NF-κB and H4 compete for their binding to IκBα (unpublished

results).

Finally, as a validation test, we also explored the utility of the WCN metric to correlate with

dynamic profiles for a diverse set of protein structures. This test showed good correlations when

employing WCN versions at the residue and atomic levels. The ability of WCN to inexpensively

predict dynamic profiles from the protein structure alone opens up the possibility to apply this

metric as a fast predictor of atomic- or residue-level conformational dynamics. Importantly, this

could be especially useful in tracking the degree of residue preorganisation in protein design

algorithms.

Conclusion

The WCN is a helpful metric for quantitatively studying the relationship between protein structure,

dynamics, and evolution. We have employed it in conjunction with evolutionary information to

derive a score that can identify residues with other roles beside maintaining the folded protein

structure. As a particular case, we predicted the protein-protein interfaces of two proteins with an

unknown binding mechanism. This same information could easily help classify biological from

non-biological interfaces in crystallographic complexes.109

The validation of the WCN contact number to predict protein dynamic profiles and suggest

hypotheses for residues participating in protein binding makes it an ideal metric to estimate the

preorganisation level of protein residues. Such is the case for enzyme design, in which the

optimisation of the preorganisation of residue partaking in fundamental catalytic interactions is a

promising proposition to create new active sites with increased catalytic activities.
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Methods

Protein dataset collection for dynamical predictions
The dataset for fitting the WCN models was selected by searching the whole PDB protein

database65 for structures solved by X-ray crystallography. We considered only crystals composed

of a single polypeptide protein in the asymmetric unit, with resolutions better or equal to 1.5 Å.

Because B-factors are affected by the temperature at which X-ray dispersion data is collected, for

consistency, we only selected structures obtained in the range of 95 and 105 K. Peptide models

were filtered out by putting a lower limit of 30 residues to the length of protein sequences.

Structures with ligands present that had more than 5 atoms or membrane proteins were

discarded. A 35% sequence identity filter was used to generate a non-redundant set of structures,

obtaining a maximum value of 32% in the final set. To remove possible crystal contacts bias in

the set, we first built all symmetry-related chains at least 5 Å in proximity to the target chain.

Then, WCN profiles were derived using the single-chain structure only and, also, using the rebuilt

crystal contact neighbouring chains. Both WCN profiles were correlated with the normalized

B-factor data available, and structures with PCC not differing more than 5% were regarded as

unbiased and included in the final dataset of 153 structures.

Weighted contact number

The WCN is a metric that quantifies the contact density for a particular atom or residue in a

protein structure. It is defined as the sum of all inverse squared distances of all other particles in

the system to that specific atom:

(17)

Here, is the number of atoms in the structure, and is the distance between atoms and .

The profiles are normalized by calculating their standard score (z-score). The calculation only

considers a subset of atoms in the protein structure depending on the comparison (i.e., at the

residue or atomic level). For the WCNalpha-carbon, only the CA atoms are considered; for the

WCNCentroid, only the CA atoms and a centroid atom representing the side chain geometric centre
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are employed for each residue; finally, for the WCNAll-atom, all the protein atoms in the structure are

considered. Any WCN metric, as described here, has an inverse relationship with the evolutionary

SC;98 therefore, we use the inverse of the WCN (WCN-1) to make comparisons to the evolutionary

information.

Sequence Conservation Score

The SC scores were derived from the CONSURF server.107 First, the method builds phylogenetic

trees from multiple sequence alignment of homologous sequences. Then, considering the

stochasticity underlying the evolutionary process, conservation profiles are derived using the

Empirical Bayesian Method and smoothed over a window of five residues.110 Finally, the scores

are normalized to their corresponding standard scores (Z-scores).

Fold-Excluded Evolutionary Conservation Score

We defined a FEEC score as the value of the WCN-1 minus the SC values:

(18)

Analysis of residue interface energy contributions

Considering a protein complex based on two proteins (A and B), we assign a probability to each

complex conformation from a Boltzmann distribution based on the full energy landscape:

(19)

is the energy of the ith structure, is the energy partition constant, and is the partition

function of the respective ensemble of N structures:

(20)

The interface binding energy for each complex structure is calculated as
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the difference between the energies of the interacting complex structure and the individual

chain energies E_i^A and E_I^B as:

(21)

All interface energies were then integrated using the complete set of probabilities to calculate the

binding energy expectation value:

(22)

To obtain a set of interacting conformations between IκBα and NF-κB and define an interacting

energy landscape, we generated 6500 minimisation trajectories from the crystallographic

complex (PDB code: 1NFI) using the fastrelax54 protocol of the Rosetta software50 with default

options.

We employed the Rosetta energy function47 in all the modelling steps. The function is residue

decomposable, and therefore it is straightforward to do the energy analyses only considering the

contribution of individual residues. Accordingly, per-residue interface energy contributions are

obtained as the expectation values of individual residues’ binding energies.
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Chapter 4. Exploring protein conformational landscapes

with Structure-Based Model simulations
An important drawback of MD simulations is their slow convergence over the sampled protein

conformational space; extremely long simulations are required, if possible, to explore the

free-energy landscape of the folded configuration in a convergent manner.111 This limitation of

MD hinders the study of conformational dynamics in protein systems and curtails our capacity to

obtain thermodynamically convergent results. This limitation is also valid in the case of

enzymatic systems, in which alternative protein configurations can have dissimilar catalytic

capabilities, relevant for a proper estimation of their activation free energies.12

There are many approaches to deal with the MD sampling problem of protein systems. On the

one hand, specialised hardware, such as graphics processing units (GPU), can achieve faster

calculations at reduced hardware cost, speeding up MD simulations to sample additional

conformational space.112 Also, many algorithms seek to optimise the conformational search by

employing different strategies to enhance the efficiency of the sampled phase-space by a limited

number of MD trajectories.113 Finally, several coarse-grained force fields aim to simplify even

more the representation of molecular systems to diminish the number of terms being evaluated

by the MD engine, accelerating the conformational sampling convergence.114

Structure-based models (SBMs)115,116 are a special kind of simplifying-force field MD methodology

that focuses only on the protein interactions characteristic of its native structure. These models

are based on protein energy landscape theory115 and focus on modelling the protein’s native

structure as the unique potential-energy-minimum conformation. Since natural proteins have

evolved to avoid kinetic traps and maintain a single minimum-energy conformation, the

simplifications made by SBMs seem sensible and allow to speed up the MD conformational

search to obtain reasonable kinetical and equilibria characterisation of the protein system, to

evaluate them in the framework of statistical mechanics.

SBMs can be applied to study native-like conformations and other configurations related to the

formers by partial or complete unfolding. Also, by employing more than one protein configuration

when building an SBM force field, such as in multi-basin SBMs, the sampling can be expanded to
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explore each configuration simultaneously. These single- or multi-basin models have been

applied to study protein folding, binding, and conformational changes. For a review on

applications of SBMs to study protein biophysics, please see reference 117.

Current implementations of SBMs on popular simulation packages118 either do not allow setting

up custom SBM force fields or do not have hardware acceleration capabilities to run all custom

SBMs with GPU acceleration. We consider these characteristics essential to maximize the

efficiency of sampling protein conformations and, also, to foster SBM forcefield experimentation

among the MD community.

Since the primary goal of this work is to create a framework to develop computational enzyme

design methods, and since for enzymatic systems, studying protein conformations is highly

relevant when considering how conformational entropy affects their catalytic parameters, we

considered it not only important but necessary to expand the implementation of SBMs to include

programmatic versatility coupled with GPU acceleration.

Results

Implementation of SBMOpenMM

We developed the SBMOpenMM Python library for setting up and running SBM simulations using

the OpenMM toolkit for MD simulations. The OpenMM Python API offers tools to develop custom

force fields that use the OpenMM GPU platforms to accelerate MD simulations. The

SBMOpenMM library can set up custom SBM force fields and pre-implemented versions of

popular SBM force fields, such as the SMOG force fields.119,120 It can work with different

coarse-grained protein models and implement their respective multi-basin force field versions.

The SBMOpenMM library is divided into three main classes (Figure 39). The geometry class

allows the calculation of the equilibrium values of all bonded (i.e., bonds, angles, and dihedrals)

and non-bonded (i.e., protein native contacts) terms from the protein input structure. The system

class is the main class, where all the force field information is stored. This class contains

methods to coarse-grain the protein system, set up force field parameters, and create the force

and system objects to simulate them with OpenMM. Finally, the models class is where default
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SBM models reside. It is a straightforward class to deploy SBMs ready to be simulated by the

OpenMM engine, and also can serve as a starting point to create variants of these default

implementations.

Figure 39. Structure of the SBMOpenMM classes. The program is divided into three main classes that

automates the set up of SBM force fields. The system class is the main class which contains all

information to create the OpenMM system object for MD simulation.

The workflow to set up SBM models (Figure 40) with SBMOpenMM starts with an input PDB (or

CIF) file containing the protein native structure and a contact file containing the set of

non-bonded native contacts. The library helps set up the protein topology, which will be defined

according to the coarse-graining level required; currently, it can be all-atom (not including

hydrogens) or CA atoms only (CA model). The library also has methods to remove any

non-protein atom so that it can be employed directly using structures coming directly from the

PDB database.

After loading the structure and contacts files to create an instance of the SBMOpenMM system

class, the library allows to set up the force field parameters for each degree of freedom in the

forcefield, i.e., for each bond, angle, torsion, and contact considered. Once forcefield parameters

have been given, different force types can be selected, accordingly, to model the interactions that

maintain the input structure as the minimum energy configuration. The final step in setting up the

SBM is creating the OpenMM system class (different from the SBMOpenMM system class),
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which will serve to run the MD simulation. The OpenMM system class creation method inside

SBMOpenMM allows checking the magnitude of the forces acting on the system and minimizing

the starting coordinates if they happen to be different from the native structure used to set up the

SBM force field.

Figure 40. Workflow for setting up custom SBM force fields with SBMOpenMM. An input file is required to

calculate the equilibrium values of the degrees of freedom and set up the system’s topology. A set of

parameters are generated to give to the different available force classes. Finally, an OpenMM system

object is created and directly deployed to run the simulation. These steps are automated in the models

class to set up predefined SBMs.

Please review the library's documentation for more details on the SBMOpenMM library usage:

https://compbiochbiophlab.github.io/sbm-openmm/build/html/index.html, or review the related

publication.121

Validation tests of SBMOpenMM

To validate our SBMOpenMM library implementation, we run simulations for a small protein

system using files derived from a standard SBM implementation: the SMOG server.122 The
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simulations were run with the Gromacs program123 using the all-atom SMOG force field.119 The

derived trajectories were then re-evaluated using our implemented force objects in the

SBMOpenMM library employing precisely the same parameters. A step-by-step comparison

between the energies derived from each program is shown in Figure 41. The test shows reliable

energy calculations using the implementation of our library in OpenMM that have a very high

correlation with the Gromacs derived energies (0.9960, Pearson correlation coefficient (PCC)).

Slight differences between both implementations arise because of numerical and additive errors

due to the employment of dissimilar numerical libraries by both MD programs. These errors

accumulate across many different interactions at each energy term in the force field and result in

average differences of a few kilocalories between them for the entire simulated system.

A second validation test was carried out using a set of diverse protein structures from the PDB

database (Figure 41). Using the SMOG all-atom force field119 implemented in the SBMOpenMM

library, we determined the folding temperature for each protein model and ran several simulations

at different relative temperatures. For each protein model and at each temperature, we calculated

correlation values between their experimental crystallographic temperature factors (B-factor) and

derived RMSD from the generated SBM all-atom trajectories (Figure 42).

Before reaching the folding temperature, correlations remain high (0.6605 PCC) until around

0.85Tf. After this, correlations drop abruptly at temperatures near, at, or higher than the folding

temperature. They also have more significant standard deviations than temperatures equal to or

lower than 0.85Tf. This result shows that the derived SBM trajectories explore configurations in

agreement with the experimental dynamic profiles of the simulated proteins. Despite the good

correlations found, it is expected that dynamic profiles based on protein motions, and

crystallographic temperature factors, do not fully agree since B-factors are not a direct measure

of protein motions, and can also have significant noise originating from the crystallization

environment (for a discussion, see reference 124).
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Figure 41. Energy reproducibility of the SBMOpenMM implementation. A 1 ns (SBM timescale) simulation

using SMOG's AA force field was run to generate a set of probe conformations. The energies of each

conformation were recalculated using the implementation of the same force objects in the SBMOpenMM

library. Left-side plots show the full potential energy separated by its composing energy terms, from

Gromacs (black lines) and OpenMM (red lines). The right-side boxplots show the energy differences

distributions between both programs for all steps.
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Figure 41. Composition of the structural dataset for validation of SBMOpenMM. (Left plot) Fraction of

helical (α-fraction) and strand (β-fraction) character of each PDB structure (Right plot) Distribution of

protein lengths in the dataset.

We decided to explore the evolution of the trajectories’ RMSD to their corresponding

crystallographic structures (Figure 43). This control is done to check that the previously found

correlations (Figure 42) arose from the native structural basin exploration. We found that RMSD

values remain low up until 0.85Tf and then start to increase with a big transition to larger values

at the Tf. RMSD values remain high at temperatures of the Tf, which corresponds to the

exploration of the unfolded basins. In Figure 43, an outlier explores lower RMSD values even at

temperatures higher than the Tf. This structure is a thirty-residue protein containing three

disulfide bonds (PDB code 3E8Y), which helps the protein remain closer to the native basin

despite being at its unfolding temperature or above.

Protein folding simulations with SBMOpenMM

To test our SBM implementation for gaining insight into biophysical phenomena, we studied the

folding process of a small 88-residue polypeptide. We ran several trajectories at the folding

temperature of the protein model, and we analyzed the resulting trajectories employing a Markov

State Model (MSM) framework.
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Figure 42. Dynamic and B-factor correlations for AA SBM simulations. Simulations from the 110

structures in the validation dataset were run at different temperatures. The boxplot showS the

distributions of PCC between the root-mean-square fluctuations (RMSF) values and crystallographic

temperature factors (B-factors).

Figure 43. RMSD distributions for AA SBM simulations. The boxplot shows the distribution of RMSD

values regarding the native structure at different relative temperatures for the 110 structures in the

validation dataset
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The protein structure is of FoxP1 (PDB code 2KIU), a DNA transcription factor, and was simulated

with the default all-atom model included in the models class of the SBMOpenMM library.121 The

Python code to simulate this system can be consulted in Appendix 2. The code allows us to

quickly set up a simulation object and use the OpenMM engine to propagate the system’s

dynamics.

Figure 44. AA SBM folding simulation replicas. Each plot shows the trajectory’s RMSD to the native

structure for the 15 replicas that were run for the FoxP system. The folded and unfolded configurations

are represented by low and high RMSD values, respectively.

For the FoxP system, we ran 15 simulations at the folding temperature, which allowed us to

sample its folded and unfolded basins, and transitions between them (Figure 44). The different

simulated replicas show several transitions between the folded (low RMSD to the native

structure) and unfolded basins (high RMSD values to the native structure), and vice versa,

ranging from two to eight. This variability among replicas indicates independence in the

phase-space sampled between them.
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Exploring SBMOpenMM folding simulations with a Markov State Model framework

To gain insights from the simulated data, we performed a MSM analysis to uncover

characteristics of the folding events. The complete set of trajectories was processed using the

PyEMMA library125 (for details see the “MSM validation and construction” section in Methods).

The simulation data was featurized using only the CA distances, since we found this set

described better the slow-order kinetics of the full simulation. We diminished the dimensionality

of the data by projecting it into a Time-structure independent components (TICA) space126 in

which the folding process was clearly characterised as two configurations (i.e., folded and

unfolded). The free energy of the process is shown in Figure 45, in which the left basin pertains

to the folded configuration and the right to the unfolded one. Increasingly extended

conformations are found inside the folded basin from left to right, and, in the unfolded one, from

up to down (see Fig. 34). A fairly sampled TS region connects these two basins.

Figure 45. Free energy surface for the FoxP simulation for the two slowest TICA dimensions. The left

basin corresponds to the folded configuration and the right to the unfolded one.

To better define the extent of each configuration, we constructed a MSM model127 by clustering

conformations over the sampled TICA space using a k-means algorithm with a thousand discrete

sub-states. Then, the PCCA++ algorithm128 was employed to coarse grain these sub-states into

two kinetically-relevant metastable states, establishing clear boundaries for the folded and

unfolded configurations (see Fig. 53). Transition Path Theory,129 applied to study the transitions

between the defined states, allowed us to describe a clear boundary to unambiguously define the
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folding/unfolding process TS region (see Fig. 56). We estimated an activation free energy of

15.42 KT by counting conformations at this region, which translates to a mean first-passage time

of 0.50 μs, in agreement with a folding process characteristic of fast-folding proteins.130

After defining conformations belonging to the TS region of the folding simulation of FoxP, we

plotted the probability of contact formation for the folded, TS, and unfolded configurations

(Figure 46). In the folded configuration at the folding temperature, most native contacts can be

formed with reasonable probability (although not necessarily simultaneously), except for

N-terminus interactions with the C-terminus. At the other extreme, in the unfolded configuration,

native contacts are seldomly formed, and, if formed, they are very close in primary structure. At

the TS configuration, we observe structures characterised by the formation of native contacts

between the protein’s beta-sheets, pointing to a folding mechanism in which this secondary

structure is the last to unfold.

Discussion

We have written a new library to construct SBM force fields that build upon the versatility of the

OpenMM library to set up customized force objects that can run on hardware accelerated

platforms. Given the lower number of computed interactions and the absence of explicit solvent

to represent the system, SBM force fields converge notably faster than MD simulations, allowing

to explore conformational dynamics with the computational resources available in a present-day

personal computer. These simplifications expand the simulation possibilities to studying

biomolecular processes with significant energy barriers, such as large conformational

rearrangements or protein folding.

The library was successfully benchmarked to reproduce the same energies as standard programs

in the field.118 Additionally, a dataset of structurally-different proteins showed that simulations

carried out with the SBMOpenMM library describe the folded basin in a way that correlates with

the crystallographic dynamic profiles of the tested proteins. This result is significant since it

opens the possibility to study the interactions responsible for the conformational dynamics at the

native configuration. However, it is important to note that no alternative near-native configuration

can be discovered straightforwardly from simulation using a single-basin SBM potential.
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Nonetheless, the sampling carried out with this type of potential can seed other simulations,

using more apodictic force fields that take into account non-native contacts or explicit solvent, in

a strategy known as adaptive sampling.131

Figure 46. Contact formation probability for different configurations of the FoxP1 protein. (A) Tertiary

structure (left) and topology connectivity (right) of the FoxP1 system. (B) The native contact map of FoxP

is shown as a reference (a). Probability of contact formation for the folded (b), TS (c), and unfolded (d)

configurations of the FoxP protein. The secondary structure of residues is indicated in the plots’ axes.

We exemplified the use of our library by studying the two-step folding process of the small FoxP

protein. The kinetic characterisation of this simulation was carried out with an MSM analysis of

the folding process. Combining the two methodologies clearly defines the folded and unfolded

configurations and the TS region connecting them. Once defined, many system observables can

be calculated to help make direct comparisons with experimental results, enriching the

practicality and relevance of employing SBM simulations to study complex biophysical

phenomena.
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SBMs are specially used to understand the restrictions that the structure’s topology plays on the

dynamic behaviour of the protein. Typically, additional force field terms are added to the SBM to

assert their effect by studying the differences from applying a purely topological behaviour. The

SBMOpenMM library can help this process by facilitating the programmatic deployment of

alternative SBM force fields within an efficient and open-source MD simulation package.

In the problem of enzyme design, we previously observed a need to explore the full effect that

conformational entropy has over the catalysed reaction (see Chapter 1 - Enzyme optimisation:

the Kemp Elimination case). MD simulations are very costly in this regard since they converge

very slowly over the sampled phase-space, and alternative methods are needed to sample protein

configurations more efficiently. This cost is substantial when several design proposals need to be

evaluated to assess their catalytic capabilities. Due to their fast convergence character, SBM

simulations can be a first approximation towards this goal; however, if the native fold is

ill-defined, conformations extracted from this exploration could be severely biased. Therefore,

conformations explored directly from the designed models’ structures need to be evaluated with

an alternative force field that considers the full extent of the system’s interactions. The Rosetta

force field47 could be applied here to re-evaluate the sampled SBM energy landscape and discover

conformations closer to the true-native and other relevant near-native configurations, thus,

improving the overall protocol of catalytic prediction.

Conclusion

SBM simulations are a relevant methodology for the study of biophysical phenomena. The

SBMOpenMM library, here developed, can help deploy tailor-made force fields that can be run

efficiently using the OpenMM platform. These SBM can help in the enzyme design framework by

providing a fast-converging tool that, in conjunction with others, can aid in assessing the effect

that conformational entropy plays over the activation free energies of designed variants.
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Methods

SBM AA force field

The SBM forcefield employed corresponds to the SMOG all-atom SBM forcefield119 as

implemented in the SBMOpenMM program.121. The potential energy function of this force field is

defined as follows:

(23)

Bonded terms of potential energy are defined as:

(24)

(25)

(26)

(27)

(28)

Here, , , and are the equilibrium distance values for the bond, angle, and torsion

(improper) terms, respectively. , , , , and are the force constants of the bond, angle,

torsion, improper, and planar terms, respectively. Finally, , , and represents the current value

of the bond, angle, and torsion (improper) degrees of freedom, respectively.

Non-bonded terms are defined as:

(29)

110

https://paperpile.com/c/iCLYoi/CMUv
https://paperpile.com/c/iCLYoi/DoXn
https://www.codecogs.com/eqnedit.php?latex=H_%7BAA%7D%20%3D%20%5Csum_%7Bbonds%7DV_%7Bbond%7D%2B%5Csum_%7Bangles%7DV_%7Bangle%7D%2B%5Csum_%7Btorsions%7DV_%7Btorsion%7D%2B%5Csum_%7Bimpropers%7DV_%7Bimproper%7D%2B%5Csum_%7Bplanars%7DV_%7Bplanar%7D%2B%5Csum_%7Bcontacts%7DV_%7BLJ_%7B12-6%7D%7D%2B%5Csum_%7Bnon-contacts%7DV_%7BLJ_%7B12%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=V_%7Bbond%7D%3D%5Cfrac%7Bk_b%7D%7B2%7D(r-r_0)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=V_%7Bangle%7D%3D%5Cfrac%7Bk_a%7D%7B2%7D(a-a_0)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=V_%7Btorsion%7D%3Dk_t(1-cos(%5Cphi-%5Cphi_0)%2B%5Cfrac%7B1%7D%7B2%7D(1-cos(3(%5Cphi-%5Cphi_0)))#0
https://www.codecogs.com/eqnedit.php?latex=V_%7Bimproper%7D%3D%5Cfrac%7Bk_i%7D%7B2%7D(%5Cphi-%5Cphi_0)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=V_%7Bplanar%7D%3D%5Cfrac%7Bk_p%7D%7B2%7D(%5Cphi-%5Cphi_0)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=r_0#0
https://www.codecogs.com/eqnedit.php?latex=a_0#0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi_0#0
https://www.codecogs.com/eqnedit.php?latex=k_b#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=k_a#0
https://www.codecogs.com/eqnedit.php?latex=k_t#0
https://www.codecogs.com/eqnedit.php?latex=k_i#0
https://www.codecogs.com/eqnedit.php?latex=k_p#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi#0
https://www.codecogs.com/eqnedit.php?latex=V_%7BLJ_%7B12-6%7D%7D%3D%5Cepsilon_c((%5Cfrac%7B%5Csigma_%7Bij%7D%7D%7Br%7D)%5E%7B12%7D-2(%5Cfrac%7B%5Csigma_%7Bij%7D%7D%7Br%7D)%5E6)#0


PhD thesis Martin Floor Pilquil

(30)

The term describes a Lennard-Jones potential that represents the interaction for the

native contacts in the system. On the other hand, the term defines the volume at which

atoms cannot cross each other, and is defined for all non-native contact interactions. The

values are the equilibrium distances of the non-bonded interactions, is the excluded radius of

each particle, and and are the force constants of the native and non-native interactions,

respectively.

AA SBM simulation parameters

SBM simulations were run with the SBMOpenMM program121 using the SBM all-atom force field.

The force constant values employed for the harmonic terms were:

(31)

(32)

(33)

(34)

The energy constant for native contacts depends on the number of atoms ( ) and native

contacts ( ) in the system as:

(35)

The torsional constant is defined according to the number of atoms ( ) and the number of

proper torsions ( ) in the system as:
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(36)

However, the torsional energy constant is used unequally for torsions with a backbone ( ), or

side-chain-only ( )component, according to the following rule:

(37)

(38)

The excluded volume force constant and excluded radius were set to:

(39)

(40)

In a SBM, by definition, all equilibrium values were defined from the native structure.

All units employed here are compatible with the OpenMM framework, however they do not

translate to real physical units, since the SBM is not calibrated to model the interactions of a

solvated system.

Folding temperature determination

Folding temperatures ( ) were determined from short 10ns (SBM timescale) simulations run at

different replicas. The is defined as a maximum in the heat capacity ( ) temperature profile,

which was calculated from the whole ensemble of simulations as follow:

(41)
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Here, is the ensemble averaged potential energy, is the Boltzmann constant , and is

the temperature at which the conformations were obtained. Calculations of the profiles were

carried out with the PyWham program.132

Validation dataset

Single chain protein structures were searched in the PDB database. Proteins that contained small

molecules, ions, or a missing structure for internal residues (i.e., having chain breaks) were

filtered out. Proteins with significant bias in the B-factor profiles due to crystal packing were also

removed. To calculate this bias, we used the WCN metric, calculated as the sum of the inverse

distances ( ) from atom to all other atoms ( ) in the structure:

(42)

The inverse of the WCN profile (WNC-1) correlates well with the B-factor profile of crystallographic

protein structure.96 Therefore, we used the WNC profiles derived from the single-chain structure

alone (WNCSC) and the one derived using the structure of the protein plus all symmetry-related

copies of the protein chain that were closer than 5 Å to it (WCNSR) to estimate the crystal packing

bias. Both profiles were correlated to the B-factor profile, and we kept protein structures if the

change in the correlation value did not change more than 10%. A final set of 110 proteins were

thus selected, whose codes are:

1ES5, 1K9Z, 1LC5, 1O4Y, 1OA4, 1OOT, 1P3C, 1QAU, 1QRE, 1S2O, 1TJE, 1ULR, 1UQ5, 1VF8, 1VKK,

1X6X, 1XQO, 1XUB, 1Y0M, 1Z6N, 1ZBF, 1ZHV, 1ZZK, 2CAL, 2E0Q, 2FJ8, 2H1V, 2I49, 2J8B, 2NUH,

2P51, 2QT4, 2VC8, 2WNX, 2X5Y, 3A2Z, 3ALF, 3DFJ, 3E8Y, 3H79, 3H7I, 3K01, 3K6I, 3KBF, 3MBR,

3N79, 3O5O, 3PBC, 3PO8, 3PZ9, 3RJP, 3RKG, 3RT2, 3RVM, 3VQF, 3VZ6, 3W43, 4B89, 4CG0, 4DMV,

4DW8, 4ETL, 4FK9, 4IC4, 4ICV, 4IGV, 4J5Q, 4JF8, 4K0G, 4NPD, 4OOX, 4OUS, 4R6H, 4RWU, 4TO7,

4U94, 4W65, 4W7U, 4WDC, 4XQ1, 4YAP, 4ZC3, 4ZMK, 4ZOT, 5DXW, 5ECA, 5EPF, 5ESR, 5F68, 5FJL,

5H0Q, 5H9K, 5HPJ, 5HQH, 5I4I, 5IDV, 5IWH, 5JW8, 5LQ5, 5M1M, 5MPV, 5OJZ, 5OUO, 5XMO,

5Y4M, 5YDE, 5Z8P, 5ZU6, 6AIB, 6AR0, and 6F47.
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SBM simulations

Simulations for the validation dataset were run with the all-atom SBM forcefield. To calculate the

systems’ folding temperatures ( ), short constant-temperature simulations of 10 ns (SBM

timescale) were run spanning a wide range of temperatures. Then, using the , longer 100 ns

simulations were run at different relative temperatures, from to , with a

temperature step of .

For the folding simulations with the FoxP system, the FoxP structure was downloaded from the

PDB database65 with code 2KIU. From all NMR structures, the RMSD-centroid structure was

selected as the native conformation. A total of 15 replicas of 10 μs (SBM timescale) each were

run at the folding temperature of the system employing the all-atom SBM forcefield.

All simulations were calculated using the OpenMM program.133

Free energy calculations

Thermodynamics free energy values were calculated directly from probability values, using the

equation:

(43)

Here, is the free energy of the thermodynamic state , is the Boltzmann constant, is

the temperature, and is the probability of the system of being in the sub-state that belongs

to state .

The definition of the states, representing configurations, and the sub-states, representing

clusters of conformations, were assigned according to an MSM analysis of the simulation

trajectories.

Native contact formation probability

Contact formation probability was calculated for a particular state by counting the number of

times a particular native contact was formed at each conformation sampled belonging to that
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state. We defined a contact being formed if the distance between the atoms was less or equal

than the equilibrium native contact distance times a factor of 1.05.

MSM validation and construction

The trajectory data was featured using different structural descriptors to query which best

represents the kinetic information contained in the simulation. We used the VAMP-2 score126 as a

heuristic, and calculated its value for each feature at a lag time of 660 ps (Figure 47). The better

the set of features approximate the dynamic process, the higher the VAMP-2 score. Thus, the set

of CA native contacts distances was the best performing feature and, therefore, was selected for

further analysis.

Figure 47. FoxP1 folding simulation featurization. A variational approach to the Markov process (VAMP)

dimensionality reduction method was applied to discern different featurization schemes at a lag time of

660ps. Error bars represent the standard deviation of 10 cross-validated estimations.

For better kinetic interpretability of the featured simulation data, we diminished its dimensionality

by using a time-structure independent component analysis (TICA).134 To observe the dependence

of our TICA analysis with the simulation lag time, we plotted the number of dimensions needed to

explain at least 95% of the kinetic variance (Figure 48). When the lag time increases, we observe

a diminishing number of dimensions, approaching only one representative TICA dimension at

considerably large lag times. This decrement is indicative of a simulation in which one process

dominates the kinetic behaviour when long time scales are considered. A lag time of 660 ps was

finally selected, since at this point, most of the kinetic data were contained in only two TICA

dimensions, and it was low enough to resolve other, although slower dynamical processes.
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Figure 48. Number of TICA dimensions necessary to explain 95% of the FoxP1 folding simulations’ kinetic

variance as a function of the lag time.

When the simulation is projected into the two slowest TICA dimensions (IC1 slower than IC2), we

observe two minima populated (Figure 49). The IC1 dimension correlates with the folded to

unfolded transitions (and vice versa) seen in the independent replicas. On the other hand, the IC2

dimension describes processes of internal variability in both minima, although with more

significant deviations inside the unfolded configuration.

Figure 49. Joint distribution of the two slowest TICA dimensions for the FoxP simulation data.

To build an MSM, we first partitioned the two-dimensional TICA space into discrete clusters using

the k-means algorithm together with the TICA-projected simulation data. A thousand clusters

were selected (Figure 50) to describe the MSM discrete states by a Bayesian MSM estimator.135
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The final MSM was validated by analyzing the implied timescales (ITS) at different lag times

coming from the eigenvalue decomposition of the MSM transition matrix (Figure 51). Timescales

below the black line (shaded grey area) occur faster than the lag time selected to describe the

MSM transition matrix and, therefore, cannot be correctly described by the analysis. At a lag time

of 660 ps, the only time scale being properly resolved is the folding and unfolding event (blue

curve), which is already converging at this lag time. We confirmed the lag time selection by this

analysis and focused further analysis in describing the two step folding process of FoxP1.

Figure 50. Clustering of FoxP simulation TICA space. The sampled data was clustered in a thousand

k-means clusters (orange dots) using all TICA coordinates.The TICA surface sampled by the simulation is

shown in the background in gray.

Since our interest is in the folding to unfolding reaction, we plotted the values of the second right

eigenvector, which corresponds to the slowest ITS in the MSM transition matrix (Figure 52). We

observe that the values of this eigenvector indicate transitions that occur between the left- and

right-located minima (according to the IC1 dimension). We partitioned the sampled phase-space

into two configurations (i.e., the folded and unfolded configurations) by coarse-graining the MSM

clustered space into two metastable clusters using the PCCA++ algorithm.128 A crisp partitioning

of the two states can be observed in Figure 53.

117

https://paperpile.com/c/iCLYoi/neoo


PhD thesis Martin Floor Pilquil

Figure 51. Implied time scales analysis for the FoxP folding simulation. The 10 slowest implied time

scales are plotted as a function of the lag time selected to build the MSM  transition matrix. Only

processes with decorrelation times above the lag time scale (black line) can be correctly resolved by the

MSM.

To characterise the metastable partitioning, we plotted the distribution of radius of gyration for

the corresponding conformations contained in each state (Figure 54). The two metastable states

correspond to a folded and an unfolded configuration. The free energy of the process is indicated

in Figure 45 and shows the folded minima at the left of the IC1 TICA dimension and the unfolded

one at the right. Significant dispersion of conformations can be observed in the unfolded

configuration, which is separated by the IC2 dimension. We plotted the value of the radius of

gyration into the two TICA dimensions to gain insight into the compactness of the conformations

inside each basin (see Figure 55). The radius of gyration increases slightly in the folded

configuration towards the TS region of the two minima. On the other hand, at the unfolded basin,

the structures are less compact, with a notorious trend to be highly extended when moving down

the IC2 dimension. Despite the unfolded configuration’s minima having a large variability in

compactness, the fully extended conformations are seldomly sampled because of the large

entropy barrier associated with fully extending a polypeptide chain.
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Figure 52. Second right eigenvector of the MSM transition matrix diagonalization. The eigenvector’s

change in sign indicates the shift between MSM states-regions.

Figure 53. Coarse grained partitioning of the MSM state-space by the PCCA++ algorithm. These two

states reflect the partitioning according to the second right eigenvalue, therefore, characterising the

slowest process in the simulation.
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Figure 54. Distributions of radius of gyration values for the two metastable states into which the FoxP

simulation-MSM was coarse-grained.

Figure 55. Distribution of radius of gyration for all conformations in the FoxP folding simulation projected

into the slowest TICA dimensions.

We wanted to map precisely the configurations belonging to the TS of the folding reaction. To

achieve this, we applied Transition Path Theory to define the committor function129 for the folding

process (in the unfolded to folded direction, Figure 56). Defining the TS hypersurface as the

region where the commitor function has a value of 0.5, we estimated the convergence of our

simulation by estimating the activation free energy of the process at different simulation lengths

and counting configurations at different distances from the TS dividing surface (Figure 57). The

analysis shows that the simulation has converged regarding the length of the simulated time for
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each replica. By repeating the analysis taking the limit of the distance to the TS hypersurface, we

estimated an activation free energy of 15.42 KT.

Figure 56. Committor function for the folding transition of FoxP1. The unfolded configuration (source

state) has a value of 0, the folded configuration (sink state) has a value of 1, and the TS state region

(between both states) is defined at a value of 0.5 for the commitor function.

Figure 57. Activation free energy convergence as a function of the simulation time and distance to the TS

in TICA space. Simulations were truncated at different time lengths, and configurations at distances lower

than d from the TS region are considered to calculate activation free energies.
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General Conclusions
1. In this thesis work, we have approached the problem of computational enzymatic

improvement by developing a computational framework for enzymatic design and

catalytic evaluation. We conclude that merging two state-of-the-art methodologies, like

Rosetta for computational enzyme design and the EVB framework for catalytic

assessment, is an excellent approach to address this problem since both methods

complement each other by working at different protocol stages.

1. As a test case for applying our proposed methodology, we employed a resurrected

ancestral beta-lactamase scaffold in which de novo catalytic activity for the KE reaction

was designed in a secondary active site. We conclude that to correctly model the

system's interactions, a first validation of the Rosetta score function is needed before

employing it to obtain proper binding energies. Additionally, a flexible backbone approach

is essential to produce a diversified set of catalytic proposals.

1. A sampling strategy was devised to rank the designed models before assessing their

catalytic activities with the EVB method. This strategy was based on a local sampling of

the enzyme conformational space, followed by calculating binding free energies based on

a Boltzmann distribution of the sampled space. Despite not correlating well with the EVB

catalytic assessment step, we confirmed its utility in a separate benchmark that used

MHC-I-peptide complexes as model systems for protein-protein interactions. The success

of this strategy in predicting experimental activities will be valuable for vaccine design

efforts and, with a more in-depth exploration of its applicability, it could serve as a fast

tool for ranking protein and enzymatic designs.

1. The EVB simulations were first validated to reproduce the reaction energies of many

Kemp eliminase enzymes. This validation showed that EVB simulations could be a good

tool for ranking enzymatic designs, although predicting absolute binding energies proved

to be a more challenging task. Because of the latter problem, we could not be sure if the

design algorithm successfully created improved enzymatic variants.
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1. EVB simulations not only served us to rank the enzymatic designs. Since the assessment

was based on molecular simulations of the reactive system, it aided in the physical

interpretation of the catalytic phenomena. These simulations confirmed that electrostatic

preorganisation could significantly affect the lowering of activation free energy barrier

and that fast metrics to predict residue preorganisation could be applied to improve the

design algorithm stage. In this regard, we validated the weighted contact number (WCN)

metric to predict protein dynamic profiles, and because of its fast computation, it could

be a good candidate metric for assessing residue preorganisation during protein design

optimisation.

1. EVB sampling was carried out over a single configuration of the designed models.

However, enzymatic systems can adopt other configurations relevant for predicting

correct catalytic values. This unaccounted dynamics could be a reason why it was

challenging to predict absolute activation free energies. Since traditional MD methods are

very costly for protein configurational sampling, we have developed SBMOpenMM, a new

library for setting up structure-based force fields, that can address this sampling problem

in a more simplified and GPU-accelerated manner.

Still, many challenges lay ahead in the landscape of enzyme optimisation, with the catalytic and

Michaelis constants as the main factors dominating enzyme proficiency. However, other

parameters have essential roles when addressing enzyme engineering. Catalytic activity profiles

depend on temperature, pH, pressure, solvent composition, and other environmental variables

that are important to consider when generating new enzymes to be deployed for specific

applications. Other scenarios can also include substrate promiscuity, multi-step reactions,

product inhibition, and other properties of interest.
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Appendices

Appendix 1 - Methodologies

Computational methods for studying enzymatic reactivity

Quantum-mechanics based methods

There have been many attempts to relate protein structure with their catalytic activities using

computer simulations. Given the electronic nature of any chemical change, it is reasonable to

address this question using QC methods. Due to the cost of representing the electronic structure

of large molecular systems, they are usually limited to treat only part of the system at a high ab

initio theoretical level, while the remaining system’s region is usually represented with a simpler

Molecular Mechanics (MM) force field, as in the case of QM/MM,136 or replaced with an implicit

solvent, as in the case of the cluster approach137 or more traditional quantum mechanical (QM)

studies.138 The advantages of these methods are that many proposals for the reaction

mechanism can be studied without much prior experimental knowledge of the reaction. This is

essential to understand the energetics of the electronic rearrangements, and also, to discriminate

among several possible mechanistic proposals. Regarding enzymatic design, it is usually the only

methodology capable of giving correct geometries and charge distributions to create TS models

of the elementary steps of a target reaction and to give approximated reaction energies that can

be used to calibrate other simulation methods.

The Empirical Valence Bond model

A very helpful tool for studying enzymatic reactions is the EVB method. Developed by A. Warshel

in the '80s,35 the method offered an excellent trade-off between computational efficiency and

physical accuracy. Its principal advantage lies in that physical interactions, including chemical

bonds being broken/formed, are represented by simplified energy functions that capture the

energetics of the electronic rearrangements at the cost of standard MD force fields.

Using the formalism of a semi-empirical QC method, EVB physical representation of the reacting

systems has its roots in Valence Bond theory, in which several adiabatic ground state potentials
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are mixed to give rise to the diabatic description of the chemical reaction. Although the EVB

method uses standard and generalizable force fields for representing and simulating chemical

reactions, it needs parametric calibration to adjust the contribution of each adiabatic Hamiltonian

to the diabatic energy surface. The data employed for this parameterisation are the

thermodynamic and kinetic constants, specific for the reaction under study, which can come

from wet-lab experimental measurements or ab initio QC calculations of the relevant chemical

steps.

Given its more computationally tractable description, the EVB method has been employed to

simulate the free-energy surface of enzymatic reactions, which is still deemed too costly to be

carried out with ab initio methods such as QM or QM/MM approaches. This gives a more

realistic picture of active-site dynamics and allows to interpret and contrast the physical

interactions and reorganisational changes produced along the reaction coordinates of different

solvents.

When studying the physical origins of enzymatic catalysis with EVB, it is necessary to run

simulations in the uncatalysed (i.e., water solution) and the catalysed environment (i.e., the

solvated enzymatic system). One of these simulations is calibrated to match available

thermodynamic and kinetic data, for afterwards, using the same calibrated parameters, predict

the corresponding thermodynamic constants in the enzymatic simulation. If the method is

successful in predicting the kinetic change (in activation free energies) between these

environments, the simulation is considered valid and can be queried to understand the physical

origin of the simulated catalytic effects. Likewise, the reference simulation can be a low-activity

enzyme, then, the adjusted parameters can be used to predict the catalytic trend among

improved variants to understand the origins of the improved catalytic activity. This idea is

straightforwardly extended to screen sets of computational enzymatic designed variants.

Computational methods for enzymatic design

Among several strategies to suggest amino acid changes for computational enzymatic design,

they are divided into two strategies: de novo enzyme design and enzymatic optimisation or

redesign.
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The inside-out approach falls in the category of de novo enzyme design. It starts by building a

model for a hypothetical active site that putatively catalyses a target reaction. This description,

referred to as theozyme, is usually achieved at the quantum chemistry level by optimising the

positions of disembodied side chains surrounding a model of the reacting molecule's TS. With

these geometrical descriptions, the method then searches compatible pockets in a set of

predefined protein scaffolds that are geometrically able to position the active-site proposal.

Matches thus found are optimised searching for suitable sequences that stabilise the core

catalytic proposal. Models are then selected by a combination of metrics that try to assess the

stability of the protein and its active site complementary with the TS model. A batch of the most

promising models is chosen for the assessment of their desired catalytic activity.

Methods for catalytic redesign can vary significantly. They start from an already active enzyme

with low activity and, from there, they search the protein sequence landscape seeking

catalytically improving mutations. The suggested changes by these methods depend mainly on

the catalytic hypothesis on how to improve the reaction rate and they are usually guided by a

score function able to discriminate the effect that mutations could have on the protein stability.

Some approaches first assess the catalytic effect of individual residues by running QC, EVB or

MD simulations. Depending on these findings, they propose new changes that can be tested

experimentally.

The weighted Contact Number Metric to study the relationship of protein

structure, dynamics, and evolution

The Weighted Contact Number (WCN) is a metric that quantifies the "crowdedness" that a

specific atom or residue has in a particular protein molecule. Its mathematical form is based on a

continuous quantification of the contact map, in which the contact specific contribution is the

squared inverse of the contact distance.

When the WCN contributions of all the atoms are added up, the obtained profile has excellent

agreement with the system's experimental dynamical profile (e.g., the B-factor profile).96 It has

also been shown that the WCN agrees with the sequence conservation (SC) profile of protein

families.97 These agreements entail exciting hypotheses on the relationship between protein

structure, dynamics, and evolution which we can now approach quantitatively with the WCN.
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Although the exact mathematical relationship between these profiles is unknown, a possible

interpretation of its origin can be hypothesised.

On the dynamic side, the WCN is based entirely on the native structure of the protein and defines

the magnitudes of the system's dynamics around the native free-energy basin. Thus, atoms or

residues in more crowded regions are expected to deviate less from their native positions, while

others can move more freely because they are in less crowded environments.

On the evolutionary side, when a set of evolutionarily related proteins (i.e., a protein family)

explores the protein sequence/fitness landscape in search of better adaptability, or even as a

consequence of neutral drift, there is a higher restriction to swap residues in crowded regions

than residues located in less restricted ones. The logical interpretation is that well-packed

regions contain a higher number of optimal interactions that are better fulfilled by specific

residue types and that, by changing them, the probability of satisfying those interactions drops in

proportion to the number of contacts surrounding its immediate environment.
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Appendix 2 - Code

SBMOpenMM Python Simulation Code For All-atom SBM simulation

#Import SBMOpenMM library

import sbmOpenMM

# Import OpenMM library as in for OpenMM 7.6 release

from openmm.app import *

from openmm import *

from openmm.unit import *

# Create a system instance using the all-atom model in the models class

sbmAA = sbmOpenMM.models.getAllAtomModel(pdb_file, contact_file)

# Define simulation object

integrator = LangevinIntegrator(temperature*kelvin, 1.0/picosecond, 0.002*picoseconds)

simulation = Simulation(sbmAA.topology, sbmAA.system, integrator)

simulation.context.setPositions(sbmAA.positions)

simulation.reporters.append(DCDReporter(‘AAModel_traj.dcd’, 10000))

# Define a SBM reporter to write the SBM energies into a file

sbmReporter = sbmOpenMM.reporter.sbmReporter(‘AAModel_energy.data’, 100, step=True,

potentialEnergy=True, temperature=True, sbmObject=sbmAA)

# Add the reporter to the simulation object

simulation.reporters.append(sbmReporter)

# Run the simulation for N steps.

simulation.step(n_steps)

The PyCBBL library

Most code developed for setting up and analysing the calculations in this thesis can be found in

the exclusively-developed library for the Computational Biochemistry and Biophysics Lab (CBBL),
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directed by Professor Jordi Villà Freixa. The PyCBBL library is hosted in the GitHub platform and

can be publicly accessed through the following link:

https://github.com/CompBiochBiophLab/pycbbl

The PyCBBL library contains heavy dependencies on programs like PyRosetta

(https://www.pyrosetta.org/),139 BioPython (https://biopython.org/),140 MDTraj

(https://www.mdtraj.org),141 Pymol (https://pymol.org), sciPy (https://scipy.org), pandas

(https://pandas.pydata.org), scrapy (https://scrapy.org), among other bioinformatic libraries,

since it encompasses the many aspects of this work. The PyCBBL library contains specific

modules addressing different methods and functions. We give a brief description of them here:

➢ alignment - Contains methods for working with multiple sequence alignments, based on

different packages, such as BLAST,142–144 MAFFT,142,143 and CD-HIT.142

➢ calculations - Contain the methods used for deploying parallel calculations either locally,

or on specific HPC clusters.

➢ clustering - Contains methods for hierarchical clustering analysis based on the

hierarchical SciPy module.

➢ databases - different methods for web scraping the PDB and the UniProt145 webpages

based on scrapy.

➢ MD - Different methods based on MDTraj and PyMol for structural alignment, clustering,

and interface analysis of MD trajectories.

➢ PDB - Adapted methods to work with PDB structures to analyse multiple PDB structures.

It depends mainly on the BioPython65,140,141,145 PDB module and Pymol.

➢ protein_contacts - Contain methods for generating contact and topology information for

SBM. Uses the shadow map algorithm146 implemented in the smog2118 program for

generating contact information.

➢ rosetta - Contains the functions used to calculate Boltzman averaged scores and

methods to convert Rosetta50 silent files into MD trajectory files for faster analysis using

the MD module.

➢ WCN - A class for calculating the different WCN metrics implemented in this study.
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