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Abstract

End-stage renal disease (ESRD) patients demonstrate high rates of cardiovascular mortality and
morbidity; and increased incidence of sudden cardiac death (SCD) with declining kidney functioning as
a consequence of blood potassium ([K+]) homeostasis impairment, which is restored by hemodialysis
(HD) therapy. The clinically established method for the diagnosis of electrolyte concentration imbalance
is blood tests, an invasive and costly procedure that limits continuous monitoring of ESRD patients. A
non-invasive ambulatory index able to quantify changes in [K+] levels would be an important advance for
both in-hospital and out-hospital continuous monitoring.
The electrocardiogram (ECG) could meet this need being a well-established non-invasive diagnostic tool
that reflects the electrical activity of the heart. In particular, the T wave (TW) reflects the spatio-temporal
repolarization of the ventricle, and its analysis has been used to measure the vulnerability of a patient to
ventricular arrhythmias. This fact is of particular interest because TWs are frequently altered in ESRD
patients undergoing HD.
Therefore, the aim of this dissertation is to investigate and to propose ECG-derived markers able to
monitor changes in [K+] levels in ESRD patients undergoing HD. For that purpose, the clinical information
stored in the morphology of the TWs are assessed by the time warping analysis, a technique that allows
for the comparison and quantification of two different TW shapes in both amplitude and time domains.

In chapter 1, the physiological framework describing the functioning of the kidneys and the heart,
as well as the characteristics of the biosignals analyzed throughout the thesis, is provided. Also, the
pathophysiology of ESRD, with its diagnosis and treatment strategies are discussed. Then, an extensive
review of previously proposed ECG-based markers, which were found to be correlated with [K+], is
presented. The chapter concludes with an overview of the relationship between ESRD and heart activity
and how it affects the ECG waveforms.

The description of the TW time warping analysis and the application of TW time warping derived
markers in monitoring [K+] by analysing twenty-nine 48h ECG-Holter records from ESRD patients
undergoing HD is presented in chapter 2. In addition, the derivation of a heart-rate (HR) corrected
marker is also presented and investigate. Finally, the ability in tracking [K+] variations (∆[K+]) of the
proposed markers are compared with respect to two already proposed and well-established TW-based
indexes related with ∆[K+]: the width of the TW (Tw) and the TW slope-to-amplitude ratio (TS/A). All
the markers are evaluated in a single lead approach as well as after having applied Principal Component
Analysis (PCA), a lead space reduction (LSR) technique that emphasises the TW energy content on the
independent leads, over the first transformed lead. Results demonstrate that PCA-based time warping
markers have a higher correlation with ∆[K+] than the single lead approach and both Tw and TS/A,
suggesting that they could be potentially useful for non-invasive monitoring of ESRD patients undergoing
HD in hospital and in an ambulatory setting.

Although the promising results reported in chapter 2, PCA approach may not be the best strategy for
emphasizing clinically relevant information related to ∆[K+]. Indeed, the maximum-variance criterion
of PCA may be problematic when there is a low signal-to-noise ratio (SNR) or in the presence of body
position changes (BPC). Therefore the possibility to use Periodic Component Analysis (πCA), a LSR
technique maximising the beat-to-beat TW periodicity content on the independent leads, rather than PCA
is explored in chapter 3. The aim is to compare the performance of the two LSR techniques in generating
a transformed ECG lead from which TW time warping morphology markers can be reliably derived to
non-invasively monitor ∆[K+]. Results reveal that the performance of πCA-based markers in following
∆[K+] during HD was superior to that from PCA-based markers. Moreover, πCA-based markers showed
improved robustness against BPC and noise. According to these findings, πCA outperform PCA in terms
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of monitoring in ESRD patients as well as of robustness against BPC and low SNR, showing the highest
stability for continuous post-HD monitoring.

Chapter 4 focuses on the application of linear, quadratic, and cubic fitting models to quantify ∆[K+]
from the πCA-based time warping markers. The accuracy of the regression models is evaluated by
correlation and estimation error between the actual and the corresponding model-estimated ∆[K+] values.
Results support the use of polynomial models, in particular quadratic ones, as ∆[K+] sensors in ESRD
patients, having the smallest estimation error with respect to the linear one.

Time warping analysis is sensitive to TW boundary delineation errors, which may occur in case of
automatic location of TW onset and end points in ECG signals. When that happens, the prognostic power
of the proposed markers can be drastically reduced despite their strong correlation with ∆[K+]. Therefore,
in chapter 5 a weighting stage is proposed in the computation of time warping markers. In particular,
two weighting functions (WF)s are tested and their corresponding results are compared with respect
to the control case, when no weighting is applied, in order to evaluate their performance in simulated
scenarios and in real cases (i.e. for [K+] monitoring and SCD risk stratification). On the one hand, no
improvements in [K+] monitoring are found probably due to the considerable potassium-induced TW
morphological changes that may have masked any possible side effect of TW boundary delineation errors.
On the other hand, both simulation tests and SCD risk stratification analysis show that the proposed
WFs can enhance the TW time warping analysis robustness against TW delineation errors. Then, the
employment of a weighting stage can improve the clinical reliability of time warping derived indexes in
SCD risk stratification.

In conclusion, ECG-derived markers based on the TW time warping analysis have been investigated in
this thesis in an attempt to develop a new method for ∆[K+] estimation in ESRD patients undergoing
HD therapy. Unlike the previously proposed markers, these exploit the overall TW morphology and their
capacity for ∆[K+] tracking and quantification through polynomial regression models has been proved.
Finally, a weighting stage to minimise the undesired effects of TW delineation errors on the computation of
time warping markers has been tested, resulting in noticeable improvement of the SCD risk stratification
power of the TW time warping based markers.

Keywords: End Stage Renal Disease; Noninvasive Potassium Monitoring; Personalised Medicine;
Electrocardiogram; T wave Processing; Time Warping Analysis; Principal Component Analysis; Periodic
component analysis; Sudden Cardiac Death; Risk Prediction.
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Resumen y conclusiones

Los pacientes con enfermedad renal en etapa terminal (ESRD) muestran altas tasas de mortalidad car-
diovascular; y aumento de la incidencia de muerte cardíaca súbita (SCD) con deterioro del funcionamiento
renal como consecuencia del deterioro de la homeostasis del potasio en sangre ([K+]), que se restablece
mediante la terapia de hemodiálisis (HD). El método clínicamente establecido para el diagnóstico del
desequilibrio de concentración de electrolitos son los análisis de sangre, un procedimiento invasivo y costoso
que limita la monitorización continua de los pacientes con ESRD. Un índice ambulatorio no invasivo
capaz de cuantificar los cambios en los niveles de [K+] sería un avance importante para la monitorización
continua tanto intrahospitalaria como extrahospitalaria.
El electrocardiograma (ECG) podría satisfacer esta necesidad al ser una herramienta de diagnóstico
no invasiva bien establecida que refleja la actividad eléctrica del corazón. En particular, la onda T
(TW) refleja la repolarización espacio-temporal del ventrículo, y su análisis se ha utilizado para medir la
vulnerabilidad de un paciente a las arritmias ventriculares. Este hecho es de particular interés porque los
TW se alteran con frecuencia en pacientes con ESRD sometidos a HD.
Por tanto, el objetivo de esta tesis es investigar y proponer marcadores derivados del ECG capaces de
monitorizar los cambios en los niveles de [K+] en pacientes con ESRD sometidos a HD. Para ello, la
información clínica almacenada en la morfología de los TW se evalúa mediante el análisis de time warping,
una técnica que permite la comparación y la cuantificación de las diferencias entre dos formas de TW en
los dominios de amplitud y tiempo.

En el capítulo 1, se proporciona el marco fisiológico que describe el funcionamiento de los riñones y el
corazón, así como las características de las señales analizadas a lo largo de la tesis. Además, se discute la
fisiopatología de la ESRD, con su diagnóstico y estrategias de tratamiento. A continuación, se presenta
una revisión exhaustiva de los marcadores basados en ECG propuestos previamente, que se encontraron
correlacionados con [K+]. El capítulo concluye con una descripción general de la relación entre la ESRD
y la actividad cardíaca y cómo afecta la forma de onda del ECG.

En el capítulo 2 se presenta la metodología del time warping y su aplicación para derivar marcadores
para la monitorización de [K+] mediante el análisis de veintinueve Holter de 48 h de pacientes con
ESRD sometidos a HD. Además, se presenta e investiga la derivación de un marcador corregido por
la frecuencia cardiaca (HR). Finalmente, la capacidad de rastrear los cambios [K+] (∆[K+]) de los
marcadores propuestos se compara con dos ya propuestos y bien establecidos índices basados en la TW y
relacionados con ∆[K+]: el ancho de la TW (en inglés TW width, Tw) y la relación pendiente-amplitud
de la TW (TW slope-to-amplitude ratio, TS/A). Todos los marcadores se evalúan en las derivaciones
independintes, así como después de haber aplicado el análisis de componentes principales (PCA), una
técnica de reducción del espacio de derivaciones (LSR) que enfatiza el contenido de energía de TW en las
derivaciones independientes, sobre la primera derivación transformada. Los resultados demuestran que los
marcadores time warping obtenido por PCA tienen una correlación más alta con ∆[K+] resepcto a los
mismos calculados en las derivaciones independientes así como respecto a Tw y TS/A. Esto sugiere que
los marcadores time warping obtenido con PCA podrían ser útil para la monitorización no invasiva de
pacientes con ESRD sometidos a HD en el hospital y en un entorno de atención ambulatoria.

Aunque los resultados presentados en el capítulo 2 son prometedores, el uso de PCA puede no ser la
mejor estrategia para enfatizar la información clínicamente relevante relacionada con ∆[K+]. De hecho, el
criterio de varianza máxima en que se basa la PCA podría ser problemático cuando hay una baja relación
señal/ruido (SNR) o en presencia de cambios de posición corporal (BPC). Por lo tanto, en el capítulo 3 se
explora la posibilidad de utilizar análisis de componentes periódicos (πCA), una técnica LSR que maximiza
el contenido de major periodicidad de la TW latido a latido en las derivaciones independientes, en lugar
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de PCA. El objetivo es comparar el rendimiento de las dos técnicas en la generación de una derivación de
ECG transformada a partir de la cual se pueden derivar de manera confiable marcadores time warping
para monitorear ∆[K+] de forma no invasiva. Los resultados revelan que el rendimiento, en el seguimiento
de ∆[K+] durante la HD, de los marcadores basados en πCA fue superior al de los marcadores calculados
con PCA. Además, los marcadores basados en πCA mostraron una robustez mejorada contra BPC y
ruido. De acuerdo con estos hallazgos, πCA supera a la PCA en términos de monitoreo en pacientes con
ESRD, así como en robustez contra BPC y SNR baja, mostrando la mayor estabilidad para el monitoreo
continuo post-HD.

El capítulo 4 se centra en la aplicación de modelos de ajuste lineales, cuadráticos y cúbicos para
cuantificar ∆[K+] a partir de los marcadores time warping obtenidos con πCA. La precisión de los modelos
de regresión se evalúa mediante la correlación y el error de estimación entre los valores ∆[K+] reales y
los correspondientes estimados por el modelo. Los resultados apoyan el uso de modelos polinomiales,
en particular cuadráticos, como sensores ∆[K+] en pacientes con ESRD, teniendo el menor error de
estimación con respecto al lineal.

El análisis time warping es sensible a los errores de delineación de los límites de la TW, una posible
consecuencia de la delineación automática de los puntos de inicio y fin de la TW en el ECG. Cuando eso
sucede, la potencia pronóstica de los marcadores propuestos puede reducirse drásticamente a pesar de su
fuerte correlación con ∆[K+]. Por lo tanto, en el capítulo 5 se propone una etapa de ponderación en el
cálculo de marcadores time warping. En particular, se prueban dos funciones de ponderación (WF)s y se
comparan sus resultados con respecto al caso de control, cuando no se aplica ponderación, para evaluar sus
desempeño en escenarios simulados y en casos reales (es decir, para el seguimiento de [K+] y estratificación
del riesgo de SCD). Por un lado, no se encuentran mejoras en el monitoreo de [K+] probablemente debido
a los considerables cambios morfológicos de la TW inducidos por [K+] que pueden haber enmascarado
cualquier posible efecto secundario de los errores de delineación de la TW. Por otro lado, tanto las pruebas
de simulación como el análisis de estratificación del riesgo de SCD muestran que los WFs propuestos
pueden mejorar la robustez del análisis time warping contra los errores de delineación de las TW. Entonces,
el empleo de una etapa de ponderación puede aumentar la confiabilidad clínica de los índices derivados
del análisis time warping en la estratificación del riesgo de SCD.

En conclusión, en esta tesis se han investigado marcadores derivados de ECG basados en el análisis time
warping de la TW en un intento de desarrollar un nuevo método para la estimación de ∆[K+] en pacientes
con ESRD sometidos a terapia de HD. A diferencia de los marcadores propuestos anteriormente, estos
explotan la morfología general de la TW y se ha demostrado su capacidad de seguimiento y cuantificación
∆[K+] a través de modelos de regresión polinomial . Finalmente, se ha probado una etapa de ponderación
para minimizar los efectos no deseados de los errores de delineación de la TW en el cálculo de marcadores
time warping, lo que resulta en una mejora notable del poder de estratificación del riesgo de SCD.

Palabras clave: Enfermedad renal en etapa terminal; Monitorizacióon no invasivo de potasio;
Medicina personalizada; Electrocardiograma; Procesamiento de ondas T; Análisis time warping; Análisis
de componentes principales; Análisis de componentes periódico; Muerte cardíaca súbita; Predicción de
riesgos.
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1.1 Motivation of the thesis

Maintenance of blood potassium concentration ([K+]) homeostasis is important for many physiologic
processes, such as cardiac electrical conduction [1, 2]. Impairment of [K+], also called dyskalemia (i.e.
[K+] outside its normal range: 3.5 – 5.0 mmol/L), can be caused by comorbidities such as chronic
kidney disease (CKD), heart failure (HF), cardiovascular disease (CVD) and diabetes mellitus (DM) [3,4].
Hemodialysis (HD) treatment, a procedure performed by means of external body equipment, is one of the
possible forms of renal replacement therapy [5] commonly employed to restore [K+] balance in the event
of dyskalemia [6].

During the past years, several studies confirmed the association between alterations in plasma electrolyte
concentrations, such as potassium, and an increase in mortality risk [7–11]. Therefore, a rapid non-invasive
diagnostic tool for early detection of dyskalemia would be a desirable. Such a device not only would
improve and optimise the strategies of treatment, but also could enhance patient outcomes in emergency
settings. In addition, academic and clinical investigations may also benefit from a non-invasive, rapid, and
cost-efficient tool for diagnosis of [K+] imbalance.

Currently, all the routine medical tests to assess [K+] require blood analyses, an invasive and costly
procedure that limits a continuous follow-up [12]. Conversely, the electrocardiogram (ECG) is a non-
invasive, easily accessible, and inexpensive diagnostic tool that reflects the electrical activity of the heart
and it is commonly employed in clinical practice [13, 14] and well established in other diagnostic domains,
such as home monitoring by Holter ECG measurements [15–17]. Previous studies highlighted the strong
relationship between plasma electrolytes (like potassium) and genesis of cardiomyocyte action potentials
(APs) which lead to ECG sequence changes [18,19]. Hence, ECG analysis would help for real-time plasma
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1.2 The kidneys

electrolyte concentration assessment likewise in retrospective studies. For this purpose, researches are
mostly conducted on patients undergoing HD therapy since they experience high [K+] oscillation [20] and
suffer from a 14-fold increased risk of dying from sudden cardiac death (SCD) compared to patients with
CVD without known [K+] impairment [21]. In other words, investigating patients undergoing HD is of
great interest because they are at high risk for SCD as well as the relative ease with which ECG signals
and complementary electrolyte concentrations information can be collected.

Various ECG indices have been proposed to monitor and to predict electrolyte variation in patients
under HD treatment that could be used in clinical practice to trigger an alarm for clinicians and, thus,
prevent patients from possible life-threatening clinical complications. The majority of these indexes are
based on the analysis of some ECG features such as QT interval or the T wave (TW). On the one hand,
the effects of HD on QT interval, and its corrected version QTc, are still controversial [22]. On the other
hand, it is well known that TWs are frequently altered in HD patients [23]. However, the TW-based
markers that have been proposed so far rely on specific local features of the TW.

Therefore, a methodological advanced method to estimate [K+] variations in patients undergoing HD
therapy, based on the analysis of the whole morphology of the TW, is proposed in this thesis. This method
would allow a more reliable [K+] estimation, thus facilitating the decision-making process of clinicians
which in turn, may improve the quality of life of these patients. The clinical value of the proposed method
is then assessed in both simulated and clinical databases.

1.2 The kidneys

The renal system consists of the kidney, ureters, and the urethra. The overall function of the system
filters approximately 180 liters of fluid a day from renal blood flow which allows for toxins, metabolic
waste products, and excess ion to be excreted while keeping essential substances in the blood [24].

In humans, there are two kidneys located high in the abdominal cavity, one on each side of the spine
which lie in a retroperitoneal position at a slightly oblique angle. The asymmetry within the abdominal
cavity, caused by the position of the liver, typically results in the right kidney being slightly lower and
smaller than the left, and being placed slightly more to the middle than the left kidney [24,25].

1.2.1 Structure and main functions of kidneys

Each kidney is covered by three layers made out of fat or connective tissue, called the kidney capsule
(or renal capsule). These layers give the kidney extra stability, protect it from injury from the outside,
and attach it to the surrounding tissue [26]. The kidney is made up of two main parts as depicted in
Figure 1.1. The outermost layer is called the renal cortex, it contains about 1.2 million renal corpuscles
and is where urine is produced. The renal medulla is found inside the kidney and houses blood vessels
and winding renal tubules through which the urine flows. The urine then reaches the renal pelvis, runs
through the ureter and, finally, it is stored in the urinary bladder before it is disposed of by urination [26].

The kidney regulates plasma osmolarity by modulating the amount of water, solutes, and electrolytes
in the blood [27]. It ensures long term acid-base balance [28] and also produces erythropoietin which
stimulates the production of red blood cell [29]. It also produces renin for blood pressure regulation [30,31]
and carries out the conversion of vitamin D to its active form [24,32].

1.2.2 Renal failure

The term renal failure denotes inability of the kidneys to perform excretory function leading to retention
of nitrogenous waste products from the blood [33]. Kidney failure can be divided into two categories:
acute kidney injury (AKI) and chronic kidney disease (CKD).

Acute kidney injury is defined as an acute or subacute damage and/or a loss of kidney function for a
duration of between 7 and 90 days after exposure to an AKI-initiating event, and a recovery within 48 h
is typically associated with the rapid reversal of AKI[34]. AKI is characterized by an acute decrease in
renal function that can be multi-factorial in its origin and is associated with complex patho-physiological
mechanisms [35, 36]. In the short term, AKI is associated with an increased length of hospital stay,
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health care costs, and in-hospital mortality, and its impact extends into the long term, with AKI being
associated with increased risks of adverse cardiovascular CV events, progression to CKD, and long-term
mortality [37].

Chronic kidney disease affects between 8% and 16% of the population worldwide and is often unrecog-
nised by patients and clinicians [38–41]. CKD is defined by a glomerular filtration rate of less than 60
mL/min/1.73 m2, albuminuria of at least 30 mg per 24 hours or any other indicators of kidney damage
persisting for more than 3 months [42]. The causes of CKD vary globally, and the most common primary
diseases causing CKD and ultimately end-stage renal disease (ESRD) are: type 2 DM (30% to 50%),
type 1 DM (3.9%), hypertension (27.2%), primary glomerulonephritis (8.2%), chronic tubulointerstitial
nephritis (3.6%), hereditary or cystic diseases (3.1%), and plasma cell dyscrasias or neoplasm (2.1%)
[41, 43]. ESRD is defined as irreversible decline in a person’s own kidney function, which is severe enough
to be fatal in the absence of HD or transplantation [44,45].

1.2.3 Hemodialysis

Hemodialysis, also spelt haemodialysis, or simply dialysis, is a process of artificially purifying the
blood of a person whose kidneys are not working normally. HD is one of three renal replacement therapies
being the other two: kidney transplant and peritoneal dialysis [46,47] - both of them not covered in this
thesis. Routine HD is conducted in a dialysis outpatient facility, either a purpose built room in a hospital
or a dedicated, stand-alone clinic.

In HD therapy, the wastes and excess water are removed by using an external filter called a dialyzer
(Figure 1.2), which contains a semipermeable membrane. The separation of wastes is done by creating a
counter-current flow gradient, where blood flow is in one direction and the fluid of the dialyzer is in the
opposite direction. Thus, the basic principle involved in HD is the movement or diffusion of solute particles
across a semipermeable membrane (diffusion). Metabolic waste products, such as urea and creatinine,
diffuse down the concentration gradient from the circulation into the dialysate (sodium bicarbonate,
sodium chloride, acid concentrate, and deionized water) [48]. During their diffusion into the dialysate, the
size of particles, in turn, determines the rate of diffusion across the membrane. The larger the size of the
solute particle, the slower is the rate of diffusion across the membrane [48].

Figure 1.1: Internal anatomy of the left kidney. A frontal
section through the kidney reveals an outer region called the
renal cortex and an inner region called the renal medulla. In
the medulla, 5-8 renal pyramids are separated by connective
tissue renal columns. Each pyramid creates urine and ter-
minates into a renal papilla. Each renal papilla drains into
a collecting pool called a minor calyx; several minor calyces
connect to form a major calyx; all major calyces connect to
the single renal pelvis which connects to the ureter. Figure
adapted from [49].

Figure 1.2: Schematic representation of a HD machine con-
nected to a patient. Blood from an artery is pumped into
a dialyzer and flows through a semipermeable membrane
which allow the exchange of urea and waste materials be-
tween blood and fresh dialysate, moving in counter-current
flow direction, by diffusion. After that, dialysate fluid is
returned back, while purified blood is forced in a venous
pressure monitoring and air traps system before being re-
introduced into the patient’s bloodstream. Figure adapted
from [50].
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1.3 The heart

1.3 The heart

The heart is a muscular organ situated in the center of the chest behind the sternum [51]. It consists of
four chambers: the two upper chambers are called the right and left atria, and the two lower chambers are
called the right and left ventricles [52]. The right atrium and ventricle together are often called the right
heart, and the left atrium and left ventricle together functionally form the left hear. The synchronised
contraction of these four chambers forces the blood into further circulation across the body.

During each cardiac cycle (heart beat), the atria contract in diastole to fill the ventricles, which,
then, contract during systole to supply blood to the lungs and the systemic circulation. The wall of
the heart is called the myocardium and is primarily composed of muscle cells (myocytes) that produce
mechanical force during contraction of the heart [53]. Contraction of the atria and ventricles is triggered
by a wave of electrical excitation (depolarization) spreading through the myocardium of these chambers.
The depolarization wave reflects movement of charge across the myocyte membranes, which results in
an electrical current spreading through the heart. Following systole, cardiac muscle returns to a resting
state and this is associated with reversal of the movement of charge across the myocyte membranes. This
second wave of electrical activity is termed cardiac repolarization [54].

1.3.1 Electrical activity of the heart

An electrical conduction system regulates the pumping of the heart and timing of contraction of
various chambers. Heart muscle contracts in response to the electrical stimulus received. The sinoatrial
node SAN (Figure 1.3) is the main pacemaker of the heart [55], is situated at the junction of the superior
vena cava and the right atrium. It rhythmically generates an electrical discharge which is carried to
through the left atrium. In a normal heart, the only route by which the depolarizing wave can enter the
ventricular conducting system is the atrioventricular node (AVN). The AVN receives the electrical signal
and conducts it to the bundle of His with some delay [56]. This delay allows the emptying of the atria
into the ventricles before the ventricles contract in response to the electrical signal. The bundle of His
divides into the right and left bundles that successively branch into thousands of small branches called
Purkinje fibers. The His-Purkinje tree serves to rapidly conduct the electrical signal to all parts of both
ventricles to produce a near-simultaneous contraction of all parts of both ventricles, producing a uniform
and coordinated squeeze [54, 57]. In the walls of the ventricles, depolarization spreads from the terminal
fibers of the conducting system outwards from the inner layer (endocardium) towards the outer surface of
the heart (epicardium), and also back along the ventricular wall to the atrioventricular groove [58].

1.3.2 Phases of the cardiac action potential

Similar to skeletal muscle, the resting membrane potential (voltage when the cell is not electrically
excited) of ventricular cells, is around -85 to -90 millivolts (mV). In other words, the inside of the cell
membrane is more negative than the outside. The main ions found outside the cell at rest are sodium
(Na+), chloride (Cl−) and calcium (Ca2+), whereas inside the cell it is mainly potassium (K+) [59].
These four ions are primarily involved in the genesis and propagation of the cardiac action potentials (AP)
and thus the contraction and subsequent relaxation of the heart. AP consists of 5 phases, numerated from
0 to 4 [57,60] as depicted in Figure 1.4.

• Phase 4: In the ventricular myocyte, phase 4 occurs when the cell is at rest, in a period known as
diastole. The resting membrane potential results from the flux of ions having flowed into the cell
(e.g. Na+) and the ions having flowed out of the cell (e.g. K+ and Cl−) being perfectly balanced.

• Phase 0 corresponds to the depolarization phase where an initial fast upstroke results due to the
opening of the fast inward Na+ channels. This opening causes a rapid increase in the membrane
conductance to Na+ and thus a rapid influx of Na+ ions into the cell, i.e. a Na+ current. The
ability of the cell to open the fast Na+ channels during phase 0 is related to the membrane potential
at the moment of excitation. If the membrane potential is at its baseline, all the fast Na+ channels
are closed, and excitation will open them all, causing a large influx of Na+ ions. If, however, the
membrane potential is less negative, some of the fast Na+ channels will be in an inactivated state
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Figure 1.3: Electrical conducting system of the heart.
A) Schematic of different regions of the human heart
and the corresponding B) AP waveforms (below is a
representative lead I ECG). Figure adapted from [61].
SVC: superior vena cava, SAN: sinoatrial node, RA: right
atrium, LA: left atrium, IVC: interventricular septum,
AVN: atrioventricular node, RV: right ventricle, LV: left
ventricle

Figure 1.4: Inward, depolarising and outward, repolarizing
currents that underlie the atrial (on the left) and ventricular
(on the right) action potential. Inward currents: INa sodium
current; ICa,L L-type calcium current; Ito transient outward
current; IKur ultra rapidly activating delayed rectifier current;
IKr and IKs rapidly and slowly activating delayed rectifier
current; IK1 inward rectifier current; IK,ACh acetylcholine-
activated potassium current. Note that IKur is present in atria
only. Phase 0, rapid depolarization; phase 1, rapid early repo-
larisation phase; phase 2, slow repolarization phase (‘plateau’
phase); phase 3, rapid late repolarization phase; phase 4, rest-
ing membrane potential. Figure adapted from [19].

insensitive to opening, thus causing a lesser response to excitation of the cell membrane and a lower
maximum potential. For this reason, if the resting membrane potential becomes too positive, the
cell may not be excitable and conduction through the heart may be delayed.

• Phase 1: represents an initial and brief repolarization and occurs with the inactivation of the fast
Na+ channels. The transient net outward current causing the small downward deflection of the AP
is mainly due to the movement of potassium (K+) ions, carried by the transient outward potassium
current Ito1. Particularly the transient outward potassium current Ito1 contributes to the “notch” of
some ventricular myocyte AP.

• Phase 2:, also called “plateau” phase of the cardiac AP, is sustained by a balance between inward
movement of calcium Ca2+ through L-type calcium channels and outward movement of K+ through
the slow delayed rectifier potassium channels, IKs. This plateau phase prolongs the AP durations
and distinguishes cardiac AP from the much shorter AP found in nerves and skeletal muscle.

• Phase 3:, the “rapid repolarization” phase, the L-type Ca2+ channels close, while the slow delayed
rectifier (IKs) K+ channels are still open. This ensures a net outward current, corresponding to a
negative change in membrane potential, thus allowing more types of K+ channels to open. These
are primarily the rapid delayed rectifier K+ channels (IKr) and the inwardly rectifying K+ current,
IK1. This net outward, positive current (equal to loss of positive charge from the cell) causes the
cell to repolarize. The delayed rectifier K+ channels close when the membrane potential is restored
to about -80 to -85 mV, while IK1 remains conducting throughout phase 4, contributing to set the
resting membrane potential.

In the heart, the wave of depolarization current originates in the SA node under normal conditions and
reaches the ventricular myocardium via the conduction system. Anatomically the ventricular depolarization
travels from apex to base and from endocardium to epicardium while the wave of repolarization moves in
the opposite direction from epicardium to endocardium. Thus the AP duration is not the same across
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the walls of the heart, with myocytes near the epicardium depolarizing last and repolarizing first. This
repolarization time differences, or dispersion of repolarization, not only exist between cells of different
chambers of the heart (i.e. atria, ventricles, nodal tissue) [62, 63], but also between myocytes of different
regions within the ventricular wall, e.g. epicardium versus endocardium [64–70], or apex versus base
[69,71–78]. Dispersion of repolarization is due to an intrinsic difference in the activity of the various ion
channels which can strongly influence the arrhythmia vulnerability [79].

1.4 The electrocardiogram

An electrocardiogram (ECG; in German, the electrokardiogram, EKG) is a measure of how the
electrical activity of the heart changes over time as APs propagate throughout the heart during each
cardiac cycle. However, this is not a direct measure of the cellular depolarization and repolarization with
the heart, but rather the relative, cumulative magnitude of populations of cells eliciting changes in their
membrane potentials at a given point in time [80]. Indeed, ECG signal shows electrical differences across
the heart when depolarization and repolarization of these atrial and ventricular cells occur.

In the clinical practice, a number of lead configurations are used with standardized electrode positions
[57], including the standard 12-lead ECG and the 3-lead orthogonal configuration. If these leads are
appropriately placed, the ECG recording can provide information about disease processes affecting different
anatomical regions of the organ and can allow the detection of changes in the pattern of spread of electrical
forces through the heart in disease. The selection of a particular lead system is guided by the type of
clinical information desired and other practical considerations. For example, a few electrodes are usually
used when only heart rhythm information is required, while ten electrodes (12-lead configuration) is
preferred when wave’s morphology needs to be analysed [53].

1.4.1 The lead system

The standard 12-lead ECG

Since the flow of depolarization and repolarization through the myocardium is a three dimensional
process, it is important to realize that each of the leads of the ECG recording system examines the
movement of the electrical waves through the heart in one plane only. In fact, based on the plane in
which electrical events in the heart are analysed, the 12 leads of the ECG can be divided into two groups
of six. The six frontal leads examine the flow of depolarization and repolarization through the heart in
the vertical, or frontal, plane (Figure 1.5 (left)), while a second group of six leads, the chest leads, also
referred to as the precordial leads, V1 to V6, examine these electrical events in the horizontal or transverse
plane [53] (Figure 1.5 (right)).

The frontal leads can be further divided in two groups of three, the standard limb leads, leads I, II
and III, and the augmented vector leads, aVR, aVL and aVF. By taking a representative frontal section
through the chest, the perspective of each of these leads on cardiac electrical events can be understood.
To remember the position of all 6 of the frontal leads relative to the heart, lead I is used as the reference
point. Lead I looks directly at the heart from the patients left hand side and defines zero degrees. Lead II
looks at the heart at an angle 60◦ further clockwise from lead I, while lead III is positioned a further 60◦
clockwise from lead II. aVL looks at the heart from the left (L is for left), but at 30◦ anticlockwise from
lead I. aVR looks at the right side of the heart (R is for right), and, just like aVL, it is 30◦ above the
horizontal relative to lead I. As aVL and aVR are set at 30◦ off the horizontal plane, they can be thought
as the left and right Wings or “vings” of the ECG. aVF looks straight up at the inferior surface of the
heart and is, therefore, at 90◦ clockwise from lead I, and can be thought of as looking straight up at the
heart from the feet (F is for feet) [53].

The six chest leads, V1 to V6, are placed on the surface of the chest wall in an arc, from V1 in the 4th
right intercostal space to the right of the sternum, to lead V2 in the fourth left intercostal space to the
left of the sternum, and then at roughly equal intervals, to lead V6 in the fifth left intercostal space in the
mid-axillary line. If we take a representative transverse section through the chest, it can be appreciated
that, with the heart in anatomical position, the atria lie posterior to the ventricles and the right ventricle
lies somewhat anterior to the left in this plane. Leads V1 and V2, therefore, face the surface of the right
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Figure 1.5: The six frontal (left) and horizontal (right) plane leads provide a three-dimensional representation of cardiac
electrical activity. Figure adapted from [53].

ventricle. However, note they also face the much larger muscle mass of the interventricular septum. Then,
these leads are strongly influenced by electrical events in this structure and V1 and V2 are, therefore,
often referred to as the septal leads. V3 and V4 face the anterior wall of the left ventricle, while V5 and
V6 face the lateral wall of the left ventricle [53].

Only eight from these twelve acquired leads are independent. Then, it would be sufficient, as an
example, to only consider the six precordial leads and two augmented vector leads to represent all the
information from the twelve standard leads [53].

Orthogonal Leads

The orthogonal lead system reflects the electrical activity of the heart in the right-left axis (lead X),
the head-to-feet axis (lead Y) and the front-back axis (lead Z) [81]. This system, in addition to the
ECG information acquired from each individual lead, provides with additional information through the
visualization of a three-dimensional loop together with the projection onto the XY-, XZ- and YZ- planes
(Figure 1.6). Since a loop is traced out by the tip of the vector that describes the dominant direction of
the electrical wavefront during the cardiac cycle, this recording is referred to as a vectorcardiogram [82].

The most widely used orthogonal lead system, known as the Frank lead system after its inventor [83],
is obtained as linear combinations of seven electrodes positioned on the chest, back, neck, and left foot.
The resulting leads X, Y and Z view the heart from the left side, from below, and from the front [53].

1.4.2 ECG patterns

When an ECG is recorded, a reading of voltage vs time is produced, which is normally displayed as
millivolts (mV) and seconds. A typical lead II ECG waveform is shown in Figure 1.7. It shows a series of
peaks and waves that corresponds to ventricular or atrial depolarization and repolarization, with each
segment of the signal representing a different event associated with the cardiac cycle.

ECG waveforms

The baseline of an ECG tracing is called the isoelectric line and denotes resting membrane potentials.
Deflections from this point are lettered in alphabetical order, and following each, the tracing normally
returns to the isoelectric point [84]. All of the leads on the ECG recording system are set up in such a way
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Figure 1.6: A vectorcardiographic loop and its projection
onto the three orthogonal planes. The two arrows outside
each loop indicate the direction in which the loop evolves.
Figure adapted from [53].

Figure 1.7: Example of ECG of two cardiac cycles with definition
of main waves and most relevant time intervals. Figure adapted
from [53].

that depolarizing current moving towards a lead produces a positive deflection on the ECG signal above
the isoelectric line, while depolarizing current moving away from the lead produces a negative deflection
below the isoelectric line. In contrast, repolarizing current has the opposite polarity to depolarizing
current. Therefore, repolarizing current moving towards a lead produces a negative deflection on the
signal, while repolarizing current moving away from the lead produces a positive deflection [53].

As explained in section 1.3.2, the cardiac cycle begins with the firing of the SAN in the right atrium.
This firing is not detected by the surface ECG because the SAN is not composed of an adequately large
quantity of cells to create an electrical potential with a high enough amplitude to be recorded with distal
electrodes (signal amplitude is lost as it dissipates through the conductive medium). The atria then
depolarize, giving rise to the P wave. This represents the coordinated depolarization of the right and left
atria and the onset of atrial contraction. The P wave duration is less than 120 ms [53]. As the P wave
ends, the atria are completely depolarized and are beginning contraction.

The ECG signal then returns to baseline, and an AP (not large enough to be detected) spread to
the atrioventricular node and bundle of His where it triggers the ventricular depolarisation. Thus, the
right and left ventricles begin to depolarize, resulting in what is called the QRS complex, representing the
beginning of ventricular contraction, which is around 70-110 ms in duration. Typically, the first negative
deflection is the Q wave, the large positive deflection is the R wave, and if there is a negative deflection
after the R wave, it is called the S wave. The exact shape of the QRS complex depends on the placement
of electrodes from which the signals are recorded [53].
Simultaneous with the QRS complex, atrial contraction has ended, and the atria are repolarizing. However,
the effect of this global atrial repolarization is sufficiently masked by the much larger amount of tissue
involved in ventricular depolarization and is thus not normally detected in the ECG.

When ventricular depolarization is complete, there is a brief period when no current is flowing and the
recording returns to the isoelectric line. This period ends with the onset of ventricular repolarization. The
deflection produced on the ECG by ventricular repolarization is again dominated by the signal from the
left ventricle. As the repolarizing wave is moving away from the chest, it produces a positive deflection.
This deflection is termed T wave (TW). Note that the TW has a very different morphology to the QRS
complex. Cardiac repolarization spreads relatively slowly through the myocardial muscle mass, outside
the conducting system. Hence, the TW is considerably longer in duration and, therefore, broader on the
ECG signal than the QRS complex. In non-diseased hearts, the polarity of the QRS complex and the TW
tend to be concordant [53].
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ECG intervals and segments

Of clinical importance in the ECG waveform are several notable parameters (regions), which include
the RR interval, the PQ interval, the ST segment, and the QT interval. The RR interval represents the
length of a ventricular cardiac cycle, measured between two successive R waves, and serves as an indicator
of ventricular rate. It is a fundamental rhythm quantity in any type of ECG interpretation and is used
to characterise different arrhythmia as well as to study the heart rate variability [53]. The PQ interval
is measured from the beginning of the P wave to the beginning of the QRS complex and is basically a
measure of the time it takes for AP to travel from atrial excitation and through the atria. The ST segment
is the period of time when the ventricles are completely depolarized and contracting and is measured from
the S wave (the J point) to the beginning of the TW Figure 1.7. The QT interval is measured from the
beginning of the QRS complex to the end of the TW; this is the time segment from when the ventricles
begin their depolarization to the time when they have repolarized to their resting potentials [80].

1.4.3 Dyskalemia and ECG changes

As previously mentioned in section 1.3.2, potassium is the predominant intracellular ion and is the
major determinant of the myocardial resting membrane potential. ESRD patients can experience hypo
([K+]≤ 3.5 mmol/L) [85] or hyperkalemia ([K+]≥ 5.0 mmol/L) [86], both of them can cause changes in
the ECG.

The earliest ECG change associated with hypokalemia is a decrease in the TW amplitude [87]. As
[K+] declines further, ST-segment depression and TW inversions are seen, while the PR interval can
be prolonged along with an increase in the amplitude of the P wave [87]. When the U wave, which is
described as a positive deflection after the TW often best seen in the mid-precordial leads (e. g. V2 and
V3), exceeds the TW amplitude the [K+]< 3 mmol/L [88]. In severe hypokalemia, T- and U-wave fusion
with giant U waves masking the smaller preceding TW [87,88]. A pseudo-prolonged QT interval may be
seen, which is actually the QU interval with an absent TW [89].

Typical ECG findings in hyperkalemia progress from tall and narrow (“peaked” or “tented”) TW
([K+] from 5.0 to 6.5 mmol/L), loss of P waves ([K+] from 6.5 to 7.5 mmol/L ), to widening of the
QRS complex ([K+] from 7 to 8 mmol/L) culminating in cardiac arrhythmias, “sine wave” pattern, and
asystole ([K+] from 8 to 10 mmol/L) [90,91].

1.5 Review of the state of the art

Over the past decades, several publications successfully investigated and reported the intrinsic
connection between electrolyte imbalances and the variations on the ECG signal [88, 92–98]. Typical
changes caused by both hypo- and hyperkalemia were reported for each waveform in the ECG as described
in section 1.4.3. However, in addition to these single beat aspects, rhythmical features such as the heart
rate variability (HRV) parameters were studied as well.
Therefore, this section aims to provide a focused analysis and discussion of recent researches concerning
the incidence of ECG feature changes in clinical studies and the approaches for capturing those features
apart from the common temporal and morphological ones.

1.5.1 Associations between serum electrolyte concentrations and changes in
cardiac electrophysiology

Several studies have discussed the incidence of electrolyte change-induced ECG abnormalities and the
idea of using the ECG as a monitoring tool to prevent adverse outcomes.

In a recent meta-analysis [99], linear regression analyses examining associations between electrolyte
concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocardiographic intervals:
RR, QT, QRS, PR and JT (this later defined as the difference between QT and QRS and PR intervals)
were performed over a large cohort study (153014 individuals). The study identified physiologically
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relevant associations between electrolytes and those electrocardiographic intervals. In particular, they
found that potassium concentration variations mainly influenced QRS interval.

Apart from those interval changes, there are typical morphological features described in the literature,
especially in the case of potassium variation as mentioned in in section 1.4.3.Another approach is to
analyse the time series of beats yielding to rhythmical features.

ECG features related to cardiac rhythm

Reduced HRV has been shown to be associated with adverse CV outcomes and mortality in HD
patients [100,101], and HD itself may enhance HRV [102,103]. With this assumption, Chen et al. [104]
proposed a parameter, based on the linear changes in HRV before and after HD, as a possible CV mortality
risk stratification method in HD patients. Some alterations have been also found in several non-linear
HRV indexes in HD patients [105] which led to the proposal of both methods: the recurrence plot analysis
[106], capturing HRV changes also in ambulatory ECGs, and the Poincaré plot [107], able to evaluate the
magnitude of variations in the HRV. The connection between HRV and a change of plasma electrolyte
concentrations was also reported by El-Sherif and Turitto [88] and all these studies seem to highlights the
relationship of the rhythmical features change between pre- and post-HD.

However, the potential additional benefit, obtained by using HRV-related descriptors, to the problem
of electrolyte concentration estimation in clinical practice is still to be validated [108].

QT interval changes and electrolyte concentration variations

Prolonged QT intervals, as collective measures of ventricular depolarization and repolarization, as been
consistently associated with adverse outcomes such as SCD [109–111]. Moreover, QT interval prolongation
is common among those patients undergoing HD treatment and represents a potential common pathway
leading to arrhythmias and potentially SCD [112]. Many studies have been carried out to understand the
connection between electrolyte concentration changes, SCD occurrence, and changes of the QT interval.

A recent retrospectively research [113] proved that QT adjusted for heart rate (QTc) interval in patients
with CKD at 1 year after HD initiation was longer than in the control subjects and was further prolonged
over several years of HD treatment. Later, it was demonstrated that different combinations of K+ and
Ca2+ concentrations in the dialysate lead to different modifications of the QT interval duration [114,115].

Genovesi et al. [102] as well as Kim et al. [116] found that the prolongation of the QTc was related to
the changed electrolyte concentration variations (including potassium) and associated with SCD and total
mortality in a case series of patients undergoing HD. In addition, QTc dispersion increases during HD
treatment as a consequence of the potassium removal rate during HD sessions [117].

Therefore, QT, QTc, and QT dispersion seem to be closely related to electrolyte concentration changes
and rate of change and and can be influenced in HD patients also by the dialysate potassium concentration.
Nevertheless, no studies directly reconstructed potassium concentrations from the changes in the QT
interval has been performed [108].

Influence of the HD on the P wave

Many studies have confirmed that the incidence of atrial and ventricular arrhythmias is higher during
HD [118–120], being the mortality primarily connected with thromboembolic consequences [121,122]. In
patients with paroxysmal atrial fibrillation during sinus rhythm, the intra- and interatrial conduction
time of the sinus impulse lengthens, and the duration of the P wave measured on the ECG is increased
[123–127]. Furthermore, HD may lengthen P wave duration and dispersion [128]. Therefore, several
studies investigated the effects of HD on P wave duration and dispersion, two features that characterize
atrial arrhythmogenicity and are measured by a surface ECG.

However, results are still controversial. On the one hand, Chen et al. [129] and Páll et al. [122]
concluded that HD can affect both P wave duration and P wave dispersion as well as P wave dispersion
corrected by heart rate. On the other hand, no difference was noted in P wave amplitude by Montague
et al. [130], although authors specified that the small sample size of the P waves examined could have
limited the precision of the assessment in this regard.
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1.5.2 Blood potassium concentration estimation from the ECG

This paragraph presents the most relevant attempts to estimate blood potassium concentration from
the ECG by means of manual or semi-automatic potassium estimation approaches.

T wave morphology changes based methods

Electrocardiographic effects of potassium have been well known for many years [88]. In particular,
narrow-based, peaked TWs are the earliest effects of the hyperkalemia on the ECG, as reported in a
recent study by An et al. [131]. In physiological conditions, they can be described by their symmetry,
skewness, slope and amplitude but in pathological conditions, the shape of the TW may change [132].
Therefore, measurements of those parameters could identify the onset of specific diseases. In the literature,
it is reported that tall and narrow symmetrical TWs may indicate hyperkalemia [86], while flat TWs may
indicate hypokalemia [133].
Following these consideration, different TW morphology descriptors based approaches have been previously
reported to be correlated with [K+] and tested for blood electrolyte concentration reconstruction.

One of the first attempt to estimate blood potassium level from the ECG was made by Frohnert et al.
[134] which proposed a set of equations based on the TW amplitude and TW maximum time manually
extracted. However, no performance evaluation was performed and the models were built with all the
available data, i.e., no independent validation was carried out [108].

Recently, Dillon et al. [135] assessed the following features: TW down slope, TW amplitude, the
center of gravity of the TW and of the last fourth of the TW, and the ratio between the TW and R peak
amplitude for blood potassium concentration estimation. Among all of them, the TW down slope, was the
parameter showing the highest dependence on the plasma potassium concentration, followed by the two
center of gravity features. Following that study, Velagapudi et al. conducted a research trying to diagnose
hyperkalemic patients by using the TW slope, TW width and QRS duration to build a regression model
for potassium concentration estimation [136]. They found that ECG-based models incorporating those
parameters can improve detection of hyperkalemia by surface ECG.

Finally, Regolisti et al. [137] investigated 28 categorical and continuous clinical variables as a candidate
for the construction of potassium predictive models among which are: peaked TW, TW maximum
amplitude, TW/R wave maximum amplitude ratio, age and loop diuretics. The selection algorithm based
on Bayesian information criterion identified TW amplitude and use of loop diuretics as the best subset of
variables predicting blood potassium. Nonetheless, the authors reported that the model accuracy was
poor in both full and test sample as well as in predicting hyperkalemia in both full and test sample –
area under the curve (AUC) at receiver operating characteristic (ROC) curve analysis 0.74 and AUC
0.72, respectively. However, one needs to bear in mind that this study was performed over patients with
acute kidney injury which, in contrast to ESRD, develops suddenly from an acute renal insult and, most
importantly, is reversible [138].

Manual and U wave - ST segment based approaches

Wrenn et al. [139] investigated whether physicians can predict hyperkalemia form the ECG. Two
physicians blinded not only to the specific clinical diagnosis of the 220 patients involved (87 patients
had hyperkalemia, and 133 did not) in the study and to their blood potassium measurement but also
to each other’s interpretation, retrospectively analysed ECGs of patients at high risk for hyperkalemia.
The physicians predicted the presence or absence of hyperkalemia as well as the severity of hyperkalemia
on a nominal scale (mild, moderate, or severe) and sensitivity, specificity, and positive and negative
predictive values (PPV/NPV) were computed. The results (best result for each parameter separately)
were a sensitivity of 0.43, a PPV of 0.65, a specificity of 0.86, and a NPV of 0.69. This study confirmed
the specificity of the ECG for hyperkalemia.

Johansson and Larsson [140] identified the sum of ST depression and U wave amplitude in II and V3
as the most relevant features in a cohort of 22 hypokalemic patients. They also performed a correction by
subtraction of values during normokalemia of the respective patient to account for inter-patient variability.
However, results showed that accurate prediction of mild hypokalemia (2.7–3.4 mmol/l) was not possible
with that proposed approach.
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1.5.3 Automatic, neural network and deep-learning techniques

There are two main techniques that can be used for automatic classification and quantification
(regression) of electrolyte disorders: classical approach where lead selection, ECG feature selection, and
model fitting are performed separately and deep learning techniques in which all the above mentioned
steps are inherently integrated. In both cases, manual feature extraction is not required.

Automatic techniques

One of the most extensive evaluation of automatic estimation of potassium concentration values was
performed by Corsi and Severi et al. [141–144]. They investigated the ratio between the TW downslope
and amplitude, features, these, which were calculated from the two most significant PCA eigenleads of the
12-lead ECG using a template of the TW computed on two-minute window [108]. Then, after building a
general model, patient-specific bias correction was introduced using the first and last measurement of the
first session of a specific patient [141]. Finally, regression models were computed by using polynomials
of first order [142] and second order [141,143,144] to assess the correlation between the TW descriptor
and serum [K+]. Results obtained from this approach were promising, being mean error of the estimated
potassium concentration of -0.09 ± 0.59 mM and and a mean absolute error of 0.46 ± 0.39 mM [141].
However, the authors stated that one of the main limitations of their proposed estimator was the presence
of a residual dependence of the error on the actual serum [K+] which could lead to underestimation of
severe hyperkalemic conditions [141]. Therefore, as a future work, they proposed make use of others
ECG-derived parameters known to be influenced by high [K+] levels (such as QRS duration or P-wave
duration) to attenuate this issue [141].

To create a personalised strategy for blood potassium estimation, Attia et al. [145] proposed a linear
regression model based on the TW down-slope normalised by the square root of TW amplitude. To
accomplish this, for each session, only data from the single lateral precordial lead (i.e. one of V3 through
V6) with the greatest amplitude TW was used. Kalman filter was also implemented to attenuate abrupt
feature changes that cannot be related to a potassium variation. Each patient specific linear model with
the chosen feature was built in the first HD session and applied to the other sessions yielding a mean
absolute error of estimation of 0.36 ± 0.34 mmol/L in their database consisting of of 26 patients. With
these findings, the authors suggested that, using a single lead of high-resolution ECG data may be suitable
for remotely monitoring potassium in dialysis patients. This idea was investigated in a later study where
they used a handheld smartphone equipped with commercially available electrodes affixed to it to acquire
single-lead ECG signals, transmitting these signals to a remote server, and then processing the signals
to estimate potassium levels in a prospective cohort of 21 dialysis patients [146]. In this case, the mean
absolute error between the estimated potassium and blood potassium 0.38 ± 0.32 mmol/L, which is in
the range of the performance of the approach using a standard 12-lead ECG.

Krogager et al. [147] investigated the relationship between blood potassium level and a recent proposed
TW morphology markers named morphology combination score (MSC) [148–150], which was calculated
based on TW asymmetry, flatness and notching using the following formula: MCS = Asymmetry+
Notch+ 1.6Flatness [151]. The study confirmed the existence of an association between deviations in
potassium concentrations and changes in TW amplitude. Moreover, the authors found a correlation
between MSC and potassium, in agreement with the findings by Dillon et al. [135], although the
repolarization parameters considered in this latter study and those included in the MSC formula are not
identical.

Rodrigues et al. [152, 153] investigated the possibility of capturing potassium fluctuations over the
long interdialytic interval using a single-lead ECG. They evaluated patient-specific TW morphology
changes in the ECG using both: a model-based descriptor developed to account for overall morphology
changes (θδ), and the descriptor proposed by Corsi et al. [141], over 15 hemodialysis patients with
pre-existent cardiac diseases during the long interdialytic interval. Interestingly, they found θδ to be less
affected by motion-induced noise and thus preferable for ambulatory monitoring. However, the authors
acknowledged that the small number of patients included in the study could restrict the generalization of
their findings. Moreover, the presence of concomitant electrolyte (calcium and bicarbonate) imbalances
were not considered in the study, an aspect this, that the authors proposed to further investigate in future
works.
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1.5 Review of the state of the art

In an attempt to characterize changes in ECG markers measuring duration, amplitude and morphology
of the TW during HD in ESRD patients, Bukhari et al. [154] assessed the relationship between these
changes [K+] and [Ca2+] and HR variations. Additionally, a set of human transmural ventricular fibers
were simulated to unravel potential underpinnings of the high inter-individual differences in TW responses
observed in the patients as a consequence of electrolyte and HR variations. The authors found high
inter-patient variability in the pattern of such relationships for all analysed TW markers. This variability,
accentuated during the first hours of HD, was reproduced in the simulations and shown to be influenced
by differences in transmural heterogeneity. Whereas this study proved that changes in serum [K+] and
[Ca2+] and HR strongly affect TW markers, particularly those quantifying morphological variability, the
authors recognised that the reduced sample size and available number of blood samples could have biased
the results obtained din this analysis. As a future work, the authors proposed including simulations in
bi-ventricular models embedded in patient-specific torso models, from which more realistic ECGs can be
computed.

Neural network approaches

Wu et al. [155] developed a two-stage artificial neural network (NN) to classify the disorder of
electrolyte from 20 normal and 20 moderate hyperkalemic (5.4 - 7.4 mmol/L) individuals. A total of 17
features were selected, including TW amplitude and duration from V1 to V6 leads, P wave amplitude
and duration, QRS duration, PR interval, averaged RR interval from lead II served as the inputs of
artificial NN. Accuracy of 65.5%, a sensitivity of 60%, and a specificity of 65% in a patient cohort with 30
normokalemic and 30 hyperkalemic patients. However, no information regarding the validation technique
is provided, and so over-fitting cannot be excluded [108].

Tzeng et al. [156] proposed a serial two-staged classifier implanted with K-means algorithm to screen
hyperkalemia based on feature parameters extracted from 12-lead ECG from 56 normal individuals and
41 hyperkalemia patients (serum potassium level >5.3 mmol/L). Two TW volume features obtained from
limb and chest leads were fed to the first stage and PR interval and QT interval and QRS complex width
to the second. The classifier showed the sensitivity of 85% (95% CI=77% to 97%) and the specificity
of 79% (95% CI=55% to 97%) in classifying the samples proving the ability to diagnose patients with
hyperkalemia from very mild to severe degrees but no information regarding cross-validation to prevent
over-fitting was given [108].

Deep-learning methods

Deep learning is a type of artificial intelligence able to identify and extract the best features itself
[157] and then perform classification or regression for a given task. Deep learning uses representation
methods to identify meaningful patterns from complex digital files and found applications in medicine to
identify lesions in mammograms or retinal images [158,159]. Over the last years several studies have been
conducted to test the hypothesis that this technique can be applied for screen for hyperkalemia.

Recently, Galloway et al. [160] tested a deep-learning model, trained over a total of 1576581 ECG
signals, either two (leads I and II) or four (leads I, II, V3, and V5) leads, from a multi-centre study
in order to detect serum potassium levels. The model was then validated by means of retrospective
data from 61965 patients at stage 3 or greater CKD. They found that using only two leads ECG, their
deep-learning model was able to detect hyperkalemia in patients with renal disease with an AUC of 0.853
to 0.883 concluding that the application of artificial intelligence to the ECG may improve the screening for
hyperkalemia. Nevertheless, a prospective study is required to analyse the performance of the proposed
method by using ECG inputs in the home setting and, most importantly, to determine whether the model
improves hyperkalemia detection, care and outcomes, as the authors stated.

Later, Lin et al. [161] develop a deep-learning model, named ECG12Net, to detect dyskalemias based
on 864 meta-features from 66321 ECG records with corresponding [K+] within one hour before or after
the signal acquisition. After training the model, they tested its performance against six clinicians, three
emergency physicians and three cardiologists, which analysed 300 ECGs of different [K+]. The proposed
ECG12Net outperformed the clinicians with AUC for detecting hypokalemia and hyperkalemia of 0.926
and 0.958, respectively, Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7%
and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. However, the authors
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stated that the ECG12Net showed decreased sensitivity in detecting mild-to-moderate hypokalemia, which
accounts for the majority of dyskalemias, leading to low weighted averages of the sensitivities

Despite the interesting results, deep-learning is often criticised for the non-transparency (also known
as “black box”) since the huge number of layers and features and the reason why a particular feature
was extracted might not be interpretable for humans [157,162]. Furthermore, deep learning can only be
effective when large annotated datasets are available [161] then limiting its clinical application.

1.6 Objective and outline of the thesis

The main objective of this thesis is to develop a new approach to estimate [K+] variations in CKD
patients undergoing HD, based on the analysis of the overall TW morphology. The content of the thesis is
organised as follows:

• Chapter 1: The present chapter begins explaining the motivation of this thesis. Then, the kidneys
functions, CKD and the mechanism of HD are introduced. Later, the chapter focuses on the electrical
activity of healthy hearts and of hearts from ESRD patients highlighting the influence of [K+]
on the ECG waveforms. Next, ECG-derived markers recently proposed in the literature for [K+]
monitoring in ESRD patients are presented and discussed. Finally, the objective of this thesis is
described.

• Chapter 2: In this chapter, the TW time warping analysis is presented. Then, the ability of
time warping TW morphology changes markers in time (dw) and amplitude (da), as well as their
non-linear components (dNL

w and dNL
a ), and the heart rate corrected counterpart (dw,c), to monitor

[K+] variations (∆[K+]) in ESRD patients undergoing HD are investigated. In particular, their
performance are compared with respect to two previously proposed [K+]-related markers: width of
the TW and TW slope-to-amplitude ratio. All markers are computed from standard 12-lead ECG
as well as from principal component analysis (PCA)-based first transformed lead. The chapter ends
presenting the results of this initial study and discussing the advantage of investigating the whole
TW morphology for ∆[K+] monitoring.
The research described in this chapter generated the following publications:

1. F. Palmieri, P. Gomis, J. E. Ruiz, B. Bergasa, D. Ferreira, A. Martín-Yebra, H. A. Bukhari,
J. P. Martínez, E. Pueyo, J. Ramírez and P. Laguna. “Monitoring Blood Potassium Concen-
tration in Hemodyalisis Patients by T-wave Morphology Dynamics Quantification” Scientific
Reports, 2021; vol. 11, Art. no. 3883, doi: 10.1038/s41598-021-82935-5.

2. F. Palmieri, P. Gomis, D. Ferreira, J. E. Ruiz, B. Bergasa, A. Martín-Yebra, H. A. Bukhari,
E. Pueyo, J. P. Martínez, J. Ramírez and P. Laguna. “T-Wave Morphology Changes as
Surrogate for Blood Potassium Concentration in Hemodialysis Patients.” 2019 Computing in
Cardiology (CinC), Singapore, 2019, pp. 1-4, doi: 10.23919/CinC49843.2019.9005904.

3. F. Palmieri, P. Gomis, D. Ferreira, J. E. Ruiz, B. Bergasa, A. Martín-Yebra, H. A. Bukhari,
E. Pueyo, J. P. Martínez, J. Ramírez and P. Laguna. “Estudio de los Cambios en la Morfología
de las Ondas T como Sustituto de la Concentración de Potasio en Sangre en Pacientes de
Hemodiálisis”. Actas del XXXVII Congreso Anual de la Sociedad Española de Ingeniería
Biomédica, Santander, Spain, 2019, pp. 291-294, ISBN 978-84-09-16707-4.

Also, this work was awarded with the following prizes:

1. Rosanna Degani Young Investigator Award for the best written and oral presentation “T-Wave
Morphology Changes as Surrogate for Blood Potassium Concentration in Hemodialysis Patients.”
2019 Computing in Cardiology (CinC), Singapore, 2019 - Semifinalist.

2. Mortara mobility fellowship “T-Wave Morphology Changes as Surrogate for Blood Potassium
Concentration in Hemodialysis Patients.” 2019 Computing in Cardiology (CinC), Singapore,
2019 - Winner.
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3. ESC-CinC Clinical Needs Translational Award “T-Wave Morphology Changes as Surrogate
for Blood Potassium Concentration in Hemodialysis Patients.” 2019 Computing in Cardiology
(CinC), Singapore, 2019 - Winner.

4. José Maria Ferrero Award for Ph.D. students “Estudio de los Cambios en la Morfología de las
Ondas T como Sustituto de la Concentración de Potasio en Sangre en Pacientes de Hemodiálisis”.
Actas del XXXVII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, Santander,
Spain, 2019 - Finalist.

• Chapter 3: PCA uses a maximum-variance criterion to separate signal and noise into orthogonal
subspaces, which may not be the best strategy for emphasising clinical relevant information [163]
such as [K+]-driven TW morphology changes and, in turn, the potential clinical significance of time
warping based markers could be affected. In this chapter, a different lead space reduction technique,
named periodic component analysis (πCA), is proposed and tested against PCA-based approach.
To perform a thorough and detailed evaluation of the proposed methodology, PCA- and πCA-based
time warping markers are extracted in three different specific and supervised scenarios: (i) only
[K+] induced TW variations (ii) controlled postural changes with no concurrent [K+] variations
and (iii) controlled simulation scenario with different noise sources and SNR. The chapter concludes
by presenting and comparing the performance in the three scenarios of the proposed πCA with
respect to PCA, and then discussing the improvements in clinical terms derived by using πCA-based
time warping markers.
The research described in this chapter generated the following publications:

1. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, A. Martín-Yebra, E. Pueyo, J. P. Martínez,
J. Ramírez and P. Laguna. “ECG-based monitoring of blood potassium concentration: Periodic
versus principal component as lead transformation for biomarker robustness” Biomedical Signal
Processing and Control, vol. 68, Art. no. 102719, 2021, doi: 10.1016/j.bspc.2021.102719.

2. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, A. Martín-Yebra, E. Pueyo, P. Laguna,
J. P. Martínez and J. Ramírez. “Potassium Monitoring From Multilead T-wave Morphol-
ogy Changes During Hemodyalisis: Periodic Versus Principal Component Analysis.” 2020
Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4, 2020, doi: 10.22489/CinC.2020.199.

3. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, A. Martín-Yebra, E. Pueyo, P. Laguna,
J. P. Martínez and J. Ramírez. “Monitorización en diálisis de la concentración de potasio en
sangre mediante los cambios en la morfología multi-lead de la onda T: comparación entre usar
la transformación en componentes periódicas y principales”. Actas del XXXVIII Congreso
Anual de la Sociedad Española de Ingeniería Biomédica, Valladolid, Spain, 2020, pp. 434-437,
ISBN 978-84-09-25491-0.

• Chapter 4: Whereas chapters 2 and 3 focus on the relation between time warping markers and
[K+], in chapter 4 regression models for ∆[K+] estimation from the proposed markers are presented.
For this purpose, different patient-specific polynomial (i.e. linear, quadratic and cubic) regression
models are computed and the accuracy of the model-estimated ∆[K+] values are compared with
respect to the real measured by blood sample test. Finally, the performance of both quadratic and
cubic regression models compared to the linear ones, and the improvement achieved by using the
quadratic models are discussed.
The research described in this chapter generated the following publications:

1. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, A. Martín-Yebra, E. Pueyo, J. P. Martínez,
J. Ramírez and P. Laguna. “Nonlinear T-Wave Time Warping-Based Sensing Model for Non-
Invasive Personalised Blood Potassium Monitoring in Hemodialysis Patients: A Pilot Study”
Sensors, vol. 21, no. 8, Art. no. 2710, 2021, doi: 10.3390/s21082710.

• Chapter 5: The presence of TW onset and end point misplacement, consequence of automatic
ECG delineation errors, may greatly affect the morphology of a TW by introducing information
not related to the ventricular repolarization, and thus reducing the diagnostic reliability of the
proposed TW time warping markers. Under the assumption that a weighting stage could reduce the
undesired effects of TW boundaries delineation errors, two weighting functions (WFs) are tested for
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the computation of time warping markers. According to the results, not only the proposed WFs can
enhance the robustness against TW delineation errors, but also their use can improve the SCD risk
stratification power of TW time warping analysis derived indexes.
The research described in this chapter generated the following publications:

1. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, E. Pueyo, J. P. Martínez, P. Laguna, and
J. Ramírez. “Weighted Time Warping T-wave Analysis Robust to Delineation Errors: Clinical
Implications”. 2021 Computing in Cardiology (CinC), Brno, Czech Republic, vol. 48, pp. 1-4,
2021, doi: 10.23919/CinC53138.2021.9662738.

2. F. Palmieri, P. Gomis, J. E. Ruiz, D. Ferreira, E. Pueyo, J. P. Martínez, P. Laguna, and
J. Ramírez. “ “Time warping” ponderado sobre la onda T para Reducir el Impacto de Errores
de Delineación: Implicaciones Clínicas”. Actas del XXXIX Congreso Anual de la Sociedad
Española de Ingeniería Biomédica, Spain, 2021, pp.94-98 ISBN 978-84-09-36054-3.

The following manuscript has been submitted with the results presented in this chapter:

1. F. Palmieri, P. Gomis, D. Ferreira, E. Pueyo, J. P. Martínez, P. Laguna, and J. Ramírez.
“Weighted Time Warping Improves T-wave Morphology Markers Clinical Significance”. IEEE
Transactions on Biomedical Engineering, doi: 10.1109/TBME.2022.3153791, 2022.

• Chapter 6: It summarises the main conclusions of the thesis and presents new lines of research
that could be undertaken in future studies.

1.7 Collaborations and research stay

All the research presented in this dissertation was conducted within the joint Ph.D. program in
biomedical engineering at both Universitat Politècnica de Catalunya (Barcelona, Spain) and at the
Biomedical Signal Interpretation & Computational Simulation (BSICoS) group at University of Zaragoza
(Zaragoza, Spain), under the supervision of Professor Pablo Laguna and Professor Pedro Gomis. Moreover,
the majority of the studies were performed in collaboration with researchers and clinicians belonging to
other research groups and institutions, who actively collaborated with methodological, physiological and
data collection and interpretation:

• Dr Julia Ramírez
William Harvey Research Institute, Queen Mary University of London, London, UK.

• Dr José Esteban Ruiz
Nephrology Ward, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.

• Dr Beatriz Bergasa
Nephrology Ward, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.

• Dina Ferreira
Laboratorios Rubio S.A. Castellbisbal, Barcelona, Spain.

Additionally, I had the opportunity to benefit from a research stay in the context of my Ph.D. from
January 2020 to March 2020 at William Harvey Research Institute, Queen Mary University of London,
London, UK under the supervision of Prof Patricia B. Munroe and Dr Julia Ramírez.
This stay was an opportunity to discuss closely with Dr Julia Ramírez, who developed the TW time
warping analysis methodology, in the context of the application of that methodology to monitor [K+] in
ESRD patients undergoing HD and possible modifications. In addition, I familiarised with genetic analyses
and bioinformatics applications to understand the biology underlying cardiovascular risk factors.
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2.1 Introduction

As introduced in chapter 1, [K+] outside the physiological interval are associated with increased
mortality risk [8]. In healthy conditions, the maintenance of [K+] homeostasis is ensured by normal renal
activity [164]. However, ESRD patients undergoing HD suffer from [K+] imbalance, leading to a high
incidence of arrhythmic events [165].

As explained in section 1.4.3, alterations in ECG patterns are known to be directly associated with
[K+]. In particular, TW related features are extensively used index to monitoring dyskalemic patients,
and different markers have been previously reported to be correlated with [K+], see section 1.5. However,
these markers rely on specific local features of the TW rather than in the overall TW morphology, which
we hypothesise may have a stronger potential in following [K+] variations resulting in markers with higher
clinical significance.

The time warping analysis, described in section 2.3.4, was proposed for the quantification of changes
in the overall TW morphology. In this chapter, six indices are investigated, duw and da, reflecting
morphological variations in time and amplitude, respectively, as well as their non-linear version, dNL

w and
dNL
a as reported in [166] and two novel markers derived from duw and named dw and dw,c.
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2.2 Materials: DEKOALE dataset

The main goal of this chapter is to evaluate the potential use of these markers in monitoring both
hypo- and hyperkalemia events excluding the variability due to the HR and to compare their performance
against two well-known TW-based markers: the width of the TW (Tw) [134], the TW slope-to-amplitude
ratio (TS/A) [141] in standard single-lead approach and by applying principal component analysis (PCA)
as multilead space reduction technique.

2.2 Materials: DEKOALE dataset

The “DEtection of [K+] cOncentration ALterations from the ECG (DEKOALE)” dataset was
compiled at the Nephrology ward from Hospital Clínico Universitario Lozano Blesa (Zaragoza, Spain) [167].
The study population included 29 ESRD patients undergoing HD. Inclusion criteria were (i) 18-year-old
(or older), (ii) having a diagnosed ESRD pathology and (iii) undergoing HD, regardless if conventional,
online or Acetate-free biofiltration (AFB), at least three times per week (with venous or cannula access).
Table 2.1 shows the population characteristics. The study protocol was approved by the ethics committee
of the Aragon research centre (ref. PI18/003, 10/04/2019) and all patients and/or their legal guardians
signed informed consent. All the procedures were performed in accordance with the Helsinki Declaration.
The database collection is still ongoing.

Table 2.1: Clinical features of the DEKOALE
study population. Values are expressed as number
(%) for categorical variables, and median (IQR)
for continuous variables.

(N = 29)
Age (years) 75 (12)
Gender (male) 20 (70%)
Anti-arrhythmic drugs (yes) 9 (31%)
Implanted pace-maker (yes) 1 (3%)
Time under HD treatment 15 (59)

(months)
HD session duration
210 min 3 (10%)
240 min 26 (90%)

Kidney disease etiology
Diabetes mellitus 17 (59%)
Interstitial nephritis 2 (7%)
Glomerulonephritis 2 (7%)
Tuberous sclerosis 1 (3%)
Polycystic kidney 1 (3%)
Cancer 1 (3%)
Unknown 5 (18%)

HD liquid composition
Potassium (1.5 mmol/L) 21 (72%)
Potassium (3 mmol/L) 5 (17%)
Potassium (decreasing) 3 (11%)
Calcium (2.5 mg/dL) 21 (72%)
Calcium (3 mg/dL) 8 (28%)

HD techniques
Conventional 18 (62%)
Online 8 (28%)
AFB with decreasing
intra-HD [K+] 3 (10%)

Time (min)
5

0

ℎ0

2880

ℎ5

65

ℎ1
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185
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Figure 2.1: Diagram of the DEKOALE study protocol: h0 to h5 are the
time points (in minutes) for blood sample extraction. h4 is taken at the
end of the HD (minute 215-th or 245-th, depending on the HD duration).

Table 2.2: Blood potassium concentration [K+] in (mmol/L) patients in
the DEKOALE dataset at each blood test. Values are expressed as median
(IQR).

h0 h1 h2 h3 h4 h5

[K+] 5.00 3.85 3.64 3.39 3.30 4.80
(1.36) (1.08) (0.84) (0.74) (0.62) (1.56)
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2.3 Methods

2.2.1 General information

Sex, age, concomitant therapies (e.g. assumption of anti-arrhythmic drugs), kidney disease etiology
and HD treatment related information were collected for each enrolled patient, as detailed in Table 2.1.

2.2.2 Blood sample analysis

For each patient, six blood samples were taken and analysed during the HD session: the first one at the
HD onset and the next three, every subsequent hour (Figure 2.1, h0 to h3 in red). The 5-th blood sample
was collected at the end of the HD (minute 215-th or 245-th, depending on the HD session duration) while
the 6-th blood sample was taken after 48 hours, immediately before the next HD session. Potassium,
magnesium, calcium, urea, creatinine, bicarbonate and pH were measured from each blood test. Blood
potassium concentrations values for each blood test are given in Table 2.2.

2.2.3 ECG measurements

A 48h, standard 12-lead ECG Holter recording, (H12+, Mortara Instruments, Milwaukee, WI, USA,
sampling frequency of 1 kHz, amplitude resolution of 3.75 µV), was obtained for each enrolled patient,
starting the acquisition 5 minutes before the HD onset (Figure 2.1, green line). As an example, an excerpt
of a real ECG is depicted in Figure 2.2a.

2.3 Methods

2.3.1 ECG preprocessing

The objective of the preprocessing is to minimize the contamination by noise and artifacts in the
signal, and to prepare it for posterior stages. This topic has been widely investigated being an essential
step in any ECG processing system. An overview on preprocessing procedures can be found in [53].
The preprocessing following described was restricted to the procedures applied in this work and it was
performed by using custom-built MATLAB software.

To ensure a proper ECG waveform analysis, an initial filtration was done to improve the signal-to-noise
ratio (SNR). This step included the removal of both baseline wander and high frequency noises, and an
example is provided in Figure 2.2b.

Baseline wander

The baseline wander is an external, narrow band low-frequency component in the ECG which may
interfere with the signal analysis, and may result from a variety of noise sources including respiration,
body movements, and poor electrode contact. As reported in [168], baseline wander filtration can be
performed at a lower sampling frequency than at the actual one of the original ECG signal. The main
steps of this approach are: (1) decimation of the original signal, which includes antialiasing filtering, to a
lower sampling rate better suited to filtering, (2) low-pass filtering to produce an estimate of the baseline
wander, (3) interpolation of the estimate back to the original sampling rate, and (4) subtraction of the
estimate from the original ECG so as to produce the baseline-corrected signal. The advantage of the
sampling rate alteration technique is twofold: it offers low complexity, and it can easily accommodate a
time-variable cut-off frequency [168].

High frequency noises

Electromagnetic fields caused by a powerline represent a common noise source in the ECG that is
characterized by 50 or 60 Hz sinusoidal interference, possibly accompanied by a number of harmonics.
Such noise increases the difficulty in analysising and interpreting the ECG, since the delineation of
low-amplitude waveforms becomes unreliable [168]. Muscle activity is another important filtering issue
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2.3 Methods

because of the substantial spectral overlap between the ECG and muscle noise [168].
To remove powerline noise and to reduce the muscle noise, but still allow QRS detection, a 6-th order
low-pass Butterworth filter with 40 Hz cut-off frequency was applied.

2.3.2 ECG waveform detection and delineation

After the filtration step, the QRS complex detection and the delineation of each heartbeat at each
available lead, was performed with a wavelet-based delineator described in Martínez et al [169]. The
wavelet transform (WT) decomposes the signal in the time-scale domain, allowing its representation at
different resolutions. It is, therefore, a suitable tool to analyse ECG signals, which contain patterns with
different frequency content (QRS complexes, P and T-waves).

Single-lead delineation

The discrete dyadic WT [169] is implemented in such a way that it keeps temporal resolution at
different scales. The detection of the fiducial points is carried out across the adequate WT scales, attending
to the dominant frequency components of each ECG wave: Q,R,S waves correspond to a simultaneous
effect in scales 21–22, while the T and P waves affect mainly scales 24 or 25 [169]. ECG wave peaks
correspond to zero crossings in the WT, and ECG maximum slopes correspond to WT’s maxima and
minima. Depending on the number and polarity of the slopes found, a wave morphology is assigned and
boundaries are located using threshold-based criteria. The onset (end) of a wave occurs before (after) the
first (last) significant slope associated with the wave [169].

In this study, TWs delineated from leads V3 to V6, as used in a previous study [145] for [K+]
estimation, and lead II being the most widely used in patient monitoring [170] were analysed.

Selection rules for multi-lead delineation

To obtain multilead peak locations, a median post-processing selection rule over the single-lead-based
detected locations is used. The post-processing rules for boundaries consist of ordering the single-lead
annotations and selecting as the onset (end) of a wave the first (last) annotation whose k nearest neighbours
lay within a δ ms interval [169, 171]. An example of the ECG with the delineation marks for both the
QRS complex and the TW is shown in Figure 2.2b.

2.3.3 Spatial lead reduction by principal component analysis

A lead space reduction (LSR) by PCA was performed being this a robust spatial transformation
emphasizing waveform SNR [172]. Here, PCA was spatially applied to the 8 independent leads, learned
over the TW segment to mainly accentuate this waveform, and resulting in 8 principal components (PCs)
or transformed leads (TLs). The coefficients defining the PCA transformation were obtained from the
eigenvectors of the 8×8 interlead auto-correlation matrix computed over the TWs in a 10-min wide window
at the end of the HD session. The correct delineation of TWs is crucial to emphasize only TW energy
content. A segment of the 8 PCs extracted from ECG in Figure 2.2b is depiected in Figure 2.2c.

The first PC, denoted as PC1, was used for the subsequent ECG analysis, as it is the transformed lead
where the TWs have maximal energy, and thus, maximal SNR for morphological characterisation [172].
PC1 was further delineated by applying the same delineator described in section 2.3.2, and each TW was
further low-pass filtered at 20 Hz to restrict shape analysis to the dominant band of the TW so removing
remaining noisy components that could still corrupt the TW shape analysis.

2.3.4 Time warping analysis

Spatial dispersion of ventricular repolarization is a property of the human heart and it is responsible
for the genesis of the TW on the ECG [173]. However, an amplification of such dispersion creates suitable
conditions for the mechanism of reentry and favours the development of ventricular tachycardia/fibrillation
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(a) (b) (c)

Figure 2.2: Representative diagram of the preprocessing and transformation used to obtain PCs from the standard 12-lead
ECG signal. In panel (a), a 5 second long of a real ECG signal is depicted. Panel (b) shows the same excerpt after preforming
the pre-processing described in section 2.3.1. In addition, the delineation marks for the QRS complex (being the red and the
blue dashed-dot lines the QRS on and QRS end points respectively and the green square the R peak position) and TW
(being the magenta and the orange dash line the TW on and TW end points respectively and the yellow square the TW
peak position), obtained as reported in section 2.3.2, are displayed. In panel (c) shows the transformed orthogonal leads
obtained from the PCA technique performed over the 8 independent leads (see section 2.3.3).

[174,175], which could potentially lead to SCD [176]. Therefore, detection and prevention of arrhythmic
events are the main strategies to decrease SCD outcomes [177].

Since the TW on the ECG reflects the spatio-temporal dispersion of repolarization times of the
ventricular myocites [178], several metrics related to TW morphology (such as amplitude [173], width [179],
nondipolar components [180], notches or asymmetries [147,181–183]) and duration (like QT dispersion
[184] and Tapex–Tend [185, 186]) have been proposed to quantify repolarization heterogeneity. Among
them, one of the most recently proposed is based on the TW time warping analysis [166] a method,
this, which allows to quantify linear and non-linear variations of the TW width and amplitude due to
homogeneous increments of this dispersion. The methodology used in this work has been adapted from
the mathematical framework presented by Ramírez et al. [166].

To illustrate the process of TW morphology comparison, consider two TWs and let call them ref-
erence, fr(tr) = [fr(tr(1)), ...,fr(tr(Nr))]>, and studied, fs(ts) = [fs(ts(1)), ...,fs(ts(Ns))]>, where
tr = [tr(1), ..., tr(Nr)]> and ts = [ts(1), ..., ts(Ns)]> and Nr and Ns being the total duration of tr and ts,
respectively, as illustrated in Figure 2.3a. We take fr(tr) as the reference TW and fs(ts) as the TW
to be compared with respect to fr(tr). Both fr(tr) and fs(ts) are aligned with respect to their centre
of gravity, so that only morphology changes, and not those associated with their relative delay, were
quantified by the warping algorithm.
Let γ(tr) be the warping function that relates tr and ts, such that the composition [fs ◦γ](tr) = fs(γ(tr))
denotes the re-parameterization or time domain warping of fs(ts) using γ(tr). To avoid the so called
“pinching effect” [187], the square-root slope function (SRSF) was proposed [188,189] for warping in a
well-defined geometrical space, defined as the square-root of the derivative of f(t), considering the sign:

qf (t) = sign
(
ḟ (t)

)√∣∣ḟ (t)
∣∣ (2.1)

The SRSF of fr(tr) and fs(ts), qfr (tr) and qfs(ts), respectively, are shown in Figure 2.3b. The optimal
warping function is the one that minimizes the amplitude difference between the SRSF of fr(tr) and
fs(γ(tr)), qfr (tr) and q[fs◦γ](tr) = qfs(γ(tr))

√
γ̇(tr), respectively [188,189]:
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γ∗ (tr) = argmin
γ(tr)

(∥∥qfr (tr)−q[fs◦γ] (tr)
∥∥) (2.2)

= argmin
γ(tr)

(∥∥∥qfr (tr)−qfs (γ (tr))
√
γ̇ (tr)

∥∥∥)
The optimal warping function, γ∗(tr), that optimally warps fr(tr) and fs(ts) is shown in Figure 2.3c.
The warped T-wave, fs(γ∗(tr)) is shown in Figure 2.3e, together with the reference T-wave, fr(tr), while
their corresponding SRSFs are shown in Figure 2.3d.

The dynamic programming algorithm, as described in [166], was used to obtain the solution of this
optimization [190].

2.3.5 Unsigned time warping parameter

The level of warping may be different under various situations and it reflects important information
regarding time domain variability. We define a metric, duw (corresponding to the index denoted as dw in
[166]), shown as the orange area in Figure 2.3c, that quantifies the level of warping needed to optimally
align any two TWs as the average of the absolute difference value between γ∗(tr) and tr:

duw = 1
Nr

Nr∑
n=1
|γ∗ (tr (n))− tr (n) |, (2.3)

If γ∗(tr) = tr, then the functions are perfectly aligned, so it makes sense to use the difference between
γ∗(tr) and tr to quantify the variability between each TW time domain.

Once the time domain variability has been compensated for by optimally warping fs(ts), the remaining
variability is merely amplitude variability, as shown in Figure 2.3e. Therefore, the amplitude difference
between fr(tr) and fs(γ∗(tr)), i.e. the variability between fr(tr) and fs(ts) not due to deviations in
the time domain, is quantified as the area contained between fr(tr) and fs(γ∗(tr)), normalized by the
L2-norm of fr(tr):

da = ea
‖ea‖

· ‖f
s (γ∗ (tr))−fr (tr)‖
‖fr (tr)‖ ×100, (2.4)

where ea
‖ea‖ ,ea =

∑Nr
n=1(fs (γ∗ (tr))−fr (tr)), accounts for the sign.

The proposed markers, duw and da, contain information about linear and non-linear differences in both
time and amplitude, respectively. Isolating the strictly non-linear variability information might provide
additional understanding on the different sources generating the morphology of the T-wave.

Figure 2.4a shows the optimal warping function from Figure 2.3c. As explained in eq. (2.3), the marker
duw is calculated as the mean deviation of γ∗(tr) from tr, marked in orange in Figure 2.4a. By fitting
γ∗(tr) with a linear regression, γ∗l (tr) (green line), and measuring the mean deviation of γ∗(tr) with
respect to this regression, we can have a quantification of the level of non-linear warping (dashed black
region). This can be expressed as:

dNL
w = 1

Nr

Nr∑
n=1
|γ∗ (tr (n))−γ∗l (tr (n)) |, (2.5)

where γ∗l (tr) is the linear fitting of γ∗(tr) using the least absolute residual method [191] (Figure 2.4a).
The linear warping can be quantified by measuring the mean deviation of γ∗l (tr) from tr (non-dashed
region in Figure 2.4a).

Regarding da, normalizing the warped TWs, we can quantify non-linear amplitude differences not due
to homogeneous scaling, and possibly caused by heterogeneous dispersion of repolarization times:

dNL
a =

∥∥∥∥ fr (tr)
‖fr (tr)‖ −

fs (γ∗ (tr))
‖fs (γ∗ (tr))‖

∥∥∥∥×100. (2.6)

This is depicted in Figure 2.4b and 2.4c. Panel (b) shows the reference, fr(tr) (solid blue), and
studied, fs(ts) (solid red), TWs with only amplitude variability (we assumed γ∗(tr) = tr in this example
for clarity). Panel (c) shows the remaining non-linear amplitude variability after normalization.
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2.3.6 Signed time warping parameters

In this thesis, two different versions of the duw markers were also implemented to define the direction
of the warping (i.e. if the studied TW has to be enlarged or shrunken in order to fit the reference one)
and to solve the dependency of the TW with the HR.

The original definition of duw eq. (2.3), was modified here to allow the marker to be signed, therefore
distinguishing TW widening from narrowing. This signed dw was proposed in [167] and defined as:

dw =
(
sd
|sd|

)
1
Nr

Nr∑
n=1
|γ∗ (tr (n))− tr (n) | (2.7)

where sd was used to account for the sign of the dw and it was computed as:

sd =
∑
n∈Nur

(γ∗ (tr (n))− tr (n)) +
∑
n/∈Nur

(tr (n)−γ∗ (tr (n))) (2.8)

with Nu
r being the set of TW up-slope samples. A positive sign means that the fs(ts) has to be widened

to fit the fr(tr) and vice-versa for a negative sign.

2.3.7 Heart-rate-corrected TW warping marker

It is well known that TW duration and QT interval are strongly dependent on HR [192]. Although
aligning the TWs according to their gravity centre reduces most of the dependence of dw on HR, there may
still be some residual dependence in TW morphology that should be compensated for. For that purpose,
dw, as originally proposed in eq. (2.7), was assumed to be modelled as the sum of two components:

dw = dw,c+dw,HR (2.9)

where dw,HR is the HR dependent component and dw,c is the non-HR dependent component accounting
for [K+] induced variations and possibly others not HR-related.

To estimate the component dw,c of interest, we depart from the literature, where several formulae
for HR-dependency correction of repolarization related time intervals, like the QT interval, have been
developed [193–196], including a variety of approaches (e.g. linear, hyperbolic, exponential models etc.)
being investigated and tested in view of the complex relationship between QT interval and HR [195]. To
derive a correction formula and estimate dw,c, we started from a linear approximation of a hyperbolic
model under small RR changes, derived similarly to the QT interval correction (QTc) [194,195],

QT = β(RR)α (2.10)

Let’s call RRr the reference RR interval associated to the reference TW and RRi the one to the i-th RR
interval from one beat at the i-th segment, then

QTi−QTr = β
(

(RRi)α− (RRr)α
)
. (2.11)

As the QTi−QTr difference, also dw(i) is a measure of width change between the reference r and the
current i-th mean TWs from their respective observations time windows, then it is possible to extend
previous relation in eq. (2.11) to dw(i) obtaining the HR related component

dw,HR(i) = β
(

(RRi)α− (RRr)α
)
. (2.12)

By substituting eq. (2.12) in eq. (2.9) we obtain:

dw(i) = dw,c(i) +β
(

(RRi)α− (RRr)α
)
. (2.13)

The value dw,c(i) can be assumed to be non-zero mean, and uncorrelated to HR, that is:

dw,c(i) = b+∆dw,c(i), (2.14)

23



2.3 Methods

(a) (b)

(e) (c) (d)

da = 39.21% duw = 20.10ms dw =−20.10ms

eq. (2.1)

eq. (2.2)

eq. (2.4) eq. (2.3) eq. (2.7)

Figure 2.3: Flow diagram illustrating the computation of linear warping and amplitude markers duw, dw and da. Panel (a)
shows the reference TW (solid blue) and the one, referred to as TW study, whose morphology is wanted to be compared
having longer duration and larger magnitude (solid red). (b) Their respective square-root slope functions are obtained by
applying eq. (2.1). (c) Optimizing eq. (2.2) with the “Dynamic Programming” algorithm [166], the warping function that
optimally relates tr and ts, γ∗(tr), is computed. (e) The re-parameterization of fs(ts) using γ∗(tr) leads to [fs ◦γ∗](tr),
the warped TW with no remaining time domain variability, and only presenting amplitude variability. (d) Square-root slope
functions of the reference (solid blue) and warped (dashed red) TWs.

(a)

(b) (c)

dNL
w = 5.31ms

dNL
a = 11.71%

eq. (2.5)

eq. (2.6)

Figure 2.4: Calculation of the non-linear warping and amplitude information. In panel (a), the area between γ∗(tr) and
tr (orange region) represents the total warping information, quantified by duw, while the area between γ∗(tr) and γ∗l (tr)
represents the non-linear warping information (dashed black region), quantified by dNL

w . In panel (b) are the reference, fr(tr)
(solid blue), and the studied, fs(ts) (solid red), TWs with only amplitude variability (γ∗(tr) = tr). Panel (c) shows both
the normalized reference, fr(tr)

‖fr(tr)‖ , and the studied, fs(γ∗(tr))
‖fs(γ∗(tr))‖ , TWs.
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with ∆dw,c(i) zero mean and uncorrelated to HR. Then, dw(i) becomes:

dw(i) = b+∆dw,c(i) +β
(

(RRi)α− (RRr)α
)
, (2.15)

where the parameters b, β and α, once jointly estimated (i.e. b̂, β̂ and α̂) can be used to derive d̂w,c(i) as:

d̂w,c(i) = dw(i)− β̂
(

(RRi)α̂− (RRr)α̂
)

(2.16)

Note that, β̂ and α̂ cannot be assessed from eq. (2.15) with a directly least square fitting, since the DC
component b in eq. (2.15) largely affects the results. Rather, it is possible to jointly estimate b̂, β̂ and α̂,
and then use the results in eq. (2.16).
This estimate can be further approximated linearly for small RR changes. Denoting ∆RR(i) = RRi−RRr,
RRi can be expressed as RRi = RRr +∆RR(i) and by replacing this in the right side of eq. (2.12):

dw,HR(i) = β
(

(RRr +∆RR(i))α− (RRr)α
)

(2.17)

Operating on the terms and under the assumption that ∆RR(i)� RRr, ∆RR(i)
RRr � 1 and by using the

Taylor’s series expansion, we have

(RRr +∆RR(i))α− (RRr)α ' α∆RR(i)(RRr)(α−1). (2.18)

Substituting eq. (2.18) in eq. (2.13):

dw(i)' b+∆dw,c(i) +α β ∆RR(i)(RRr)(α−1) (2.19)

where b, α, β and (RRr)(α−1) are constant values; then placing:

α β(RRr)(α−1) = c, (2.20)

the actual dw(i) dependency with RR will be:

dw(i)' b+∆dw,c(i) + c ∆RR(i). (2.21)

From the geometrical point of view, b and c can be estimated as the zero-crossing and the slope, respectively,
of the least-squares line fit to the dw(i) values (in a ∆RR vs. dw graph). Then, the dw(i) component that
does not dependent on the RR, meaning it is assumed not correlated, can assessed as:

d̂w,c(i) = dw(i)− ĉ ∆RR(i) = dw(i)− ĉ(RRi−RRr) (2.22)

where ĉ is the estimated slope from the Holter recording (see Figure 2.5), d̂w,c(i) is then the corrected
estimated of dw,c(i), with RRi and RRr the mean RR interval from the i-th studied segment and the
reference windows respectively and ĉ parameter is estimated for every patient during the time course of
the Holter recording. When the linear approximation presented above cannot be assumed, b̂, β̂, and α̂
can be jointly estimated from the model in eq. (2.15), and use the eq. (2.16) as the corrected estimate.

2.3.8 Mean warped TW

From a set of I TWs, {fs1(ts1),fs2(ts2), ...,fsI(tsI)} with temporal and amplitude variability it is possible
to calculate a mean warped TW (MWTW) that is an optimal representative average both in temporal
and amplitude domains. Consequently, we will iteratively search for the optimal MWTW in the SRSF
domain, q̄k(tr), where k is the iteration, that minimizes the average of the difference between q̄k(tr) and
each of the SRSF transformations of the set of T-waves, {qfs1 (ts1),qfs2 (ts2), ...,qfs

I
(tsI)}. Therefore, we

initialize q̄k=1(tr) as the average of {qfs1 (ts1),qfs2 (ts2), ...,qfs
I
(tsI)} and, then, for iteration k, we look for

the optimal set of {γ∗k1 (tr),γ∗k2 (tr), ...,γ∗kI (tr)} that minimizes:

γ∗
k

i (tr) = argmin
γi(tr)

(∥∥∥q̄k (tr)−qfs
i

(γi) (tr)
∥∥∥) , (2.23)

i= 1, ..., I.
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(a) (b)

Figure 2.5: Example of the HR corrected dw. Scatterplot showing the values of both dw panel (a) – eq. (2.7) – and d̂w,c panel
(b) – eq. (2.22) – with respect to ∆RR for a patient undergoing HD in PCA approach. Spearman’s correlation coefficients
(ρ) and p-values for both dw and d̂w,c are shown on top of each panel, while the least-square fitting regression lines are
plotted in red.

The updated SRSF transformation of the MWTW can be calculated as:

q̄k+1 (tr) = 1
I

I∑
i=1

q[fs
i
◦γ∗k
i

] (tr) (2.24)

We repeated eq. (2.23) and (2.24) until the difference between the energies of q̄k+1(tr) and q̄k(tr) was
lower than 0.1%. Then, the final MWTW can be obtained as [188,189]:

f̄ (tr (n)) = 1
I

I∑
i=1

fsi (tsi (1)) +
n∑
l=1

q̄k (tr (l))
∣∣∣q̄k (tr (l))

∣∣∣ (2.25)

When the morphology of the set of TWs is very homogeneous, the morphology of the MWTW will be
very similar and representative of the set. However, if the morphologies in the set are heterogeneous, like
when a large portion of TWs are biphasic or S-shaped while another portion is monophasic, the MWTW
morphology will resemble the dominant TW shape, in case there exists one, or the arithmetic TW mean
(after warping), if the different populations have the same weight. Therefore, it would be advisable to
include a pre-processing step to remove any undesired TW morphology prior the computation of the
MWTW. This issue was addressed as explained in the following paragraph.

Mean warped T wave extraction in DEKOALE datset

All the TWs from the selected single leads and from PC1 were low-pass filtered at 20 Hz using a
6-th order Butterworth filter to remove remaining out-of-band frequency components. Then, two-minute
ECG segments, centred on the 5-th and 35-th minutes of each available hour, were analysed. The
window duration was short enough to hold the assumption of stability for both [K+] and HR values and
previously adopted for similar purpose (i.e. TW-based index extraction for [K+] variations monitoring)
[141]. For each i-th 2-min segment, the predominant TW polarity, defined as that having the highest
number of occurrences, was obtained. This preliminary step was essential since TW polarity change
can be physiological or induced by delineator oscillation when by-phasic to regular TWs appears almost
indistinguishable. A TW was considered to have inverted polarity if the magnitude of its peak had
negative sign and vice-versa. Only those TWs having the same polarity as the predominant one were
considered for the following steps.

First, all the selected TWs were aligned with respect to their gravity center and used to compute an
initial MWTW. Then, all the TWs were checked to find and discard the outliers, defined as having time
duration outside the range Tdmi ±1.5×σdi being Tdmi and σdi the mean TW duration and standard
deviation of the TWs duration respectively, for the i-th segment. Finally, among the remaining, only those
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TWs highly correlated (Pearson’s correlation > 0.98) with the initial MWTW were used to recalculate a
final MWTW, which best represents the general TW morphology for that particular segment.

Since hyperkalemia has been reported to cause TW inversions [197], any MWTWs with negative-polarity
was inverted before performing the warping with the reference MWTW.

Once extracted all the MWTW, time warping analysis (described in section 2.3.4) was performed. The
MWTW at the end of the HD treatment was taken as the reference for parameters computation, given
that it is the time when the patient (a) is supposed to have recovered the normal [K+] level and (b) was
discharged from hospital, being an appropriate reference for out-of-hospital ambulatory monitoring.

For comparison purposes, both Tw [134] and TS/A [141] were extracted from each MWTW and their
performance, with respect to time warping based parameters in monitoring [K+], was assessed.

2.3.9 Potassium concentration variations ∆[K+]

The proposed parameters have been compared with the relative variations in [K+] (denoted as
∆[K+](h)) with respect to a reference [K+] that was taken at the end of the HD:

∆[K+](h) = [K+]h− [K+]r (2.26)

being [K+]h the concentration at the h-th hour during the HD and [K+]r the concentration at the end of
the treatment. An example of the ∆[K+](h) evolution is shown in Figure 2.7a (purple diamonds).

2.3.10 Statistical analysis

Results are presented as median and interquartile range (IQR). Spearman rank correlation coefficient
(ρ) and Pearson correlation (r) were used for correlation analysis between ∆[K+] and the marker, giving
information about both the monotonic relation and the strength of the association between the markers
and [K+] changes and then providing a more complete characterization.

The average duration of the ECG recordings was 44 hours mainly due to electrode detachment or
early battery exhaustion. For this reason, in this chapter, correlation coefficients were computed by
using the first five values of ∆[K+](h) throughout the HD (i.e., h0 to h4 in Figure 2.1) and the warping
markers evaluated at the corresponding i-th segment points (h= (i−1)/2 where i=1,3,5,7,9 or i=1,3,5,7,8
depending on the HD duration). All statistical analyses were performed using MATLAB.

2.4 Results

In this study, ECG signals and [K+] from 29 ESRD patients undergoing HD were investigated. An
example of dw and d̂w,c time evolution for a particular patient, in PCA approach, was provided in
Figure 2.5. ∆RR was represented on the x-axis in both panels, while dw and d̂w,c were shown on the
y-axis in panel (a) and panel (b), respectively. The least-square fitting line (red line) was depicted in both
panels. Spearman’s correlation coefficients (ρ) and p-values were also showed in each panel. High and
significant correlation (ρ=−0.90 and p-val < 0.001) was found between ∆RR and dw. However, after
correcting for the HR-dependency, ρ= 0.03 and p-val= 0.76.

Boxplots in Figure 2.6 show the distributions of ∆[K+] and the proposed PCA-based time warping
descriptors during HD. Figure 2.7b shows the average time evolution of PCA-based duw, dw, d̂w,c and dNL

w

in the studied population along the monitoring period, while da and dNL
a are in Figure 2.7c.

Table 2.3 shows the intra-patient Spearman’s (ρ) and Pearson’s (r) correlation coefficients computed
between ∆[K+] and the time warping parameters. In both single-lead and PCA approaches, the highest
median Spearman’s and Pearson’s correlation coefficients were found for duw, dw and dw,c being ρ≥ 0.82
and r ≥ 0.86 for single-lead analysis and ρ≥ 0.82 and r ≥ 0.89 in PCA.

Spearman’s and Pearson’s correlation coefficients between [K+] values and mean HR, expressed in
beats per minute (bpm), during the HD period were computed and the results are presented in Table 2.4.
The Spearman’s correlation coefficient median (IQR) values were 0.10 (1.35), with p-val= 0.33. Similarly,
Pearson’s correlation coefficient median (IQR) were 0.09 (1.45) with p-val= 0.22.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Distribution of blood potassium variations (∆[K+]) and PCA-based time warping markers during the HD. In
each panel, ∆[K+] (blue) and markers (red) distributions are provided at any time point from the beginning, h0, to the end,
h4, of the HD session (h0 to h4 in Figure 2.1). The central line of the boxplots represents the median, the edges of the box
are the 25-th and 75-th percentiles, and the whiskers extend to the most extreme data points not considered as outliers. The
notches represent the 95% confidence interval of the median, calculated as q2−1.57(q3− q1)/

√
n and q2 + 1.57(q3− q1)/

√
n

being q2 the median, q1 and q3 are the 25-th and 75-th percentiles, respectively, and n is the sample size. Finally, red “+”
denotes outliers.

2.5 Discussion

In this chapter, two previously reported potassium estimators, Tw [134] and TS/A [141], four warping-
based ECG-derived descriptors for [K+] monitoring proposed in Ramírez et al. [166], duw, da, dNL

w , dNL
a ,

and the here proposed modified versions dw and dw,c were tested as bloodless indices for [K+] variations
in ESRD patients undergoing HD therapy computed from standard leads as well as in a PCA-derived
lead. The most encouraging results, in terms of correlation, were obtained for markers duw, dw, and dw,c,
leading to the highest median intra-patient ρ≥ 0.82 and r ≥ 0.87 in single-lead and ρ≥ 0.82 and r ≥ 0.89
in PC1 lead respectively, evidencing high monotonic and linear association with [K+] and making them a
promising non-invasive indices for blood [K+] monitoring.

2.5.1 Comparison between duw and dw

The signed marker dw followed a similar time-trend as the original duw during the whole monitoring
period, showing a similar distribution in Figure 2.7b, as a result of the fact that the sign computed as in
eq. (2.8) is positive in roughly all the patients. That can be explained by the fact that the TW morphology
in hyperkalemia is usually more peaked and shorter in time than a TW from regular [K+] concentrations,
as happens at the end of HD, where the reference has been taken [90,91].

Therefore, all the other MWTWs needed to be shrunk in amplitude and widened in time duration
during the warping procedure to fit the reference one, and this is given by a positive signed dw. However,
other external factors, such as the potassium removal rates [198] or the dialysate potassium level [199,200],
might also have played a role in altering ventricular repolarization activity.
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(a)

(b) (c)

Figure 2.7: PCA-based time warping markers and RR interval time trends. An example for a given patient undergoing
4h-long HD therapy, is depicted in panel (a) with the evolution of dw (filled green squares), d̂w,c (filled orange squares),
both referring to the left vertical scale, and the average RR intervals (unfilled dark red squares, referring to the right vertical
scale). ∆[K+] relative variations with respect to the concentration at HD end (purple diamonds) are expressed in mmol/L.
Time is expressed in hours from the beginning of the treatment onward. Each square denotes the mean RR interval in a
2-min wide segment used to compute the warping parameters, while the highlighted blue square corresponds to the reference
segment at the end of HD. The filled red square denotes the time-point from which the studied MWTWs in Figure 2.3 was
selected. Note that for this patient, the Holter recording did not reach the planned 48h. Panel (b) shows the median and
IQR for each observing i-th segment, computed by using the values from all the available patients for duw, dw and d̂w,c and
dNL
w (this latter refers to the right axis, while the others to the left). Time trends (expressed as median and IQR) for da

and dNL
a , referring to the left and right axes respectively are in panel (c). Panels (b) and (c) give an overview of the time

evolution for these descriptors along the ECG acquisition from the beginning of the HD onward. Only the first 44h were
depicted being that the average ECG duration in the DEKOALE dataset.
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Table 2.3: Intra-patient Spearman’s (ρ) and Pearson’s (r) correlation coefficients between ∆[K+], and time warping based
markers, and Tw and TS/A, in all cases evaluated from the PC1 transformed lead, and from standard single leads II, V3, V4,
V5 and V6. Values are expressed as median (IQR).

Spearman’s (ρ) Pearson’s (r)
PCA II V3 V4 V5 V6 PCA II V3 V4 V5 V6

duw
0.90 0.90 0.86 0.90 0.90 0.90 0.92 0.91 0.85 0.86 0.92 0.86
(0.37) (0.40) (0.50) (0.38) (0.25) (0.29) (0.36) (0.37) (0.37) (0.41) (0.14) (0.30)

dw
0.82 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.88 0.86 0.93 0.87
(0.45) (0.37) (0.49) (0.46) (0.30) (0.39) (0.35) (0.26) (0.31) (0.39) (0.11) (0.29)

d̂w,c
0.90 0.82 0.86 0.90 0.90 0.90 0.89 0.87 0.89 0.86 0.91 0.86
(0.31) (0.28) (0.40) (0.50) (0.30) (0.38) (0.25) (0.33) (0.29) (0.49) (0.17) (0.27)

dNL
w

0.82 0.43 0.70 0.67 0.70 0.80 0.68 0.47 0.61 0.56 0.56 0.61
(0.57) (0.60) (0.45) (0.60) (0.64) (0.56) (0.52) (0.58) (0.47) (0.45) (0.64) (0.47)

da
0.21 0.00 0.50 0.40 0.45 -0.10 0.57 0.14 0.83 0.63 0.62 -0.32
(1.20) (1.22) (0.80) (1.45) (1.59) (1.15) (1.53) (1.55) (0.67) (1.71) (1.65) (1.52)

dNL
a

0.80 0.65 0.70 0.70 0.86 0.87 0.75 0.82 0.66 0.68 0.88 0.84
(0.42) (0.70) (0.59) (0.77) (0.45) (0.40) (0.39) (0.83) (0.56) (0.84) (0.30) (0.38)

Tw
-0.70 -0.84 -0.90 -0.75 -0.80 -0.90 -0.92 -0.85 -0.87 -0.81 -0.84 -0.75
(0.59) (0.57) (0.52) (0.67) (0.63) (0.65) (0.32) (0.35) (0.40) (0.62) (0.44) (0.48)

TS/A
0.80 0.62 0.60 0.46 0.76 0.63 0.86 0.83 0.71 0.46 0.74 0.72
(0.42) (0.80) (0.85) (1.07) (0.59) (0.69) (0.38) (0.77) (0.65) (0.83) (0.45) (0.52)

Table 2.4: Blood potassium concentration [K+] values (in mmol/L) at each blood extraction during the HD (h0 to h4,
see Figure 2.1) and corresponding HR (beats/min). Spearman’s (ρ) and Pearson’s (r) intra-patient correlation coefficients
between [K+] and RR. Values are expressed as median (IQR).

h0 h1 h2 h3 h4 ρ r

[K+] 5.00 3.85 3.64 3.39 3.30 0.10 0.09(1.36) (1.08) (0.84) (0.74) (0.62)

HR 81 76 80 80 80 (1.35) (1.45)(28) (28) (23) (17) (25)

2.5.2 The HR correction of the dw improve the correlation with ∆[K+]

The warping algorithm is applied over the MWTWs computed from different observing windows with
different HRs. Therefore, a corrected version of the dw, derived similarly to the QT correction formula
[194,195], was proposed since the HR influences this marker as pointed out in Ramírez et al. [166], and
can be observed in Figure 2.4 as an example around hours h=9, 12 and 43.

A large number of models have been proposed for the computation of QTc values independent of
HR [193–196]. However, a previous study [194] found that the linear regression model fits better than
any other model to the relationship between QT and the RR intervals. Also, for small RR variations, in
section 2.3.7 it is shown that hyperbolic QT to RR dependency becomes linear. Therefore, we used a linear
model to derive an HR-corrected index, dw,c. This approach was used to estimate the dw component
strictly related to [K+] removing its relation with HR as showed in Figure 2.5, where the HR-dependency,
clearly visible in panel (a), was cancelled after the correction, panel (b).

Comparing the results for duw, dw and d̂w,c, all of them have proved to be highly correlated with
[K+] variations. However, it is important to remember that duw (an so dw) is biased by the HR effects
as previously described [166], while d̂w,c is no longer dependent on it, possibly being responsible for the
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lower IQR in the correlation, 0.25, as compared to 0.35 and 0.36 for dw and duw, respectively (see Table
2.3, PCA column). It should also be noted that the small differences between the ρ and r computed for
d̂w,c and dw could be due to the low HR variations observed during HD, but larger HR variations, and
consequently a higher impact of the correction, are expected in ambulatory monitoring.

2.5.3 da marker shows poor correlation with ∆[K+]

As described in section 1.4.3, ECGs recorded under hyperkalemic conditions commonly present TWs
which are taller than those for normal levels of blood [K+]. The marker da was designed to capture the
amplitude variability between the reference, fr(tr), and the studied, fs(ts), MWTWs after warping.
However, from its original definition, da can take both positive and negative values, producing positive
intra-patient ρ and r between ∆[K+] and da in 62% of the cases and negative in 38% of the cases. This
explains the low median inter-patient correlation (ρ= 0.21) and the wide IQR (1.20).

Nevertheless, if its absolute value was considered then correlation between ∆[K+] and da becomes
larger being ρ= 0.70 (0.60) and r = 0.75 (0.31).

2.5.4 The non-linear time warping markers reflect [K+] fluctuations

Cellular AP duration can be affected in a heterogeneous manner by [K+] fluctuations since ion channel
expression is heterogeneous throughout the ventricles [10] and this can result in non-linear changes on
T-wave morphology. According to their definition [166], dNL

w and dNL
a were designed to quantify the

inhomogeneous morphological variations during ventricular repolarization; this fact might explain their
correlation with ∆[K+]. Both markers showed a remarkable sensitivity to the variations of ventricular
spatio-temporal dispersion independently from changes in HR [166], meaning that they did not need a HR
correction as was done for dw. This last point, particularly for dNL

a , in addition to its also high correlation
with ∆[K+], make it an interesting TW descriptor for blood [K+] assessment.

2.5.5 Relationship between HR and [K+]

In this chapter, the correlation between HR and [K+] was investigated, finding no significant correlation
between them. To place these results into a proper context, in a previous study on computer-based models
it was found that the heart rate in ESRD patients undergoing HD is influenced by the combined effects of
[K+], calcium and pH [201]. In particular, it was observed that when [K+] is between 3 and 4 mmol/L,
the HR sensitivity is about 10 bpm/mmol of [K+] [201].

As reported in Table 2.4, the median [K+] falls within the above mentioned range from h1 to h4 (i.e.,
during the entire HD session) but the range of HR variations is much bigger than the 10 bpm mentioned
in Severi et al. [201] (minimum IQR = 17 bpm at h3) so anticipating the obtained low and insignificant
median correlations coefficients between HR and [K+]. This result suggests that HR variations are a poor
indicator of ∆[K+], at least in our dataset. Moreover, this finding gives validity to the proposal of the
d̂w,c presented in this work, which assumes no correlation between HR and [K+]-related changes on TW
morphology.

2.5.6 Performance evaluation of the proposed time warping indexes respect
to Tw and TS/A

In a previous study [154] a comparison of Tw, TS/A, dw, dNL
w , da and dNL

a , based on a electrophysiological
simulation of ECG under hyperkalemia, was performed, and tested on a subset of the ESRD patients
undergoing HD therapy. In that study, it is shown that similar results were obtained in terms of Pearson’s
correlation coefficient between [K+] and Tw, TS/A, and time warping based markers, also showing a high
correlation with HR.

In the present work we extended the analysis by increasing the sample size, introducing the proposed
correction by HR, and comparing with single lead recordings. According to the Spearman’s (ρ) and
Pearson’s (r) correlation coefficients, the median values are higher, and the IQR smaller, for duw, dw

31



2.6 Conclusions

and dw,c than for TS/A using both PCA and standard single-lead approaches. For Tw, we found similar
r median absolute values, as compared to duw, dw and dw,c, while Spearman’s correlation values were
much lower for Tw when using PCA and several single-leads (e.g. lead V4 and V5). This shows that the
proposed time warping based markers present either higher correlation or stronger monotonic relationship
with ∆[K+] than Tw, and TS/A, making them more suitable for [K+] monitoring purposes.

2.5.7 Clinical Significance

In this chapter it has been demonstrated that dw, d̂w,c and dNL
w have potential value in monitoring

changes in blood potassium concentration. All of them exhibit a time-course similar to that of [K+] in
ESRD patients undergoing HD as described in literature [199,200]: a rapid decline during the HD with a
fast rebound just after the end of the therapy as continued mobilization of potassium from intracellular
space to extracellular space occurs, followed by a steady increase in the remaining hours before the next
HD session (see Figure 2.7b and Figure 2.7c).

Based on that, it seems reasonable to consider the use TW time warping based markers for continuous
[K+] monitoring, also in other clinical scenarios such as in patients suffering heart failure [202], where
hyperkalemia also increases the risk of SCD.

2.5.8 Limitations

The main limitation concerns the reduced amount of blood tests (only six) took from each patient
during the 48-hour ECG recording, which provided an accurate representation of the [K+] time evolution
only during HD, but not during the ambulatory period. On this basis, it was possible to investigate the
relationship between the proposed markers and the ∆[K+] only during the therapy but not through the
remaining hours. Moreover, the course of HD procedures can be accompanied by ischaemia [203, 204],
which can also be associated with changes in the TW, independently from HR, therefore reflected on
dw,c. Elucidation of its impact in monitoring normal-life outside the HD process needs to be explored in a
dedicated study.

Postural or body position changes (BPC) are known to affect the TW morphology and mainly the TW
amplitude [205], which can influence da related markers. The fact that those markers were measured on
PCA lead could attenuate the effect of BPC on TW, however in chapter 3 a specific study is performed to
precisely establish the impact of this aspect on the TW-time warping markers.

Assessment of the performance of the proposed descriptors in patients with hypokalemia remains to
be studied. In addition, the methodology proposed in this work needs to be validated in: a) a larger
population; and b) subsequent HD sessions on the same population, which would allow to quantify the
accuracy in [K+] estimation.

Finally, PCA transformation may be dominated by TWs in precordial leads (see section 1.4.1), which
have the highest amplitude. In other words, the algorithm may have not captured the morphological
variation reflected in other leads.

2.6 Conclusions

In this chapter, ECG-based time warping markers (dw, da), their non-linear components (dNL
w and dNL

a )
and a HR corrected version dw,c, in all cases personalised making it relative to a reference point (the end
of the HD), were studied in ESRD patients undergoing HD and evaluated as estimator of [K+] changes
over time.

Among the analysed markers and methods (i.e. standard single-lead or PCA transformed lead
approaches), the proposed PCA-based dw and its HR corrected version, dw,c, achieved better results
than the previously proposed TS/A in terms of both Spearman’s and Pearson’s correlation with ∆[K+],
and showed higher monotonic relationship than Tw. This makes the proposed time warping markers
a valid and more accurate alternative to the currently available tools for routine [K+] monitoring of
ESRD patients undergoing HD without the need of invasive blood test, in both hospital and ambulatory
scenarios.
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3.1 Introduction

In chapter 2, TW morphology markers, obtained by applying time warping analysis, have been proposed
for noninvasive [K+] variation monitoring in ESRD patients undergoing HD, and their performance
was assessed against two previously proposed TW-based markers: the width of the TW [134], the TW
slope-to-amplitude ratio [141]. All these markers were extracted from standard single-lead and from the
first PC, and the most promising results were found for PCA-based dw, d̂w,c and dNL

w .
However, PCA is a LSR technique that maximise TW variance, which may not be the best strategy

for emphasising clinically relevant information [163]. Indeed, PCA’s maximum-variance criterion might be
problematic when there is a low SNR or in the presence of body position changes (BPC) [172,206]. In other
words, PCA may not be able to distinguish between noise and the useful [K+]-driven TW morphological
variations, thus jeopardizing the potential clinical significance of time warping based markers.

An alternative LSR technique to PCA is periodic component analysis (πCA) [207,208], which transforms
the multi-lead ECG signal by maximizing the periodic components on the TL. This technique was already
applied for TW alternans detection on ECG [163], demonstrating superior performance to PCA in noisy
scenarios. In this chapter, πCA was performed to enhance the TW one-beat periodicity under the
hypothesis that it would outperform PCA in minimising the contribution of noise and other non-cardiac,
no-beat periodic sources before deriving time warping based markers to monitor [K+] variations.
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TW changes can also occur as a consequence of causes other than [K+] variations including (i) BPC
which have been shown to influence TW morphology, in particular its amplitude [205,209] and (ii) different
noise sources [210]. These sources could affect the specificity and robustness of TW morphological markers
as surrogate of electrolyte changes, thus jeopardising their clinical validity.
In this chapter, a detailed analysis is carried out to understand how both BPC and noise influence the
TW-based descriptors as function of the TL.

This chapter aims to compare the performance of πCA and PCA as LSR techniques prior to TW time
warping analyses for deriving robust TW-based markers for [K+] monitoring.

3.2 Materials

Two data sets were analysed in this chapter: ECG signals from DEKOALE dataset (section 2.2) as
well as recordings from 20 healthy subjects undergoing controlled BPC.

3.2.1 BPC dataset

The BPC database contains ECGs from 20 healthy (eleven males and nine females, 32 ± 9 years
old) performing the following sequence of BPC: supine (S), right side (R), and left side (L): S→R→S→L
[211]. The complete sequence was repeated five times with a duration of 1 min per body position, so
that muscular activity and other artifacts were allowed to decay before the next BPC was initiated. A
standard 12-lead ECG was simultaneously acquired at a sampling rate of 1 kHz and amplitude resolution
of 0.6 µV [205]. All participants gave explicit consent to participate in the study. The experimental
procedures involving healthy volunteers described in this data collection were in agreement with the
principles outlined in the Helsinki Declaration [205,211].

The BPC database has been made available for the study by professor Leif Sörnmo from Lund
University, Lund, Sweden.

3.3 Methods

3.3.1 ECG preprocessing and single lead analysis

As reported in section 2.3.1, preprocessing of ECG recordings included baseline wander removal at 0.5
Hz in each lead and low-pass filtration to remove power-line noise and to attenuate muscular activity.
Then, QRS complexes were detected and TW delineated using the wavelet-based delineation previously
mentioned in section 2.3.2. An example ECG before and after this pre-processing are in in Figure 3.1a and
Figure 3.1b, respectively. Similarly to the study done in chapter 2, standard lead analysis was performed
for ECG signals in the DEKOALE dataset. In this chapter, TW were selected in leads II, V4 and V6 being
those having the highest Spearman’s and Pearson’s correlation coefficients, in median, with ∆[K+] (see
Table 2.3). In addition, as previously explained, waveforms from leads V4 and V6 were used in a previous
study [145] for estimating [K+] while lead II is the most popularly used in patient monitoring [170].

3.3.2 Lead space reduction techniques

For each ECG recording, a transformation matrix Ψ was obtained using πCA or PCA and applied
to the 8 independent leads (I, II, V1, V2, V3, V4, V5 and V6) to obtain 8 TLs. Since the different
datasets investigated in this study were recorded under different conditions, πCA and PCA learning period
locations were specifically defined for each of them and summarised in Table 3.1. The portion of heartbeat
(onset and end points) considered in the learning of each LSR technique are summarised in Table 3.2.
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Original ECG

(a)

Pre-processed
ECG

(b)

πCB

(c)

πCT

(d)

PC

(e)

Figure 3.1: Example of the implemented ECG pre-processing and πCB, πCT and PCA computation. Panel (a) shows the
original eight independent ECG leads from a particular ESRD patient undergoing HD while in panel (b) is depicted the final
pre-processed filtered signal from panel (a) as described in section 3.3.1. Panels (c), (d) and (e) show, πCB, πCT and PCs,
respectively, obtained after linear transformation of (b). Figure from [212].

Principal Component Analysis

The matrix ΨPCA defining the PCA transformation was obtained from the eigenvectors of the 8×8
inter-lead ECG auto-correlation matrix computed using the samples in the TW, as described in section 2.3.3,
within the corresponding learning window (see Table 3.2).

Periodic component analysis

This technique aims to emphasise the periodic structure of the 8 independent leads, instead of the
variance as in PCA. In this work, we applied ΨπCA to maximise the beat-to-beat periodic components
on the transformed signal, in contrast to [163], where it was used to emphasise the every-second-beat
periodicity for TW alternans detection. To avoid spurious variability due to errors in QRS detection
(section 3.3.1), a pre-alignment of QRS complexes falling within the learning period (see Table 3.1) at
each lead was performed. Then, TWs were obtained by using a window from R wave peak (Rp) plus 60
ms to Rp + 400 ms. The complete QRST complex, defined as the segment from Rp-80 ms to Rp + 400
ms, was also extracted (Table 3.2). Then πCA was computed by learning either at the TWs or at the
complete QRST complexes, resulting in πCT#s, or πCB#s, respectively.

3.3.3 Computation of πCA transformation matrix

Let K be the number of aligned TW (or QRST complexes) in the learning window, having N samples
each, for L available leads. Let xk,l(n) denote the n-th selected sample of the k-th beat in the l-th lead of
the filtered ECG signal. In vector notation, xk,l =

[
xk,l(0) · · · xk,l(N −1)

]T represents the TW (or
QRST complex) from the k-th beat of the l-th lead, which are piled together in the L×N matrix Xk:

Xk =
[
xk,1 xk,2 . . . xk,L

]T
, (3.1)

where the n-th column of Xk contains the amplitudes of the L leads at a given sample n. Two data
matrices X and X(m) were then constructed by concatenating K consecutive matrices Xk,

X =
[
X1 X2 · · · XK

]
, (3.2)

and the m-beat delayed version

X(m) =
[
Xm+1 Xm+2 · · · Xm+K

]
. (3.3)
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Table 3.1: Time excerpts location for: i) learning of ΨPCA and ΨπCA, ii) MWTW analysis for markers estimation and iii)
MWTW reference computation.

DEKOALE datset BPC ECG Simulation
Learning period to estimate ΨPCA and ΨπCA matrices

10-min window 60-s window Last 60 beats simulating
at the end of HD at first supine position the end of HD
Width and analysis window locations of MWTW and marker estimation

2-min every 60-s Intervals of
30 min (each BPC) 60 beats

Window location for reference MWTW computation
End of First supine Last 60 beats simulating
HD [167] position the end of HD

Table 3.2: Segmented beat excerpt limits for PCA and πCA learning. Rp, Ton and Tend positions were obtained by using
the delineator described in section 2.3.2.

πCB πCT PCA
Initial Point Rp - 80 ms Rp + 60 ms Ton
Final Point Rp + 400 ms Rp + 400 ms Tend

To maximise the m=1-beat periodicity of the signal, the desired πCA transformation must minimise
the following residual measure of periodicity [163]:

ε(w) = ‖w
TX(1)−wTX‖
‖wTX‖

. (3.4)

By the Rayleigh-Ritz theorem, it can be shown that the weight vector w∗ =
[
w∗1 w∗2 · · · w∗L

]T that
minimises eq. (3.4) is given by the generalised eigenvector corresponding to the smallest generalised
eigenvalue of the matrix pair

(
A(1)

X ,RX

)
that accomplishes the following equation:

A(1)
X ΨπCA = RXΨπCAΛ, (3.5)

being Λ a diagonal matrix containing the eigenvalues at the diagonal, RX the spatial correlation matrix
of X, estimated as

RX = 1
KN

XXT , (3.6)

and A(1)
X the spatial correlation of the non-beat-to-beat periodic residue, estimated as:

A(1)
X = 1

KN

(
X(1)−X

)(
X(1)−X

)T
. (3.7)

Then, the transformation matrix ΨπCA is taken as the generalized eigenvector matrix of matrix pair(
A(1)

X ,RX

)
, with the eigenvectors (columns) sorted according to the corresponding eigenvalues in ascending

order of magnitude. In this way, the transformation Y = ΨT
πCAX projects the component with smaller

relative non-periodic residuum (i.e., the most periodic component) into the first row of Y.
An illustration of πCB#, πCT# and PC# and be found in Figure 3.1c, Figure 3.1d and Figure 3.1e.

As hypothesised, the high-energy artifact around second 3 in Figure 3.1b is preserved in PC1 but much
more attenuated in the first two πCB and πCT components. Also note that πCB dominantly emphasises
the QRS at πCB1, while the TW is dominantly emphasised at πCT1.
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3.3.4 TW morphology markers

For all datasets, πCT1 and PC1 were taken for subsequent analyses while the optimal πCB# was
chosen as the one (πCB1 or πCB2) having the highest TW energy content, by computing the total TW
energy within the same period used for learning (see Table 3.1) as there is no guarantee that the highest
TW energy content is in πCB1 or in πCB2, due to the interplay between TW and QRS dominance at TL
energy projection, see Figure 3.1c.

All TW from the selected πCA or PCA were further low-pass filtered at 20 Hz using a 6-th order
Butterworth filter to remove remaining out-of-band frequency components. Then, the specific analysis
windows (see Table 3.1) were selected to perform the TW time warping. The duration of these windows
was selected to be small enough to hold the assumptions of HR and [K+] values stability in case of ECGs
from ESRD patients undergoing HD. In each window, a MWTW was computed as detailed in section 2.3.8.

Finally, the three TW time warping markers having the highest correlation with [K+] variations (i.e.,
dw, d̂w,c and dNL

w ) were estimated from the time excerpts locations described in Table 3.1 as detailed in
section 2.3.5 and 2.3.7.

3.3.5 ECG simulation

To validate the usage of both πCA and PCA in extracting time warping parameters and to assess their
performance against noise, a Monte Carlo simulation approach was adopted. Each trial was generated
as the sum of a clean 8-lead ECG and an 8-lead noise component, expressed in the matrix Vhi (8×N),
where i ∈ {0, · · · ,4} denotes each of the 5 hour time points corresponding to the blood sample extractions
during HD with the noise being of one of these three types: baseline wander (bw), muscle artifact ( ma),
and electrode motion artifact (em).

MIT-BIH Noise Stress Test database

This database includes 12 half-hour ECG recordings and 3 half-hour recordings of noise typical in
ambulatory ECG recordings [213], which were accessed by using the Wave Form Data Base (WFDB)
Toolbox for MATLAB/Octave [214]. The noise recordings were made using physically active volunteers
and standard ECG recorders, leads, and electrodes; the electrodes were placed on the limbs in positions in
which the subjects’ ECGs were not visible.

The three noise records were assembled from the recordings by selecting intervals that contained
predominantly bw, ma and em. This last is generally considered the most troublesome, since it can mimic
the appearance of ectopic beats and cannot be removed easily by simple filters, as can noise of other types.

Clean ECG signal

A set of clean beats were extracted from a ESRD patient under HD therapy having the following
clinical features: (i) The patient was in evident hyperkalemia having, at the beginning of the therapy,
[K+]>5 mmol/L; (ii) The patient did not suffer major adverse cardiovascular events or arrhythmic events;
(iii) The patient underwent conventional HD, the most frequent in the dataset. Then, two-minute ECG
windows were selected at each hour during the HD session (h0 to h4 in Figure 2.1 in correspondence
to each blood sample and in each lead, the beats were detected, aligned and averaged to get a clean
representative beat per lead and hour. Each of those representative beats were repeated 60 times and
then concatenated for the five hours getting a clean 300-beat 8-lead synthetic ECG.

Noise generation

For each of the three type of noises, 100 different realisations Vhi were extracted, to be added to the
same clean ECG (previously described). Each realisation starts at an arbitrary point in one of the two
leads of the noisy records also randomly selected.

In real signals, noise is spatially correlated but due to the its generation setup Vhi wasn’t. Therefore,
to correlate Vhi a realistic way, the first step was to estimate the spatial correlation of the real ECG noise
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from which the clean beats were extracted. Thus, at each i-th hour, up to 150 segments of ECG, assumed
to contain only noise (50 ms intervals following the TW end), were selected from each independent lead.
These segments were concatenated creating the noise component of the 8-lead vectors which were then
normalised to be zero-mean and unit standard deviation recordings from where the noise correlation
matrix RVhi

was estimated.
The Cholesky decomposition [215] was applied to RVhi

, obtaining a whitening matrix Dhi . The
inverse of Dhi was used to generate a spatially correlated noise V′hi ,

V′hi = D−1
hi

Vhi . (3.8)

These zero-mean, unitary-standard deviation V′hi noise components were modulated and added to the
clean ECG to create five different SNR levels, SNR ∈ {10,15,20,25,30} dB.

Transformation matrix estimation

A transformation matrix Ψ (using πCA or PCA) was estimated from the learning period in each noisy
ECG , and later applied over: (i) the corresponding entire noisy signal, making both the learning and the
lead transformation phases done over the noisy signal, and denoted “NtoN” and (ii) the simulated clean
ECG, having the learning phase in noisy conditions while lead transformation done over the clean ECG,
denoted “NtoC”.

3.3.6 LSR performance quantification and statistical analysis

The analysis and statistical tests carried out to evaluate LSR technique performance in each dataset
are presented in this section. Results are given as the median (IQR).

ESRD patients dataset

Two different analysis were performed on the results obtained from the ESRD patients undergoing HD.
Marker performance assessment during the HD: Pearson’s (r) correlation coefficients were computed

to test the linear association between each T-wave morphology marker d (d ∈ {dw, d̂w,c,dNL
w }) and the

corresponding relative [K+] variations computed as in eq. (2.26) in section 2.3.9.
Marker dynamics evaluation in post HD: For every patient, a fitting error (ε) between each LSR-specific

marker series d and its linear regression fit between the 12-th and 44-th hours after HD onset was computed
[212,216]. This ε provides information on the marker’s deviation from a gradual linear trend along time,
hypothesised a surrogate of the trend followed by [K+]. An example of linear fit is presented in Figure 3.2.

BPC dataset

Markers extracted from BPC dataset by warping MWTWs from each BPC with respect to the reference
taken at first supine position (Table 3.1) were tested to check their robustness against postural changes
and, for that purpose, two different tests were carried out.

The warping markers were grouped by body position type and the non-parametric Kruskal-Wallis test
was applied to check for statistically significant differences (p-val≤ 0.05) between the supine, right and left
positions medians. This allowed to assess whether or not the TW markers were influenced by the posture.

To check whether the marker values generated by the ∆[K+] during HD therapy are larger or
comparable, and thus indistinguishable, to those generated by a BPC, we compared the values from
each marker from the ESRD dataset with those from the BPC using the Mann-Whitney U-test. For
this, markers from the BPC dataset were pooled together and, since the same BPC could occur in both
directions (e.g. S→L, but also L→S), resulting in markers with the same magnitude but opposite sign, we
extended the pool by duplicating each value and reverting its sign.
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ECG simulation

For each LSR technique, noise type, marker (d), SNR (n), and simulation run (j), normalised relative
errors e were computed as:

en,d,j =

√√√√√√√√√√
4∑
i=0

(dNtoN(n,j,hi)−dNtoC(n,j,hi))2

4∑
i=0

(dNtoC(n,j,hi))2
×100 (3.9)

where n ∈ {10,15,20,25,30} dB accounts for the SNR, j ∈ {1, · · · ,100} accounts for the simulation run for
each noise type, i ∈ {0, · · · ,4} for the i-th hour where the markers are estimated, and d ∈ {dw, d̂w,c,dNL

w .
We considered the dNtoC marker series as the reference for evaluation of markers under noisy conditions.
The transformation matrix was learnt in the same noisy conditions, at the reference as when applied to
estimate the marker, so the error really quantifies how the noise affects the computation of the marker
rather than ΨPCA or ΨπCA estimation.

3.4 Results

3.4.1 DEKOALE dataset

As a results of the TW maximum energy content selection criterion, πCB1 was selected over πCB2 in
19 out of 29 patients (66%) as the TL having the highest TW energy.

The intra-patient Pearson’s (r) correlation coefficients, calculated between ∆[K+] and each time
warping markers d computed with the LSR techniques (πCB, πCT and PCA) and the standard leads (II,
V4 and V6) are shown in Table 3.3.

The temporal evolution for πCA and PCA-based dw is depicted in Figure 3.3a up to the 44-th hour,
the average ECG duration in the DEKOALE dataset. Similar dynamics were found for d̂w,c markers,
Figure 3.3b. A zoomed view of the first 10 hours is also presented in an inset in both Figure 3.3a and
Figure 3.3b, allowing a proper time dynamics comparison with the 10 hours-long [K+]-recovery curve
(Figure 3.3c) available in the literature [199,200].

Values of the fitting error ε for the trends of markers, expressed as median and IQR across patients,
are given in Table 3.4. Finally, to further evaluate the relations among TL derived markers, Pearson’s
correlation between makers derived from πCB, πCT, PC along the whole ECG was computed for each
patient, and presented in Table 3.5.

3.4.2 BPC dataset

Figure 3.4 shows the distributions of dw (panel a), d̂w,c (panel b) and dNL
w (panel c) grouped by LSR

technique: πCB, πCT and PC, and arranged according to the body position type: supine (S), right-side
(R) and left-side (L).

The Kruskal-Wallis test was used for evaluating the statistical significance level of the differences
across the supine, right and left positions for each πCB (purple), πCT (blue) and PC (green) and p-val are
indicated in each panel. The Kruskal–Wallis test showed significant marker differences between positions
for all markers and LSR techniques, with the exception of πCT-based dw and d̂w,c (p-val= 0.27 and
p-val= 0.14, respectively).

3.4.3 DEKOALE and BPC dataset results comparison

Figure 3.5 presents the distributions of ∆[K+] (in blue), dw, d̂w,c and dNL
w markers (in red) computed at

different hours of the HD, being the rightmost boxplot the zero-mean distribution of each markers obtained
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at the BPC dataset. The Mann–Whitney U-test significance values between zero-mean distribution
markers from BPC dataset and h2 and h3 markers from DEKOALE dataset are shown over-plotted. For
h2, markers were always significantly different from the BPC cases. On the contrary, for h3, only dNL

w

resulted significantly different from BPC marker values, also regardless of the LSR technique.

3.4.4 ECG simulation

Error plot showing the median and IQR values of e for dw, d̂w,c and dNL
w computed from πCB, πCT

and PC are depicted in Figure 3.6a, Figure 3.6b and Figure 3.6c respectively. In each panel, the blue line
represents values for bw, while the orange and the yellow are for em and ma, respectively.

3.5 Discussion

In this chapter, periodic component analysis implemented in two different versions, πCB and πCT,
was compared to PCA as LSR technique prior to TW time warping analysis. To perform a thorough and
comprehensive evaluation of the proposed time warping markers, we investigated three different specific
and supervised scenarios: (i) [K+] induced variations with no concurrent BPC (DEKOALE dataset during
HD), (ii) controlled BPC with no concurrent [K+] variations (BPC dataset) and (iii) simulated ECGs
with three types of added noise at different SNR values simulating [K+]-driven TW induced variations
but without BPC (ECG simulation dataset).

3.5.1 Preliminary considerations

The results in each dataset can be evaluated by themselves or jointly, based on the concurrency/non-
concurrency of the underlying mechanism that generates the TW change (i.e., only postural changes
in BPC dataset and controlled SNR in the simulate ECG). This allow the assessment of behaviour of
the proposed markers in different scenarios, which can be later compared with those in the DEKOALE
dataset, allowing a more complete understanding and evaluation of our findings.

Time warping markers were derived from the different transformed and standard leads and compared
in terms of their ability for [K+] monitoring, as well as robustness against BPC and noise. Note that
this study focused on the understanding of both dynamics and behaviour of the markers under controlled
events that can be found during a regular ECG monitoring. In other words, the drawn were not affected
by the duration of the different signals, as long as it ensures the correct evaluation of the MWTWs as
previously mentioned in section 3.3.4.

3.5.2 DEKOALE dataset

The ability of πCA and PCA in emphasising [K+]-induced TW variations was tested on the DEKOALE
dataset. In addition, the same warping markers were computed from the standard leads II, V4 and V6 to
evaluate whether the use of a LSR techniques (either πCA or PCA) improve the performance of the TW
morphology markers in following ∆[K+] over the standard leads.

In chapter 2, PCA was successfully applied as LSR technique before extracting TW morphology
markers and dw, d̂w,c and dNL

w performance in tracking [K+] was compared with respect to two TW-based
indexes previously reported to be related with ∆[K+]. As a result, both Spearman’s and Pearson’s
correlation coefficients with ∆[K+] were, in median, higher for the time warping based markers than
other descriptors. However, πCA was found to be more robust than PCA against noise in other ECG
applications [163], supporting the hypothesis that the use of πCA could improve the [K+]-tracking ability
of dw, d̂w,c and dNL

w .
For each marker, two performance metrics were investigated: Pearson’s correlation with ∆[K+]

during the HD and marker deviation from a linear trend in the late post-HD period. In this study, only
Pearson’s correlation coefficient was investigated since it provides meaningful information about the linear
relationship between ∆[K+] and the proposed markers.
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Figure 3.2: Example of linear fitting computation for marker
dynamics evaluation in post HD. The red line represents the
fitting performed over the PCA-based dw values (blue dotted
line) between the 12-th and 44-th hours after HD. Similar
procedure is done for each πCA and PCA based dw and d̂w,c
markers.

Table 3.3: Intra-patient Pearson’s (r) correlation coefficients
between ∆[K+], πCB, πCT, PC, Lead II, V4 and V6 time
warping parameters dw, d̂w,c and dNL

w . Values are expressed
as median (IQR).

r πCB πCT PC II V4 V6

dw
0.91 0.90 0.89 0.90 0.86 0.87
(0.32) (0.27) (0.35) (0.26) (0.39) (0.29)

d̂w,c
0.90 0.90 0.89 0.87 0.86 0.86
(0.24) (0.29) (0.25) (0.33) (0.49) (0.27)

dNL
w

0.65 0.75 0.68 0.47 0.56 0.61
(0.49) (0.50) (0.52) (0.58) (0.45) (0.47)

Table 3.4: Linear fitting error ε estimated across patients in
DEKOALE dataset. Values, given as median (IQR) (ms/ms),
are for πCB, πCT, PC, II, V4 and V6 leads, for dw and d̂w,c
markers, and estimated from the 12-th to the 44-th hour.

ε πCB πCT PC II V4 V6

dw
3.37 2.71 3.21 4.16 3.22 3.68
(3.22) (2.01) (3.02) (3.28) (4.77) (3.25)

d̂w,c
3.22 2.68 2.51 3.03 2.48 3.26
(3.13) (1.23) (2.68) (3.04) (3.05) (2.42)

Table 3.5: Median (IQR) intra-patient Pearson’s correlation
coefficients in DEKOALE dataset for πCB, πCT and PC
based markers evaluated using the whole ECG recordings.

r PC - πCB PC - πCT πCB - πCT

dw 0.69 (0.56) 0.75 (0.40) 0.87 (0.52)

d̂w,c 0.63 (0.53) 0.68 (0.41) 0.78 (0.45)
dNL
w 0.55 (0.48) 0.61 (0.58) 0.60 (0.44)

(a)

(b)

(c)

Figure 3.3: Comparison of time trend for dw and d̂w,c com-
puted applying πCA and PCA and [K+]-recovery curves
reproduced from literature. Time dynamic for dw and d̂w,c
computed by applying πCB (purple), πCT (green) and PCA
(blue) given as median and IQR is displayed in panel (a) and
(b), respectively. Only the first 44 hours were depicted being
the average ECG duration in the DEKOALE dataset. A
detailed view of the first 10 hours (zoomed rectangle) allows
better trend comparison with the [K+]-recovery curves re-
produced from [200], panel (c), coming from two different
serum-dialysate gradient cases (i.e. the difference between
the patient’s [K+] level and the [K+] concentration in the
dialysate liquid) scenarios: 5.8 mmol/L (solid line) and 4.7
mmol/L (dashed line). Note that curves in panel (b) only
cover the first 10 hours (4 hours of HD and 6 hours after the
HD end) but no values are depicted between the 6-th and the
44-th hour after the HD therapy ends.
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(a) (b) (c)

Figure 3.4: Distributions of the warping markers dw (panel a), d̂w,c (panel b) and dNL
w (panel c) obtained for the BPC

dataset. The markers values were grouped by body position: supine (S), right (R) and left (L) and by LSR technique: πCB

(purple-coloured boxplots), πCT (blue-coloured boxplots) and PC (green-coloured boxplots). The statistical significance
level (p-value, Kruskal-Wallis test) of the differences among the supine, right and left positions for each πCB (purple), πCT

(blue) and PC (green) is indicated in each panel. Outliers are not depicted.

Note from Table 2.2 that [K+] is higher at h0 than at h5, a result attributable to the fact that at h5
all patients were ending a two-day inter-dialysis pause, while at h0 most of the patients, 27 out of 29,
were at the end of a three-day inter-dialysis pause.

Correlation between TW markers and ∆[K+]

Results from Table 3.3 reveal that dw and d̂w,c are the descriptors having the highest r median values
(r ≥0.89). Also, single-lead-based markers were outperformed by those obtained by applying a LSR
technique, PCA or πCA, as already proved in chapter 2. Moreover, πCT-based indices are slightly better
correlated with ∆[K+] (higher median r and lower deviation as in case of dNL

w ). This can be a consequence
of the fact that in πCB, the overall ventricular activity is considered to learn the transformations, and
then the more energetic QRS complex could had prevailed over the TW. On the other side, πCT learning
was fully driven by TW. However, results are still very similar to strongly conclude which LSR technique
should be preferred for ∆[K+] tracking during the HD period.

Post-HD marker trend and linear fitting error

Throughout the first 10 hours of recording, both dw, Figure 3.3a, and d̂w,c, Figure 3.3b, showed time
dynamics similar to [K+]-recovery curve from the literature [199,200], Figure 3.3c.

After that period, both markers settled on a apparent linear trend, a behaviour in agreement with
an expected gradual increase of [K+] over time in ESRD patients undergoing HD [199, 200]. This led
us to conjecture about the deviation from a linear trend, measured by ε, as a metric to evaluate the
performance of each LSR technique in the interval where no blood samples were collected. Therefore, for
a given LSR technique the smaller the ε, the more coherent is the measurements across patients of the
proposed markers.

The idea of a linear polynomial to fit marker values was already presented by Attia et al. [145] to
generate a patient specific regression model. Results reported in Table 3.4 suggest that πCT, resulted
in the least scattered values, i.e. in more coherent measurements across patients, than the other LSR
techniques in the post HD period, confirmed by the small median ε and reduced variability being median
2.68≤ ε≤ 2.71 and variability 1.23≤ IQR ≤ 2.01. πCB and PCA led to similar results with 2.51≤ ε≤ 3.37
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dw

(a) Distributions of ∆[K+] and πCB-
based index from DEKOALE (left side)
and BPC (right side) dataset.

d̂w,c

(b) Distributions of ∆[K+] and πCB-
based index from DEKOALE (left side)
and BPC (right side) dataset.

dNL
w

(c) Distributions of ∆[K+] and πCB-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(d) Distributions of ∆[K+] and πCT-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(e) Distributions of ∆[K+] and πCT-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(f) Distributions of ∆[K+] and πCT-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(g) Distributions of ∆[K+] and PCA-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(h) Distributions of ∆[K+] and PCA-
based index from DEKOALE (left side)
and BPC (right side) dataset.

(i) Distributions of ∆[K+] and PCA-
based index from DEKOALE (left side)
and BPC (right side) dataset.

Figure 3.5: Distributions of ∆[K+] (blue, scale at the left side of each panel), dw, d̂w,c and dNL
w markers (red, scale at the

right side of each panel) from DEKAOLE dataset are shown in the left side of each panel. In each panel, the rightmost
boxplot, includes the zero-mean distribution of markers obtained from the BPC dataset. πCB-based markers are shown
in panels (a)-(c), πCT-based markers are in panels (d)-(f) while PCA-based markers are in panles (g)-(i). Mann-Whitney
U-test significance level (p-value) between BPC and both h2 and h3 of HD are given in each panel, where ns stands for “not
significant” (p-value > 0.05). Note that for the first two groups (i.e. HD onset h0, and h1) p-values were always lower than
0.05, hence, not displayed. Red “+” indicate outliers.
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(a) Relative error curves for πCB-based time warping

(b) Relative error curves for πCT-based time warping

(c) Relative error curves for PCA-based time warping

Figure 3.6: Relative error e distributions evaluated between the reference dNtoC and estimated dNtoN under the presence of
additive bw (blue line), em (orange line) and ma (yellow line) noises at different SNRs. Median and IQR from the 100 runs
were given for each SNR.
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and variability 2.68≤ IQR ≤ 3.22 . Finally, the standard lead analysis was those with the biggest dispersion
being the median 2.48≤ ε≤ 4.16 and 2.42≤ IQR ≤ 4.77.

From Table 3.5, it can be observed that the highest correlation between markers was obtained when
comparing πCB and πCT (last column), probably as a consequence of the fact that both LSR techniques
use the same maximisation criteria. However, this test just measures agreement between markers but not
with ∆[K+], preventing us from taking further conclusions from it.

Correlations with ∆[K+] and linear fitting error metrics confirmed that πCB, πCT and PCA-based
markers outperform standard lead estimations, and it may be concluded that πCT is the most consistent
LSR technique in terms of trend dispersion (post-HD period), and r (during the HD therapy). In Holter
where 12 leads are not available but a reduced number, the πCT can be still applied even though the
capacity to extract beat-to-beat periodicity would be reduced and further works are needed to evaluate
the degree of the reduction. The lower limit in performance would be the here reported study in standard
single-lead analysis as described in Chapter 2 (see Table 2.3) where we will still get markers with better
correlation with ∆[K+] than those reported in the literature (i.e. TS/A and Tw).

3.5.3 BPC dataset

The relative position of the heart electric axis with respect to the surface electrodes changes with body
position, influencing the shape of the ECG waveform [205,209] and, consequently, the TW morphology
markers measured on the signal. We tested the proposed LSR techniques to figure out if any of them
resulted in higher marker robustness against BPC. The analysis of marker distributions, Figure 3.4,
evidences that all markers are affected by BPC.

For all LSR techniques, the S position showed the smallest median and IQR values as a result of
the election of the warping reference in S position, see Table 3.1, followed by R and L. However, only
πCT showed non-significant differences in Kruskal-Wallis test between dw and d̂w,c when computed and
compared in different body positions suggesting that πCT is the least affected by the patient’s posture.

3.5.4 Comparing results from DEKOALE and BPC datasets

To elucidate up to what extend dw, d̂w,c and dNL
w can capture waveform alterations generated by

∆[K+] remaining no-significantly affected by concomitant BPC, markers from ESRD patients undergoing
HD were compared with respect to those from BPC dataset. Patients in HD therapy remained still
(usually seated) during the whole session, ensuring that no marker alteration occurred due to changes in
the posture. Conversely, in the BPC dataset, where healthy subjects were enrolled, the ECG waveform
and thus marker values alterations were mainly attributed to postural changes.

The comparison between results from two datasets was necessary since [K+] values were not acquired
for the BPC dataset. This test meant to evaluate the behaviour of the same markers in two different
scenarios, i.e. [K+] changes and BPC. Therefore the recording duration did not play a relevant role
provided that it ensured the correct assessment of the MWTW as detailed in section 3.3.4.

According to Figure 3.5, significant differences can be observed for any given LSR technique and marker
when comparing distributions from h0, h1, h2 and BPC, probably due to the [K+] being outside the
normal range (considered to be in h4, Table 2.2) thus being the main factor in the ECG waveform shaping.
On the contrary, as HD final stage approaches, h3, the value of ∆[K+] reduces and the ECG waveforms
returns close to shapes at reference in h4. At h3, all markers computed in the DEKOALE dataset, but
dNL
w , showed median values similar to those obtained in the BPC signals. This different behaviour of dNL

w

could be attributed to the fact that a postural changes generate a rotation of the electrical axis, not
introducing any non-linearity across time behaviour to be captured by dNL

w , therefore making it insensitive
to BPC. No preferential behaviour in this respect is observed as a function of the chosen LSR.

3.5.5 ECG simulation

Synthetic ECG signals with controlled noise contamination, emulating recordings from DEKOALE
dataset, were used to test the robustness of the dw, d̂w,c and dNL

w against noise for the different LSR
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techniques. Noise signals were taken from real Holter recordings and forced to be spatially correlated as
in the 12-lead recordings [217].

According to Figure 3.6, for a given SNR and for any LSR technique, em and ma noises resulted in
the highest e, possibly due to their spectra are comparable to that of the ECG, and so preprocessing is
less efficient. Because of that, em and ma filtration was not as effective as bw which showed the smallest
e median and IQR.

However, a general decreasing error trend with increasing SNR can be observed. Moreover, these
graphs would confirm that πCA outperforms PCA for low SNR (10 dB and 15 dB) as hypothesised. In
addition, it appears that πCT has median e smaller than πCB in the majority of the proposed markers.
This outcomes can be attributable to the fact that the QRS complex, despite having larger SNR, has
different spatial distribution than the TW and thus favouring πCT spatial transformation. Finally, no
clear advantages in using πCA over PCA can be appreciated for high SNR (i.e. SNR > 20 dB).

Nevertheless, these results would confirm our hypothesis that πCA performs better than PCA for low
SNR values as it was evidenced in [163] for TW alternans detection.

3.5.6 Clinical Significance

According to results from DEKOALE dataset, markers extracted from a TL outperform those obtained
from standard single leads. In particular, πCT appears to be the most suitable LSR technique to extract the
TW morphology marker best correlated with ∆[K+], thus allowing a more reliable continuous monitoring
of ESRD patients undergoing HD during the HD as well as in the post-HD period.

Even though it is technically possible to continuously monitor the markers, it can also be possible
to restrict the ESRD patients monitoring just to some specific points such as one per hour or any other
periodicity that may be considered suitable for clinical evaluation. This will allow to stop the recording in
the intermediate periods with the related advantages in terms of battery saving, information transmission,
data storing, etc.

Outcomes from the BPC dataset revealed that the proposed TW time warping markers to quantify
morphology changes are not significantly affected by the subject’s posture when evaluated at πCT TL.
This suggests that πCT should be the preferred TL for daily life continuous monitoring of ESRD patients
undergoing HD therapy. Moreover, the marker reflecting TW nonlinear morphological changes, dNL

w , is
able to still capture relevant information describing small ∆[K+] that are not affected by concomitant
BPC. These results can be of great interest when choosing a marker to robustly monitor [K+] in ESRD
patients undergoing HD therapy [K+] in daily life [108].

Finally, findings from ECG simulation indicated that at low SNR, πCT-based markers are the most
robust against ECG noises meaning that πCT is the most suitable LSR to extract relevant multilead TW
morphology information from noisy records (i.e. Holters) in non-invasive ambulatory [K+] monitoring of
ESRD patients undergoing HD therapy.

3.5.7 Limitations

Despite the encouraging results, several limitations deserve to be mentioned. First, a direct correlation
study between markers and ∆[K+] was only possible during the HD therapy since no [K+] samples were
collected in the post-HD period until the 48-th h. In other words, an explicit relation between dw, d̂w,c
and dNL

w and ∆[K+] in the post-HD period could not be assessed nor inferred from the linear fitting error
ε since there is no certainty that [K+]-recovery trend is exactly linear. However, [K+] dynamics tend to
appear slow, gradual and monotonic [199,200], making the deviation from a linear trend still a plausible
indirect indicator to assess the marker robustness. Other regression types could be further investigated,
together with studies including regular blood samples extraction during the post-HD period.

Second, as mentioned in chapter 2, the sample size in DEKOALE dataset is smaller than the study
population in similar investigations [108]. Thus, even if the usage of πCT as LSR technique is a step
toward robust TW morphology feature extraction from the ECG, it needs to be validated in larger cohorts
to be finally translated to clinical practice.
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Third, the BPC series only contained lying-based changes, thus excluding daily-life postural changes
(e.g. lying-seated-standing), representing a limitation for the generalization of the results. However, we
believe that this limitation is attenuated when considering the fact that the analysed postural changes can
be considered as the most strenuous in terms of heart rotations with respect to electrodes positions [205].

Fourth, times of meal and medication intake were not registered in the DEKOALE. This means that it
was not possible to distinguish between ∆[K+] due to the ESRD pathology itself or, for instance, due to
insulin spikes that can modify intracellular concentration of [K+] [95]. Different issue is the dependence
of ∆[K+] with the circadian rhythm [218] as can be observed in the example in Figure 3.2. However, no
special attention to circadian rhythm has been paid in the present study. All the above mentioned could
be a limitation of the analysis performed in the post HD period; but since the interest here is in the long
term trends transients, modifications as those resulting from food or medication intake are most likely no
to affect the global trend. In addition, a direct correlation between markers and ∆[K+] was computed
only during the hours of the HD therapy thus when the patients were not supposed to be having a meal
nor taking medication other than those inside the dialysis fluid. Nevertheless, further studies are need
to assess how meals, medications and circadian rhythm could affect the proposed markers of potassium
changes.

Finally, in addition to producing TW changes generated by [K+] variations, HD can trigger myocardial
ischaemia events [203,219,220], which could also affect the TW morphology and the marker validity.

3.6 Conclusion

Results from this chapter highlight the advantages of applying one-beat-period πCA, and, in particular,
πCT rather than PCA as LSR technique before deriving TW morphology markers to monitor [K+]
variations in ESRD patients undergoing HD therapy. The main advantages concern a greater robustness
against BPC and noise, improving the accuracy of TW time warping based markers in monitoring ∆[K+].

The πCT-derived dw and d̂w,c markers seem to be the most suitable (better correlated) for [K+]
monitoring in both HD therapy and recovery periods. Nevertheless, dNL

w , computed by using either πCA or
PCA, appears to be the least affected by postural changes, offering a new starting point when evaluating
[K+]-driven TW morphological changes.
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4.1 Introduction

In chapter 3 two LSR techniques, πCA and PCA, were tested as step previous to TW time-warping
analysis for extracting markers able to monitoring [K+] variations. In particular, two different imple-
mentation of πCA were proposed: by exploiting the complete QRST complex periodicity, πCB, or just
restricting to the TW, πCT. As a result of this analysis, dw and d̂w,c were the markers showing, in median,
the highest Pearson’s correlation with ∆[K+]. Moreover, πCT presented higher robustness against noise
than PCA and πCB, making it the most suitable LSR technique for ∆[K+] tracking during the HD session,
as well as in the post therapy monitoring before the next HD session. Nevertheless, a quantitative relation
between these TW morphological parameters derived from ECG analysis and ∆[K+] has not yet been
established for clinical use, which would allow a noninvasive measurement of ∆[K+] value.

The direct assessment of a marker as [K+] surrogate by Pearson’s correlation analysis implies the
assumption of a linear relation between them. However, previous works have reported that the reconstruc-
tion of [K+] from the ECG significantly improves by employing a quadratic regression [141]. This result
is compatible with the findings from chapter 3, where a non-linear correspondence between ∆[K+] and
the TW time warping markers dw and d̂w,c (purple and green boxplots, respectively, in Figure 4.1) was
observed. Therefore, the analysis in the present chapter was performed under the hypothesis that using
patient-specific polynomial models based on TW time warping-derived markers can provide better quanti-
tative assessment of ∆[K+]. Thus, the aim of this study is to derive and to evaluate polynomial sensing
models to estimate ∆[K+] by using πCT-based markers, dw and d̂w,c. As a reference, a patient-specific
linear model is also estimated for each marker.
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Figure 4.1: Distribution of ∆[K+] and πCT-based markers in DEKOALE dataset. Boxplots in blue shown the distribution
of ∆[K+] while in purple and in green are those for dw and d̂w,c, respectively, computed at each blood sample extraction
from h0 to h5 (see Figure 2.1). Red “+” denotes outliers. Figure from [221].

4.2 Materials and Methods

4.2.1 Study population

In this chapter, ECG signals from DEKAOLE dataset (section 2.2) were analysed.

4.2.2 ECG preprocessing and single lead analysis

As described in section 2.3.1, preprocessing of ECG recordings included baseline wander removal at
0.5 Hz in each lead and low-pass filtration to remove power-line noise and to attenuate muscular activity.
Then, QRS complexes were detected and TW delineated using the wavelet-based delineation previously
mentioned in section 2.3.2. The different steps from the ECG acquisition to the [K+] regression models
construction are summarised in the block diagram presented in Figure 4.2.

4.2.3 Spatial lead reduction by periodic component analysis

As in chapter 3, πCA was applied with a one-beat periodicity to maximise the TW beat-to-beat
periodic components on the transformed signal. Then, for each ECG, a transformation matrix ΨπCA

was estimated as detailed in section 3.3.3, and applied to the eight independent standard leads. Now,
by ordering the TL inversely to their associated eigenvalue, the most beat-to-beat periodic components
appear projected onto the first component, πCT1, which was selected for subsequent analysis.

4.2.4 Warping-Based TW morphology markers

All TW from πCT1 were further low-pass filtered at 20 Hz using a 6-th Butterworth filter to remove
remaining out-of-band frequency components. TWs in 2-min wide windows centered around the 5-th
minute and 35-th minute of each available hour were selected and a MWTW was computed in each window
(see section 2.3.8).

Finally, the two TW morphology parameters, dw and d̂w,c, were computed by comparing each MWTW
with respect to a reference MWTW, selected at the end of the HD session, resulting in relative markers to
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(a) (b) (c)

ECG preprocessing,
QRS detection

and TW delineation
Original ECG

πCT1 computation,
QRS detection

and TW delineation

MWTW extractiondw and d̂w,c computation
Fitting models and
∆̂fd,m[K+] estimation

(d)(e)(f)

Figure 4.2: Flow chart showing the main steps from ECG acquisition to the evaluation of personalised ∆[K+] regression
models. Panel (a) shows an example of an ECG (the independent leads I, II, V1 to V6 are depicted) obtained from one of
the patients in the DEKAOLE dataset (see section 2.2). In panel (b) is the resulting ECG after performing the preprocessing
described in section 2.3.1. In panel (c) is depicted the transformed πCT1 signal with both QRS complexes and TW are
detected and delineated as detailed in section 2.3.2. From 2-min wide windows, a MWTW (panel (d)) is extracted and TW
morphology markers dw and d̂w,c (panel (e)) are computed as detailed in section 2.3.6. Finally, in panel (f) is an example of
fitting model for ∆̂f

d,m
[K+] estimation, evaluated as in section 4.2.6. In this particular case, a cubic model with m = a is

presented.

the reference point at the end of HD (h4 in Figure 2.1). A detailed description of dw and d̂w,c mathematical
derivation can be found in section 2.3.6.
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4.2.5 Blood potassium concentration variations

The two proposed descriptors, measured along time, have been associated with the corresponding
relative variations in [K+] with respect to the [K+] at the reference point (h4). The ∆[K+] values were
computed as in eq. (2.26) in section 2.3.9.

4.2.6 Marker fitting models for ∆[K+] estimation

For a given patient p, the relationship between the marker d ∈ {dw,dw,c} and ∆[K+] measured along
time was modelled by means of a linear (l), quadratic (q), and cubic (c) regression models for each patient
to noninvasively calculate ∆[K+] values, according to the following models:

∆̂ld[K+](hi) = αl d(hi), (4.1)

∆̂qd[K+](hi) = αq d(hi) +βq d
2(hi), (4.2)

∆̂cd[K+](hi) = αc d(hi) +βc d
2(hi) +γc d

3(hi), (4.3)

respectively, which are linear in the coefficients and nonlinear in the markers in case of eq. (4.2) and
eq. (4.3). The coefficients αl, αq, βq, αc, βc, and γc were estimated for each patient p and marker d by
using a least square regression analysis between ∆̂[K+] and ∆[K+] values. For each patient and marker,
the parameters of the three models were estimated with two different approaches: (i) By using all the
available ∆[K+] values (“m = a”) and (ii) by adopting a leave-one-out cross validation (“m = o”) by
excluding the hi-th ∆[K+](hi) value from the training-set and evaluating the prediction error at this
hi-th point, repeating this for all possible hi exclusions.

Finally, to avoid physiologically meaningless ∆̂d[K+] trends, the three models in eq. (4.1)–(4.3) were
computed with a constrained parameter estimation in order to guarantee a monotonically increasing
relationship between ∆̂[K+] and d, as physiologically expected and corroborated by the marker trend
evolution in Figure 4.1 in this chapter and in Corsi et al. [141] in Figure 2 and 4. That was implemented
as:

∂∆̂d[K+]
∂d

≥ 0, (4.4)

which for positive values of the marker, d > 0, implies αl ≥ 0, αq ≥ 0, βq ≥ 0, αc ≥ 0, βc ≥ 0, and γc ≥ 0.
The case with d < 0 is anecdotal, see Figure 4.1, and most likely is due to outliers, since they do not follow
physiological interpretations of TW narrowing with increased potassium.

4.2.7 Statistical analysis

Spearman’s rank and Pearson’s correlation coefficients (ρ and r, respectively) were used for correlation
analyses between ∆[K+] and ∆̂fd,m[K+], where f ∈ {l, q,c} denotes the fitting model, d ∈ {dw, d̂w,c} the
TW morphology parameter and m ∈ {a,o} the estimation method. This analysis gives information about
both the monotonic relation and the strength of the association between each modelled TW morphology
parameter and ∆[K+], thus providing a more complete characterisation. In addition, for each patient p
and hour hi, an estimation error efd,m(p,hi) was computed as:

efd,m(p,hi) =
∣∣∣∆̂fd,m[K+](p,hi)−∆[K+](p,hi)

∣∣∣ (4.5)

where i ∈ {0,1,2,3,5} is the set of hours where the computation of the estimation error is meaningful.
Note that h4 is the reference point where both ∆[K+] and ∆̂fd,m[K+] are equal to zero and therefore
it is excluded from error computation to avoid a biased error evaluation. The value ∆̂fd,a[K+](p,hi)
represents the estimation at time hi when training is done including all available hi hours values from the
corresponding patient, while ∆̂fd,o[K+](p,hi) represents the estimate at hour hi when all but the hi-th
point of the patient are used in the training. Results are given as median (IQR).
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4.3 Results

In Figure 4.3 are the distributions of ∆[K+] values from blood samples and from the implemented
regression models for each hour h0 to h5. In each panel, the real ∆[K+] from blood samples is shown in
blue, while the black and the red boxplots represent ∆̂fd,m[K+] for m = a and m = o, respectively. Panels
(a) and (d) show results for linear models f = l; panels (b) and (e) show the quadratic and panels f = q;
and panels (c) and (f) show the cubic model f = c.

Boxplots in Figure 4.4 show the estimation error efd,m(p,hi) distributions, sorted by hours hi, using
the linear (Figure 4.4a and Figure 4.4d), the quadratic (Figure 4.4b and Figure 4.4e) and the cubic
(Figure 4.4c and 4.4f) models. In addition, the aggregated distribution for all hours is presented with the
label (ALL). The widest error distributions are obtained for hours h0 and h5, whose median and IQR are
given in Table 4.1. These time points are of great interest since: (i) the samples are the furthest from the
reference (h4) and (ii) when they are estimated by using the leave-one-out (m=o) approach they do not
have any temporarily close sample before (i.e. in case of h0) and/or after (i.e. in case of h5) as opposed
to h1, h2 and h3; this together with the fact that their associated marker values are also the farthest from
the rest, Figure 4.1. Therefore, it seemed worthy performing a detailed hour-based error analysis.

The median and IQR values of intra-patient Spearman’s (ρ) and Pearson’s (r) correlation coefficients,
computed between ∆[K+], and ∆̂fd,m[K+], are given in Table 4.1. The same table also displays the
median and IQR values of the errors efd,m(p,hi), pooling together all patients and all blood extractions
(ALL), and segregated for hour h0 and h5.

An example of cubic modelling results for a given patient with and without parameter constriction for
monotonic ∆̂cdw,o[K

+] behaviour with d is presented in Figure 4.5. Results are given for the case with no
restrictions on {αc,βc,γc} (Figure 4.5a); by imposing αc ≥ 0 (Figure 4.5b); and by using a full constrained
model (αc ≥ 0, βc ≥ 0, γc ≥ 0) (Figure 4.5c).

Table 4.1: Intra-patient ρ, r, ef
d,m

- either when pooling all patients and blood samples together (ALL) or specifically for
h0 and h5 - evaluated between ∆[K+] and ∆̂f

d,m
[K+], expressed as median (IQR), for each model f ∈ {l, q,c}, marker

d ∈ {dw, d̂w,c}, and estimation rule m ∈ {a,o}.

d f m ρ r
efd,m

ALL h0 h5

dw

l
a 0.83 (0.33) 0.86 (0.35) 0.30 (0.48) 0.28 (0.77) 0.29 (0.55)
o 0.77 (0.48) 0.76 (0.47) 0.38 (0.61) 0.56 (1.10) 0.45 (0.66)

q
a 0.83 (0.36) 0.91 (0.29) 0.22 (0.34) 0.24 (0.58) 0.27 (0.49)
o 0.83 (0.49) 0.77 (0.51) 0.38 (0.59) 0.64 (1.15) 0.63 (0.60)

c
a 0.89 (0.35) 0.92 (0.27) 0.21 (0.34) 0.23 (0.37) 0.30 (0.54)
o 0.83 (0.49) 0.79 (0.61) 0.39 (0.72) 0.64 (1.24) 0.69 (0.75)

d̂w,c

l
a 0.83 (0.31) 0.88 (0.34) 0.27 (0.50) 0.26 (1.03) 0.31 (0.54)
o 0.80 (0.44) 0.81 (0.34) 0.40 (0.63) 0.54 (1.11) 0.50 (0.59)

q
a 0.83 (0.35) 0.90 (0.27) 0.21 (0.36) 0.25 (0.73) 0.27 (0.50)
o 0.80 (0.53) 0.77 (0.39) 0.41 (0.67) 0.57 (1.45) 0.71 (0.61)

c
a 0.83 (0.31) 0.90 (0.25) 0.20 (0.39) 0.25 (0.67) 0.23 (0.52)
o 0.80 (0.49) 0.72 (0.45) 0.43 (0.81) 0.77 (1.25) 0.76 (0.80)

4.4 Discussion

In this chapter, ECG signals from ESRD patients undergoing HD therapy were analysed, and two
TW morphology indexes, dw and d̂w,c, previously reported to have a strong correlation with ∆[K+] (see
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Linear

(a) d = dw

Quadratic

(b) d = dw

Cubic

(c) d = dw

(d) d = d̂w,c (e) d = d̂w,c (f) d = d̂w,c

Figure 4.3: Distributions of ∆[K+] values from blood samples and from regression models for each hour h0 to h5. In each
panel, the real ∆[K+] from blood samples are in blue, while the black and the red ones represent ∆̂f

d,m
[K+] for m = a and

m = o, respectively. Panels (a) and (d) show results for linear models f = l; panels (b) and (e) show the quadratic and
panels f = q; and panels (c) and (f) show the cubic model f = c. Red “+” denotes outliers.

Linear

(a) d = dw

Quadratic

(b) d = dw

Cubic

(c) d = dw

(d) d = d̂w,c (e) d = d̂w,c (f) d = d̂w,c

Figure 4.4: Estimation error (ef
d,m

(p,hi)) distributions across patients for each hour hi and when pooling all samples together
(ALL). Panels (a) and (d) show results for linear models f = l; panels (b) and (e) show the quadratic and panels f = q; and
panels (c) and (f) show the cubic model f = c. Black boxplots represent the errors in m = a while the red ones represents
error in case of m = o. Red “+” denotes outliers.
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(a) (b) (c)

Figure 4.5: Examples of cubic regression models computation for a given patient by imposing different parameter restrictions
for leave-on-out cross-validation method. The model obtained without restrictions on {αc,βc,γc} is in panel (a), while those
from imposing αc ≥ 0, or full constrained model are presented in panels (b) and (c) respectively. In each panel: the red
dotted line represents the model being corresponding equations reported above the graph; the blue diamonds represent
measured ∆[K+] values at the hours {h0,h1,h2,h3,h4,h5}; while red dots are the estimated ∆̂cdw,o

[K+] corresponding to
the computed dw used in the training set and computed at {h1,h2,h3,h4,h5}; the green square is the estimated ∆̂cdw,o

[K+]
corresponding to the dw at h0, the hour excluded from the training set in this example, and then the one with higher risk
for error in the estimation. Notice that only full set of parameters forced to be positive result in a monotonic, physiologically
plausible, function.

chapter 3), were extracted. Then, we proposed and compared, the use of linear, quadratic and cubic
regression models for ∆[K+] estimation from dw and d̂w,c markers. The performance of each model
was evaluated through Spearman’s and Pearson’s correlation coefficients of the estimated ∆̂[K+] with
respect to actual ∆[K+] values and through hourly-based absolute estimation errors. The results on
ESRD patients undergoing HD therapy here reported showed that quadratic and cubic regression models
could be advantageously used to quantitatively estimate ∆[K+] and could, therefore, be an effective tool
for remote, frequent and noninvasive monitoring of those patients.

4.4.1 Correlation coefficients reveal over-fitting in m = a approach

Similarities in the distributions of real ∆[K+] and ∆̂fd,m[K+] for every markers and regression model
can be observed in Figure 4.3, a results, this, confirmed by the Spearman’s correlation coefficient (ρ)
between measured and estimated variations in [K+] as reported in Table 4.1. Indeed, similar ρ median
values were found across the three models, being 0.06 the highest median increment when moving from
a linear to a cubic model for d= dw in m=a and, thus, denoting an analogous monotonic relationship
between real ∆[K+] and estimated values (∆̂fd,m[K+]).

However, an improvement can be appreciated when comparing Pearson’s correlation coefficient (r)
evaluated in the three models, being the IQR reduced in d = dw and m = a by 0.06 and 0.08 when
comparing the quadratic and cubic models, respectively, with respect to the linear model. Similar
considerations can be made for d= d̂w,c. This is an expected outcome since the models here proposed
were designed to avoid distorting the original monotonic increasing relationship between ∆[K+] and the
ECG derived markers, but only to adjust for the linear/non-linear relationship between them.

Nevertheless, the overall performance decreases considerably when the leave-one-out method, m= o,
was used, being the median r lower and the IQR wider than in m= a. Also, for both dw and d̂w,c in
m= o, a remarkable increase in the IQR can be observed when comparing linear and cubic models: from
0.47 to 0.61 for the first marker and from 0.34 to 0.45 for the second one. Overall, these findings seem
to suggest that the cubic model does not provide any additional advantages to the linear or quadratic
models in estimating ∆[K+] using the leave-one-out approach. Therefore, the results we observed for
m= a could potentially be affected by over-fitting.

Another interesting observation can be made when comparing dw with d̂w,c in terms of r: for the
linear model and m = a, a small gain is obtained by HR correction, which is more significant for m = o.
However, this improvement for the HR corrected index d̂w,c vanishes in m = a when using the quadratic
model or the cubic model getting even worse in m = o. This can also be a result of the over-fitting in
these estimates, d̂w,c since already subjected to an HR correction estimation (see section 2.3.7).
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4.4.2 Quadratic model shows the smallest estimation error

A reduction in the median and IQR estimation error for d = dw in m= a results when hours and
patients values are pooled together. The IQR decreases from 0.48 for the linear model to 0.34 for both
the quadratic and cubic models. The median error goes from 0.30 in the linear model to 0.22 and 0.21
in the quadratic and the cubic models, respectively. An analogous trend can be found for d = d̂w,c in
m= a: IQR reduces from 0.50 in f = l to 0.36 in f = q and to 0.39 in f = c. However, for both markers,
the improvements disappear when the leave-one-out method m = o is used, which would support the
previously hypothesised over-fitting for m = a.

These outcomes would point at the quadratic model as the most suitable model for ∆[K+] estimation
in m = a, as well as in m = o, even if in this latter case the advantage is not very remarkable. Moreover,
as mentioned above, there is no clear benefit in using a cubic rather than a quadratic model in any of
both m = a and m = o cases, probably due to the full constrained parameter estimation rule we imposed
which, when applied to the cubic model, we observed it resulted in a very small cubic term, reducing to
quadratic model as in Figure 4.5.

4.4.3 ∆[K+] reconstruction at h0 and h5 exhibits high uncertainty

The most distant hours from the reference point (h0 and h5 in this work) are the most interesting and
challenging for ∆[K+] estimation. Indeed, these two are the time points where the estimation errors are
the highest and the error distributions are the widest, which is particularly true when they are taken out
of the training set in the m = o case (red boxplot in Figure 4.4).
That could be considered as an indication of the high uncertainty in predicting such values, especially
when the values to be estimated do not have closer samples before and/or after, resulting in the wide IQR
values reported for efd,m at h0 and h5, Table 4.1.

In general, the IQR value for efd,m at h0 decreases for dw/d̂w,c in m = a from 0.77/1.03 for linear
to 0.58/0.73 for quadratic and to 0.37/0.67 for cubic model (similarly for the median), but again these
reductions vanish in m = o. Analogous considerations can be made for efd,m at h5.

4.4.4 Technical considerations

The results observed so far may lead to the conclusion that, according to the performance metrics r or
efd,o considered, the observed improvement for quadratic model estimation in the case of m = a vanishes,
or it is largely attenuated, in m = o. However, when analysing data distributions we realise that values of
dw and d̂w,c markers are not evenly distributed in all the analysed range (see Figure 4.1). This fact can
imply an overweight of small d values in m = o modelling, penalising the estimates at h0 and h5, which
present d values that might not be well represented in the training set. This could also mean that the
leave-one-out cross-validation needs to be cautiously framed when the value of d to be estimated is far
from those used in the training set range, which in DEKAOLE dataset usually happens at h0 and/or at
h5 as exemplified in Figure 4.6. In these cases, the estimation error between real ∆[K+] and ∆̂fd,o[K+]
would be larger than the error with respect to ∆̂fd,a[K+]. This could be due to the fact that when the
training set consists of all the available d values (i.e., m = a), thus covering all the whole spanning range
for that patient, the estimated coefficients make a proper modelling and ∆[K+] estimation possible.

However, if that range is not well represented (e.g., in m = o mainly for h0 and h5), then the estimated
coefficients model well the range of low d values, but do not model well large d values outside that range,
thus not being able to provide accurate estimates for high d values, resulting in inconsistent models and
then in unreliable ∆[K+] estimation. This circumstance is particularly true for the cubic model rather
than for the quadratic one, as a consequence of having an extra parameter to fit, then increasing the
possibility of over-fitting, obtaining divergent values outside the training range.
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Quadratic

(a)

Cubic

(b)

Figure 4.6: Example of leave-one-out model prediction (m=o) at h0 compared to a m = a approach for a given patient
in DEKOALE dataset. The quadratic models (f = q) are depicted in panel (a) while the cubic ones (f = c) are in panel
(b). In each panel: The blue diamonds represent measured ∆[K+] values at each hour {h0,h1,h2,h3,h4,h5}; the black
triangles are the estimated ∆̂f

d̂w,c,a
[K+] while the red dots are ∆̂f

d̂w,c,o
[K+] corresponding to the d̂w,c used in the training

set {h1,h2,h3,h4,h5}, and the green square is the predicted ∆̂f
d̂w,c,o

[K+] corresponding to the d̂w,c at h0, the hour excluded
from the training set. The black-dashed line is the model in m=a while the red-dashed line accounts for the model in m=o.

4.4.5 Clinical significance

These results contribute to open a new way to turn a well-established clinical qualitative observation,
i.e. the presence of hypo/hyperkalemic patterns in the ECG, into a new quantitative, noninvasive marker
of blood potassium concentration. Moreover, this analysis holds promise for multiple applications and
for several diseases, both in the clinical environment and in a health-monitoring scenario where it is not
possible to make biochemical measurements (such as at home).

4.4.6 Limitations

Several limitations deserve to be mentioned. First of all, the reduced amount of blood sample available.
Indeed, if blood samples had been collected more frequently during the early stage of the HD treatment
when [K+] and, consequently, d more rapidly change, covering a broad range of values, then the model
training set in m = o could have better represented all the possible cases of d in the quadratic as well as
in the cubic model, and then the results could have been more conclusive for the polynomial modelling
improvement in predicting [K+]. If this refined learning would have been done, or is done in future studies,
it will, predictably, result in less error at the extreme times h0 and h5 of the process, and consequently
also in a notably improved performance of the quadratic model both for m = a and for m = o.

The second limitation is the lack of perfect time synchronisation between the actual ∆[K+] and the
evaluated d used for estimation at h5. As previously reported in chapter 2, 44 h is the average ECG
duration in our database – not 48 h, when the last blood sample is taken – mainly due to electrode
detachment or early battery exhaustion. However, results from chapter 3 revealed a low marker dynamics
in the late post-HD treatment, as can be observed in Figure 3.3. Therefore, with some degree of confidence,
for this study it was assumed that the estimation error obtained between ∆[K+] and ∆̂fd,m[K+] at h5
would be quite similar if the actual value – had the ECG lasted, as planned, for 48 h – had been used for
modelling.

Third, specific aspects of the clinical status of ESRD patients undergoing HD (e.g., possibility of
previous infarction not always revealed in clinical history) could have influenced the results, generating
the inter-patient variability here observed.

Finally, the reduced number of patients and available blood samples for each patient included in this
study also represents a limitation to frame the conclusion of the work. Indeed, even if the proposed
approach may entail a significant step towards a robust and reliable ∆[K+] sensing from TW time-warping
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based markers, it needs to be validated in larger cohorts before any translation to clinical practice.
However, the available data would suggest that a patient-specific quadratic model could estimate ∆[K+]
time trends with better accuracy than a linear-model. Also, in real practice, this method implies the
collection of several blood samples, which may result in cumbersome procedures. It remains to be studied
to what extent the models learned in one session can be extrapolated for sessions in later days/weeks,
reducing the learning to just a single session.

4.5 Conclusions

The present study shows the possibility of obtaining acceptable ∆[K+] measurements from a digital
analysis of the TW-based markers derived from the ECG in ESRD patients undergoing HD. In particular,
these findings suggest a new noninvasive strategy for ECG-based [K+] sensing, with large implications for
monitoring patients with cardiovascular and renal diseases, providing a meaningful tool for a personalised
ambulatory cardiac risk assessment of ESRD patients undergoing HD.
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5.1 Introduction

The use of TW morphology indexes, computed from time warping analysis, to monitor and quantify
[K+] variations in ESRD patients undergoing HD was validated in previous chapters 2 and 3. In particular,
both duw (section 2.3.5) and dw (section 2.3.6), have demonstrated high correlation with ∆[K+] and duw
was found to be highly correlated with the dispersion of ventricular repolarization [166]. Notably, the
TW morphology restitution index (TMR), obtained from duw, was found to be specifically associated
with sudden cardiac death (SCD) patients [222] in 651 chronic heart failure (CHF) patients when tested
in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study [223]. It was also shown that duw is
significantly associated with CV risk in a middle-aged population undergoing an exercise stress test in
UKBiobank [224].

Automatic location of TW boundaries (i.e. onset and end position) is a necessary step in the calculation
of both markers and so, a reliable delineation of TW boundaries is of great importance for the evaluation
of TW-based morphology marker for SCD risk stratification [225]. In other words, errors in locating TW
boundaries, due to ECG noise contamination (such as motion artifacts, powerline interference, muscle
artifacts, high-frequency noise and baseline wander) and low TW amplitude and morphological variability
[226,227], may greatly affect the robustness and sensitivity of duw and dw, thus potentially impacting its
risk stratification value as well as diminishing its correlation with ∆[K+].
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Therefore, it was hypothesized that inaccurate delineation of TW boundaries could introduce spurious
components over the TW-based markers physiologicaly useful information. This can happen for both,
∆[K+] monitoring and SCD risk stratification tasks. A possible solution to this problem could be to
include a weighting stage in the calculation of duw and dw which would reduce the delineation errors effects
on the marker. This chapter aims to assess the advantages of introducing the weighting stage and to test
the markers performance as compared to a baseline case when no weighting is performed.

For this purpose, two weighting functions (WFs) are proposed and their introduced robustness in the
marker against TW boundary errors in a simulated set up is evaluated. Then, an electro-physiological
cardiac model is used to investigate the relation between duw and dw, obtained with and without the WFs,
and the morphological changes of the action potential at cellular level. Next, the ability of the resulting
markers to monitor ∆[K+] during a HD treatment was tested. Finally, TMR index [222] was quantified
by using both duw and dw with and without applying the WFs, in order to evaluate whether or not the
proposed weighting stage can improve the already settled prediction value of arrhythmic risk leading to
SCD in CHF patients.

5.2 Materials

5.2.1 DEKAOLE dataset

ECG signals from the DEKAOLE dataset (section 2.2) were investigated to assess the performance of
the WFs when computing duw and dw for ∆[K+] tracking.

5.2.2 MUSIC dataset

A total of 992 patients with symptomatic CHF were enrolled in the MUSIC study, a prospective,
multicenter study designed to assess risk predictors of CV mortality in ambulatory CHF patients [222].
Two-(3%) or 3-lead (97%) 24-h Holter ECG sampled at 200 Hz was recorded for each patient using ELA
Medical equipment (Sorin Group, Paris, France). The study protocol was approved by the institutional
investigation committees, and all patients signed informed consent [223]. Although the MUSIC study
included patients in atrial fibrillation, sinus, flutter, and pacemaker rhythm, in the present study we only
analyzed the ECG from the 651 patients in sinus rhythm.

Follow-up visits were conducted on an outpatient basis for a median of 44 months. Subjects were
classified as SCD, CD, PFD and survivors. CD was defined as SCD if it was (1) a witnessed death
occurring within 60 minutes of the onset of new symptoms, unless a cause other than cardiac was obvious;
(2) an unwitnessed death (< 24 hours) in the absence of preexisting progressive circulatory failure or other
causes of death; or (3) a death during attempted resuscitation. Deaths occurring in hospitals as a result
of refractory progressive end-stage CHF were defined as PFD [223].

As previously done in [222], we considered in the group of non cardiac event (non-CE) the aggregation
of survivors and non-CD, and as non-SCD the aggregation of non-CE and PFD. The number of patients
in each group (SCD, PFD and non-CE) and the number of patients with two or three recorded leads are
given in Table 5.1.

Table 5.1: Characteristics of the analyzed MUSIC dataset: number of patients in sinus rhythm for each considered group
(i.e. SCD, PFD and non-CE) and number of records with two or three leads.

Classification Criteria Clinical outcome #ECG leads
Group SCD PFD non-CE 3 leads 2 leads

# Patients 55 67 529 630 21
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5.3 Methods

5.3.1 Real ECG preprocessing and lead space reduction techniques

Preprocessing of ECG recordings in the DEKOALE and MUSIC datasets included baseline wander
removal by high-pass, cut-off frequency of 0.5Hz, filtering in each lead followed by low-pass filtration to
remove power-line noise and to attenuate muscular activity. Then, QRS complexes were detected and TW
delineated using the wavelet-based delineation previously mentioned in section 2.3.2.

To emphasised TW energy content, PCA was applied lead-wise in both DEKOALE (see section 2.3.3)
and MUSIC (learnt as described in [166]) datasets. The TWs in the first transform component PC1 were
further delineated and smoothed by applying a 6-th order Butterworth 20 Hz low-pass filter to remove
remaining noise components outside the TW frequency band.

5.3.2 Time warping markers

Markers duw and dw were computed as detailed in section 2.3.5 and 2.3.6 respectively. However, the
sign was computed in the control case (C) with no weighting, WC(tr) = 1, and then applied to dw obtained
with and without weighting.

5.3.3 Weighting functions computation

Aiming to attenuate the undesired effects caused by TW delineation errors on the computation of
duw and dw, two different WFs were used to emphasize the TW peak and the regions of maximum slope,
respectively, while attenuating both ends.

As described in section 2.3.4, let fr(tr) be a reference TW and fs(ts) the studied TW (Figure 5.1a
in blue and red respectively), with tr =

[
tr(1) . . . tr(Nr)

]> and ts =
[
ts(1) . . . ts(Ns)

]> their time
duration with Nr and Ns the total length of tr and ts, respectively.

The first proposed WF,WT (tr), was taken as the normalized reference TW itself, obtained by dividing
fr(tr) by its maximum value (Figure 5.1b, blue TW). Then, the linear function connecting the first and
last samples was subtracted (Figure 5.1b, magenta), obtaining the green TW (Figure 5.1b, green), which
later was also normalized by its maximum value, resulting in the final WT (tr) (Figure 5.1b, black).

The second weighting function,WD(tr), was taken as the derivative of the reference TW and computed
as follows. First, the absolute value of the derivative of the reference TW, fr(tr), was divided into two
halves, with the middle zero value (corresponding to the fr(tr) peak) taken as the splitting point. Then,
the same procedure previously described for WT (tr) was individually applied to each half. Finally, the
two parts were linked, obtaining WD(tr) (Figure 5.1c).

The γ∗(tr) function was then multiplied by each WF:

γ∗Γ (tr) = γ∗(tr) ·WΓ (tr), (5.1)

being Γ ∈ {C,T ,D}. The resulting γ∗T (tr) and γ∗D(tr) are depicted in Figure 5.1e and Figure 5.1f (black
solid line) respectively. Finally, both duw and dw were re-computed. We denoted markers duw and dw
extracted in the control case as duw,C and dw,C , respectively, while as duw,T , dw,T , and duw,D, dw,D, those
after weighting with WT (tr) and WD(tr), respectively. The resulting dw,T and dw,D, quantifying the
weighted dark orange area, are depicted in Figure 5.1e and Figure 5.1f, respectively.

5.3.4 Simulation of TW boundaries shift

To assess the impact of TW boundaries shift on the calculation of duw and dw with and without
applying the proposed WFs, a study simulating controlled variations in the TW duration and amplitude
at different levels of TW boundaries shift was performed.
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(a) (b) (c)

No weighting
WC(tr) = 1

(d)

T-wave weighting
WT (tr)

(e)

T-wave-derivative weighting
WD(tr)

(f)

Figure 5.1: Illustration of the proposed weighting functions WΓ (tr), Γ ∈ {C,T ,D}, and application for dw computation.
Panel (a) shows the reference and studied TW (blue and red, respectively). Panels (b) and (c) show the process to derive
WT (tr) and WD(tr), respectively, as detailed in section 5.3.3. Panel (d) shows the calculation of the control dw,C (dark
orange area under γ∗(tr)), while panels (e) and (f) show the computation of dw,T and dw,D , estimated by using γ∗T (tr) and
γ∗D(tr), respectively computed as in eq. (5.1), obtaining the updated dark orange areas.

TW modulation

A reference TW, fr(tr), was extracted from PC1 of a clean 12-lead ECG sampled at 1 kHz from a
healthy subject [205]. Then, a set of K = 300 TWs modulated in amplitude and duration were generated,
as in [166], according to the following steps:

1. Adding amplitude variability. Nonlinear TW amplitude variability was introduced as:

fsNL,k(tr) = fr(tr) + c(k)sin
(

2π 1
4Nr

tr
)
,

c(k) = 150sin
(
π
(
K
2 +k−1

)
K

)
, k = 1, · · · ,K

(5.2)

with Nr and tr previously defined and k the TW index. Next, TW linear amplitude variability
was modeled multiplying the deviations from the isoelectric line of fsNL,k by a factor sinusoidally
modulated across TW:

fsL,k(tr) =
(

1 + 0.15sin
(
π
(
K
2 +k−1

)
K

))
fsNL(tr) (5.3)

2. Adding time variability. Linear variations in the time of the TW were simulated as in following
equations:

tsL,k = γk(tr), k = 1, · · · ,K (5.4)

where γk(tr) resamples tr based on the factor α(k) [166]:

α(k) = 0.6 · (k−1)
K−1 + 0.7, k = 1, · · · ,K (5.5)
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Nonlinear variations in the temporal domain of the TW were introduced by adding a sinusoidal
modulation of period Nr and linearly varying amplitude, guaranteeing a monotonic increasing
function:

tsk = tsL,k+β(k)Nr
Ns
· sin

(
2π 1
Nr

tsL,k

)
,

β(k) = 30(k−1)
K−1 −15, k = 1, · · · ,K

(5.6)

The whole TW duration and amplitude variability can be expressed as:

fsk(ts) = fsL,k

(
γk(tr) +β(k)Nr

Ns
· sin

(
2π 1
Nr

γk(tr)
))

(5.7)

Panels (a)-(f) in Figure 5.2 show the resulting modulated TWs for k = 1,60,120,180,240 and 300: the
reference TW, fr(tr), is displayed in solid blue in each panel, while the simulated TW ,fs(ts), is plotted
in solid red.

Boundaries shift

For each of the K=300 modulated fsk(ts), we simulated TW boundary location errors to: (1) T onset
(To) only, (2) T end (Te) only and (3) both To and Te positions symmetrically. In each test, n samples,
ranging from n=1 up to n=25, were progressively removed (added). Therefore, for each fsk(ts), a total of
50 boundary-shifted TWs were generated, having a boundary location standard deviation of σ = 14.9 ms,
a value within the manual TW end determination tolerance [228].

Panels (g)-(l) in Figure 5.2 show the resulting TWs after simulating shifts just of the To position, in
panels (m)-(r) are depicted the resulting TWs after Te shift only, while in panels (s)-(x) are the TWs
after shifting both To and Te at the same time. In each panel (g)-(x) the s-th modulated TWs without
shift (i.e. n=0) was highlighted in red. Then, markers duw,Γ and dw,Γ were evaluated by time warping
each boundary-shifted fsk(ts) and the reference fr(tr).

Finally, for every test (i.e. shift of To only, Te only and symmetrical To-Te shift), a variation ratio (R)
was computed for each fsk(ts) and WF as:

RΓ,k = σ(dΓ,k(n))
|dΓ,k(n= 0)| , (5.8)

where k = 1, · · · ,300 accounts for the modulated TW, n ∈ {−25, · · · ,25} denotes the samples added
(removed), d∈ {duw,dw}, Γ ∈ {C,T ,D}, dΓ,k(n=0) is the marker value computed when no shift is performed
and σ(dΓ,k(n)) is the standard deviation of the marker series for kth simulated TW.

5.3.5 Simulated variability in an electrophysiological model

To assess whether using the proposed WFs affects the relationship between changes in myocardial
repolarization dynamics and duw [166] and dw, an electrophysiological model [229] was used.

This equivalent double layer model formalizes the forward problem in which action potentials at
M ventricular sites are projected onto the body surface. The action potentials repolarization time at
each cardiac site m is given by ρm = ρ̄+∆ρm, where ρ̄ is the spatial mean repolarization time and ∆ρm
represents the deviation from ρ̄ at site m. The standard deviation of ∆ρm, σ, is a measure of the global
dispersion of repolarization. Ventricular action potential data was obtained from a normal male, and the
ECG leads were calculated as described in [166]. Spatial PCA was performed on the resulting ECG leads,
and the PC1 was preprocessed and delineated as described in section 2.3.1. The extracted TW was taken
as the reference in this simulation study.

Then, a total of five different TWs, j = 1, · · · ,5, were generated by varying the level of σ in two
scenarios:
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TW k=1

(a)

TW k=60

(b)

TW k=120

(c)

TW k=180

(d)

TW k=240

(e)

TW k=300

(f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 5.2: Example of evolution of linear and nonlinear time and amplitude simulated variations and corresponding TW
boundaries shift. The reference TW, fr(tr), is displayed in solid blue, and the simulated TW, fs(ts) computed as in
eq. (5.7), is plotted in solid red for k ∈ {1,60,120,180,240,300} in panels (a) to(e) respectively. In panels (g) to (l) are shown
the resulting TWs after simulating To shifts; in panels (m) to (r) are those after simulating Te shifts while panels (s) to (x)
are the resulting TWs after simulating both To and Te shifts. In each panel (g) to (x), the kth modulated TWs without
shift (i.e. n=0) is depicted in in red.
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1. Varying the repolarization time dispersion, σ:

σ(j) =

√√√√ 1
M −1

M∑
m−1

(∆ρm(j))2, j = 1, · · · ,5, (5.9)

with ∆ρm(j) =∆ρm(1 + 0.2(j−1)), expressed in ms.

2. Varying σ as in eq. (5.9), simultaneously with the lengthening of the mean repolarization time ρ̄,
according to:

ρ̄(j) = ρ̄+ 25 · (j−1), j = 1, · · · ,5. (5.10)

The resulting duw,Γ (j) and dw,Γ (j) were computed by warping each jth TW with the reference TW, which
for both scenarios corresponds to the TW when j=1, and plotted with respect to σ to infer the influence
of the proposed WFs.

5.3.6 DEKOALE Dataset

To evaluate the effects of the proposed WFs on the reported ability of dw and duw to track [K+]
variations as assessed in chapter 2, correlation between serum ∆[K+] and duw,Γ and dw,Γ was reestimated.
For this purpose, the same method described in section 2.3.4 was employed to compute duw,Γ and dw,Γ .

Finally, the correlation between ∆[K+], defined as in eq. (2.26), and duw,Γ and dw,Γ was evaluated by
Pearson correlation (r) and compared for each of the different WF strategies.

5.3.7 MUSIC dataset

To determine if the proposed WFs can improve the SCD risk stratification value of TMR [222], this
latter was recalculated using duw,Γ and dw,Γ following these main steps [222]:

1. RR histogram construction: The histogram of the RR intervals for all beats in the 24-h Holter
ECG was obtained, considering bins with a width of 10 ms (Figure 5.3a). RR bins with fewer than
50 occurrences (dot orange line in Figure 5.3a) were not considered in the following analysis.

2. Intrasubject RR range definition: The median RR was identified (Figure 5.3a, green bin). Then,
the two most distant RR bins from the median, distributed symmetrically around it, were chosen as
those defining the maximum intrasubject RR range, ∆RR. Then, naming RRmax (Figure 5.3a, red
bin) and RRmin (Figure 5.3a, blue bin) respectively the maximum and the minimum RR:

∆RR = RRmax−RRmin (5.11)

3. MWTW computation: The MWTWs of the TWs in the RRmin and RRmax bins were computed
(Figure 5.3b and Figure 5.3c respectively) as described in section 2.3.4. Then, time warping markers
duw,Γ and dw,Γ were computed (Figure 5.3d and Figure 5.3f).

4. Computation of the TMR index: TMR index was calculated dividing duw,Γ or dw,Γ by ∆RR
(Figure 5.3f), giving information on the TW morphological change per RR increment:

TMRuΓ =
duw,Γ
∆RR , TMRΓ = dw,Γ

∆RR (5.12)

The Mann-Whitney test was used to evaluate the association of both TMRuΓ and TMRΓ with SCD.
Receiver operating characteristic (ROC) curves were used to test the ability to predict the endpoint and
to set cutoff points for risk stratification. The population was divided into 5 equally sized groups with
similar SCD and non-SCD ratio, and in each group, the criterion of minimal Euclidean distance from
each ROC curve to the upper-left corner was applied to select the optimal threshold within each group
[222, 230]. This was repeated 10 times, and the mean and standard deviation (std) of the AUCs, the
median and IQR of the optimal thresholds and the accuracy were calculated.

64



5.4 Results

(a)

(b) (c)

∆RR
(d) (e)

TMRuΓ = duw,Γ
∆RR , TMRΓ = dw,Γ

∆RR
(f)

Figure 5.3: Quantification of TMR index in MUSIC dataset. Panel (a) shows the RR histogram with bins of RR=10 ms.
The green bin is the median RR interval value, while the blue and red bins indicate the RR intervals defining the maximum
intrasubject range, ∆RR. The orange line denotes the 50-occurrence limit. In panels (b) and (c) are the MWTWs from
those RR bins selected in (a), respectively. The two MWTWs from (b) and (c) before time warping analysis are depicted in
panel (d). The computation of both markers duw and dw is shown in panel (e). The TMR index of, panel (f), is calculated as
d ∈ {duw,dw}, with and without applying the WFs Γ ∈ {C,T ,D} , normalized by the difference between the RR values of
both bins, ∆RR. a.u. indicates dimensionless unit.

Survival probability, performed by using the median optimal threshold, was estimated by Kaplan-Meier
methods [231,232], comparison of cumulative events was performed by using log-rank (Mantel-Cox) tests
and risk evaluation was quantified by Cox proportion hazard test [233,234]. Patients who died from causes
other than SCD were censored at the time of death. A p-val<0.05 was considered statistically significant.

5.4 Results

5.4.1 Simulation of TW boundaries shift

Distributions of RΓ,k obtained when d= duw and d= dw are depicted in Figure 5.4a and Figure 5.4b,
respectively. In each panel, the three tests (i.e. shift of To only, Te only and symmetrical To-Te shift) are
shown, being the green, purple and orange boxplots the distributions resulting when WC(tr), WT (tr) and
WD(tr) are applied respectively.

5.4.2 Simulated variability in electrophysiological model

Simulated TWs and their corresponding duw,Γ and dw,Γ values were obtained as described in section 5.3.5.
For the first considered scenario (i.e. only varying σ) results are presented in Figure 5.5 panels (a) to (c);
while those for the second scenario (i.e. combined variations in σ and ρ̄) are in Figure 5.5 panels (d) to (f).

5.4.3 DEKOALE dataset

Distributions of ∆[K+], duw,Γ and dw,Γ across patients for every hour hi during HD therapy are
depicted in Figure 5.6a and Figure 5.6b, respectively. In each panel, the blue boxplots represent ∆[K+]
and referred to the left y-axis, while the corresponding makers are referred to the right y-axis and depicted
in green (Γ = C), purple (Γ = T ) and orange (Γ = D). Median (IQR) values for Pearson’s correlation
between ∆[K+] and every duw,Γ and dw,Γ are presented in Table 5.2.
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duw

(a)

dw

(b)

Figure 5.4: Distribution of RΓ,k for each shift test (To only,
Te only and symmetrical To-Te shift), marker and WF. In
each panel, the green, purple and orange boxplots represent
distributions for WC(tr), WT (tr) and WD(tr), respectively.

Scenario 1: Varying σ

(a) (b) (c)

Scenario 2: Combined variations in σ and ρ̄

(d) (e) (f)

Figure 5.5: Evaluation of WF performance by electro-
physiological cardiac model. (section 5.3.5). Panels (a) to (c)
show the results when only σ is varied in the model; while
panels (d) to (f) show the combined variation of σ and ρ̄.
Panels (a) and (d) plot the TWs; while duw,Γ and dw,Γ values
for both scenarios are shown in panels (b), (e), (c) and (f).
Square, circle and diamond-shaped markers denote results
for WC(tr), WT (tr) and WD(tr), respectively. Each colour
denotes results for the jth TW, corresponding to a particular
σ, computed as in eq. (5.9) and eq. (5.10) (scenarios 1 and 2,
respectively).

5.4.4 MUSIC dataset

Distributions of TMRuΓ and TMRΓ are presented in Figure 5.7a and Figure 5.7b, respectively. Boxplots
are shown in purple for WT (tr), in orange for WD(tr) and in green for the WC(tr) case. Patients are
grouped according to their outcomes (i.e. SCD, PFD and non-CE). Significant Mann-Whitney test p-val
(see Figure 5.7) was found for each TMRuΓ and TMRΓ when comparing SCD victims and non-SCD
patients regardless of the employed WF, while difference between PFD and non-CE were no significant.
Finally, a statistical difference between SCD and PFD was only found for the TMRΓ index.

Table 5.3 shows the mean (std) of the AUCs from the ROC curve analysis and median (IQR) for the
optimal thresholds for SCD risk stratification evaluated for TMRuΓ and TMRΓ indexes.

Figure 5.8 plots the Kaplan-Meier survival probability curves obtained after dichotomizing the study
population based on the optimal thresholds for TMRuΓ and TMRΓ .

5.5 Discussion

In this chapter, two WFs were proposed and introduced to attenuate the effects of TW location
errors. Using these WFs, the redefined TW morphology indices, dw,Γ and duw,Γ , were calculated and
their robustness against simulated TW boundaries location errors, their physiological relevance in an
electrophysiological model and in an HD dataset, and their SCD risk stratification value were thoroughly
evaluated. Our main findings were that the WFs reduce the effects of TW boundaries location errors,
with no impact in the ability of duw and dw to reflect repolarization dispersion, but significantly boosting
their SCD risk stratification value. However, no meaningful changes in monitoring [K+] were found.
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(a) (b)

Figure 5.6: Distribution of ∆[K+] (blue, left y-axis), and duw,Γ (panel (a)) and dw,Γ (panel (b)) for each WF (Γ ∈ {C,T ,D}
green, purple and orange boxplot, respectively, right y-axis), during the HD session from h0 to h4 in Figure 2.1.

Table 5.2: Median and (IQR) values of Pearson’s
correlation coefficient (r) across patients in the
DEKOALE dataset between ∆[K+] and every com-
bination of markers d∈ {duw,dw}, WF Γ ∈ {C,T ,D}.

Γ r

duw,Γ

C 0.92 (0.36)
T 0.88 (0.36)
D 0.92 (0.40)

dw,Γ

C 0.89 (0.35)
T 0.86 (0.36)
D 0.90 (0.39)

Table 5.3: Values of AUC, mean (std), optimal thresholds (THR),
median (IQR), and accuracy for each TMRuΓ and TMRΓ . The
accuracy is included for a THR derived from the complete date set.

Γ
AUC Optimal THR Accuracymean (std) median (IQR)

TMRuΓ
C 0.62 (0.10) 0.045 (0.012) 0.59
T 0.58 (0.10) 0.012 (0.005) 0.65
D 0.60 (0.10) 0.021 (0.004) 0.68

TMRΓ
C 0.64 (0.08) -0.045 (0.010) 0.63
T 0.62 (0.10) -0.012 (0.002) 0.69
D 0.63 (0.09) -0.021 (0.004) 0.70

5.5.1 Simulation of TW boundaries shift

The purpose of this analysis was to evaluate the ability of the WFs in reducing the undesired effects of
TW boundaries misplacement under controlled conditions in three possible scenarios: misplacement of
just one extreme, either To or Te, and both of them symmetrically.

As shown in Figure 5.4, the R values (representing the relative error caused by those misplacements)
were considerably lower for duw,T and duw,D with respect to duw,C and similarly in case of dw,T and dw,D with
respect to dw,C . This can be appreciate in the three tests (i.e. To only, Te only and To-Te symmetrically)
by comparing the distributions of RC (in green) when no weighting was applied, with respect to RT (in
purple) and RD (in orange) obtained after weighting with WT (tr) and WD(tr), respectively.

Moreover, across the three tests, smaller median and dispersion values were found for RT than for
RD, suggesting a slightly better performance of WT (tr) with respect to WD(tr) in terms of robustness
against To and Te mislabeling.

5.5.2 Simulated variability in an electrophysiological model

This test aimed to evaluate the impact of the proposed WFs have on the physiological relevance of duw,Γ
and dw,Γ . The results obtained proved the preservation of the linear relationship between duw,Γ and dw,Γ
and the changes in dispersion of repolarization at cellular level, which only varied by a proportional factor,
as shown in Figure 5.5 panels (b), (c) and panels (e), (f). These findings are in agreement with previous
study [166] where only duw,C was tested and found to linearly change with dispersion of repolarization as
observed in this work.
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(a) (b)

Figure 5.7: Distributions of TMRuΓ and TMRΓ (panels (a) and (b) respectively), for SCD, PFD and non-CE groups for
Γ ∈ {C,T ,D} (green, purple and orange, respectively). In each panel are Mann-Whitney test p-values, colour coded for each
WF, between SCD and PFD (uppermost row of p-val), PFD and non-CE (middle row of p-val) and SCD and the combination
of PFD and non-CE groups (i.e. the non-SCD group) this latter highlighted with a curly bracket (lower row of p-val).
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Figure 5.8: Kaplan-Meier survival curves for the two groups defined after dichotomising patients in the MUSIC dataset
according to the optimal threshold computed as described in section 5.3.7. Curves for TMRuΓ and TMRΓ (eq. (5.12)) are
depicted in panels (a) to (c) and panels (d) to (f) respectively. In each panel, HAR value with corresponding 95% confidence
intervals (CI) and p-value from the long-rank test are shown. Significant p-values were found for HAR in all the Cox analysis.

A reduction in the sensitivity to changes in dispersion of repolarization can also be observed in duw,T
(dw,T ) and duw,D (dw,D) with respect to duw,C (dw,C), in both scenarios 1 and 2. Moreover, values for
duw,Γ and dw,Γ were found to be similar in absolute value but opposite in sign, since the increments in
σ led to TWs having larger magnitude and width than the reference one (black TW in Figure 5.5a and
Figure 5.5d). Then, all simulated TWs had to be shrunk, i.e., negatively warped, to fit the reference.

5.5.3 DEKOALE dataset

As previously reported in chapter 2, both duw,C and dw,C were able to follow ∆[K+] time-trend in
patients undergoing HD. This capacity remained unaltered in this study regardless of the applied WF,
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being the differences in Pearson correlation negligible (Table 5.2). However, the dynamic ranges of both
duw,Γ and dw,Γ were reduced when a WFs was applied, as also observed in the first simulation scenario.

In other words, no particular improvement in monitoring [K+] during the HD resulted from the
addition of a weighting stage before time warping markers computation. This might be a consequence
of the substantial TW morphological changes caused by ∆[K+] in ESRD patients: TW narrowing and
remarkable magnitude increment [88,91,235,236]. Then, changes of the TW morphology attributable to
boundary location errors, which may or may not have occurred, seem to be negligible when compared to
those driven by ∆[K+], thus producing highly similar Pearson correlation values between markers and
∆[K+].

5.5.4 MUSIC dataset

To evaluate the potential improvement in the SCD risk stratification value of TMR when using the
proposed WFs, CHF patients in sinus rhythm from the MUSIC dataset were analysed.

Results from Mann-Whitney test (Figure 5.7) demonstrated that both TMRuΓ and TMRΓ are specific
markers of SCD with no relation to PFD risk, regardless of the applied WF. Whereas the AUC (Table 5.3)
showed no clear advantages in using one of the proposed WF, we observed an improvement in accuracy
(Table 5.3) and in SCD risk prediction power of both TMRuT (TMRT ) and TMRuD (TMRD) with respect
to TMRuC (TMRC), thus demonstrating a better ability in distinguish between SCD and non-SCD, as
visible from the Kaplan-Meier survival curves (Figure 5.8).

We observed TMRΓ provided the highest performance (Figure 5.7b). This could be due to the
avoidance of opposite-sign artifacts of similar absolute value, which may have been wrongly considered as
regular values when using TMRuΓ (Figure 5.7a). Moreover, the WF that led to the highest HAR values
when using TMRΓ was WT (tr), supporting its choice as WF when deriving TMR for future SCD risk
stratification studies.

Lastly, it is worth to mention the similarity of TMRuC distribution for non-CE patients in the MUSIC
study and those obtained from the UKBiobank published in [224].

5.5.5 Considerations on the use of the WFs

The two studied WFs were designed to reduce the contribution of the boundary regions, and to explore
different attenuation profiles. The main difference is that WT (tr) emphasises the peak region of the TW
where the warping function typically gets close to zero values, an attenuating the extremes (Figure 5.1d),
while WD(tr) emphasises the slopes of the TW (Figure 5.1c) resulting in a warping function, Figure 5.1f,
where the central point of the two halves was emphasised, with the extremes also attenuated. This effect
is particularly clear when comparing Figure 5.1d, with respect to both Figure 5.1e and Figure 5.1f, and
focusing on the extreme sections (light orange area).

In the four studied scenarios, weighting with WT (tr) results in warping markers more robust to TW
boundary location errors (see section 5.5.1), leading to increased ability for SCD risk stratification than
its counterpart WD(tr). This would indicate that useful physiological information may be overlooked
when WD(tr) is applied. One possible explanation might be that the shape of this WF reduces, perhaps
too sharply, the regions near the TW peak. Another reason might be that the regions around the TW
boundaries are less attenuated than when using WT (tr), resulting in a reduced boundary misdetection
attenuation effect.

Therefore, while WT (tr) is to be preferred to WD(tr) as WF in time warping analysis and subsequent
TMR computation for SCD risk stratification, it seems that WD(tr) would result in duw,Γ and dw,Γ
slightly better correlated with ∆[K+]. However, correlation coefficients are still very similar to draw
strong conclusions about which is the most suitable WF for [K+] monitoring.

5.5.6 Clinical significance

Findings from the present study prove the usefulness of the WFs in reducing the effects of TW location
error when deriving markers based on TW time warping analysis. Even though there were no significant
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changes in [K+] monitoring in ESRD patients, a considerable improvement in SCD risk predicting values
of the TMR index was observed, thus increasing its robustness and reliability for clinical applications.

5.5.7 Limitations

Several limitations deserve to be mentioned.
In this work, as in Ramírez et al [166], the van Oosterom equivalent double layer model was used

to study the correlation between duw,Γ (dw,Γ , respectively) and repolarization dispersion, but other
biophysically detailed models of human ventricular electrophysiology [237–239] could be used to further
investigate the mechanisms underlying changes in repolarization dispersion reflected in variations in the
analyzed warping-based indices.

The reduced number of patients in the HD dataset and available blood samples for each patient
included in the study was a limitation to better frame the conclusion of the work. However, although
there was no noticeable improvement in ∆[K+] sensing by the application of the proposed WF, they do
not make results worse either, so applying WF by default in the signal processing pipeline would not
decrease the usefulness of the duw and dw dispersion markers in the HD setting for monitoring [K+].

Prospective studies are needed to corroborate the observations in [222], and reinforced here with the
weighting marker versions, relative to the role of TMR in SCD risk prediction in CHF patients. Indeed this
study considered consecutive patients, so the number of SCD victims was low, limiting the possibilities for
further statistical analysis. The clinical validity and meaningfulness of the proposed WFs over extreme
TW morphological variations, such as biphasic TWs, remains to be tested.

5.6 Conclusions

T-wave morphology based markers, derived from weighted time warping, show improved robustness
against the undesired effects of TW boundaries location errors without losing their physiological significance.
In clinical settings, this improvement in robustness resulted in an enhancement of the SCD risk stratification
value of the TMR index in CHF patients, but did not lead to a better ability to monitor [K+] in HD
patients.

70



6
C h a p t e r

Conclusions and Future Work

6.1 Summary and discussion of the main
achievements . . . . . . . . . . . . . . . 71

6.1.1 Time dynamics of time warping based
markers are able to follow blood potas-
sium concentration variations . . . . 71

6.1.2 Periodic component analysis increases
the robustness of time warping based
markers in tracking blood potassium
concentration variations . . . . . . . 72

6.1.3 Quadratic regression models for non-
invasive quantification of blood potas-
sium concentration variation from
ECG in hemodialysis patients . . . . 72

6.1.4 Weighting stage improves the robust-
ness to TW delineation errors . . . . 72

6.2 Clinical significance . . . . . . . . . . . 72
6.3 Conclusion . . . . . . . . . . . . . . . . 73
6.4 Future works . . . . . . . . . . . . . . . 73

6.1 Summary and discussion of the main achievements

The main objective of this thesis was to develop a new approach to estimate [K+] variations in CKD
patients undergoing HD, based on the analysis of the overall TW morphology. This objective has been
addressed by using morphological indices extracted through TW time warping analysis, a methodology
that allows the comparison of two different TW shapes and the quantification of their differences. This
method has been applied and evaluated in both experimental and clinical conditions.

6.1.1 Time dynamics of time warping based markers are able to follow blood
potassium concentration variations

This thesis started by evaluating whether the proposed time warping based markers, computed either
in PCA-based spatial transformed lead or SL approach, could improve routine [K+] monitoring in ESRD
patients undergoing HD. Not only it was found that PCA-based markers outperform those computed
in SL setting, but it was proved that two (i.e. dw and d̂w,c) out of six achieved better results than two
well-known TW-based markers: the width of the TW [134], the TW slope-to-amplitude ratio [141].

This confirmed our hypothesis that quantification of the overall TW morphology, rather than just
local features, provides additional information reflecting the effects of [K+] variations on the TW thus
allowing a more reliable monitoring of ESRD patients undergoing HD. Moreover, these findings validated
the use of d̂w,c, which assumes no correlation between HR and [K+]-related TW morphology changes.
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6.1.2 Periodic component analysis increases the robustness of time warping
based markers in tracking blood potassium concentration variations

With the aim of overcoming PCA sensitivity to noise, a method to quantify one-beat periodicity in
ventricular repolarization on ECG recordings, πCA, was investigated either learned on the whole QRST
complex (πCB) or on the TW (πCT).

Both πCB and πCT outperform PCA in terms of monitoring [K+] in ESRD patients undergoing
HD, as well as of robustness against BPC and low SNR, with πCT showing the highest stability for
continuous post-HD monitoring. These results confirmed the initial hypothesis that πCA is less sensitive
to non-periodic disturbances (like BPC) than PCA, thus leading to more a reliable ∆[K+] monitoring.

6.1.3 Quadratic regression models for noninvasive quantification of blood
potassium concentration variation from ECG in hemodialysis patients

After showing that πCA-derived dw and its HR corrected version d̂w,c, can reliably track ∆[K+] from
the ECG, a regression analysis was applied to assess the correlation between the actual ∆[K+], computed
from blood samples, and polynomial models relating dw and d̂w,c and ∆[K+].

Polynomial models, and in particular the quadratic one, were found to be the most suitable for ∆[K+]
estimation, rendering higher Pearson’s correlation and smaller estimation error than the linear model.
Notably, these results are in agreement with those already proposed in the literature [141]. Therefore,
these outcomes support the use of patient-specific polynomial models based on TW time warping-derived
markers can provide better quantitative assessment of ∆[K+].

6.1.4 Weighting stage improves the robustness to TW delineation errors

Apart from studying the prognostic value of time warping derived indexes as surrogate for ∆[K+]
monitoring, a specific study has been carried out aiming to reduce the influence of TW boundaries
delineation errors as they may jeopardise TW-based markers diagnostic power.

Interestingly, the proposed weighting stage has been found to decrease the undesired effects of
TW boundaries delineation errors in simulation tests, but did not improve ∆[K+] monitoring power.
Nonetheless, the proposed WFs did enhance the clinical reliability of TMR as SCD risk stratification index
in the MUSIC study. As mentioned before, these differences could be a consequence of the [K+]-induced
TW morphology variations that may have masked those due to mislabelling of TW onset and end points.
Therefore, further investigations are needed to fully understand the advantages prognostic value of the
proposed weighting stage before time warping analysis.

6.2 Clinical significance

Potassium levels outside the normal range are concerning because they are usually clinically silent and
occur without warning to the patient in the absence of blood tests [240]. Any efforts aimed at developing
tools that can help clinicians in their decision process, especially in the proper identification of life-saving
treatment to restore physiological blood potassium concentrations, are, therefore, more than justified.
The research presented in this thesis sheds some light in this context.

The ECG signal represents a non-invasive, easy and, most important, cheap solution for cardiac
evaluation and continuous monitoring of ESRD patients. In particular, the study of the TW morphology
hold the potential to quantify abnormalities in ventricular repolarization due to [K+] impairment. With
this information, in this thesis it was shown that it is possible to reliable estimate ∆[K+] without invasive
procedure, such as blood tests. This can provide real-time information of [K+] instability and help in
properly delivering HD therapy as well as in evaluating its safety for the patient.
Moreover, the use of the proposed time warping indexes in ambulatory recordings, may enhance the actual
cost-effectiveness of therapeutic strategies and so improve the quality of life of ESRD patients.
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6.3 Conclusion

This thesis proposes new ECG-derived markers that are to some extent related to blood potassium
concentration variations in ESRD patients undergoing to HD therapy: dw and its HR corrected version
d̂w,c. These markers, quantifying TW morphological variability, are extracted by a recent developed signal
processing technique based on time warping. The performance of those markers were assessed in several
clinical and non-clinical scenarios, and the employed methodology has been contextualized and adapted
to the particularities of each of them. In this way, a general framework for dealing with several physical,
such as changes in body posture, and signal, e.g. low SNR or TW boundary delineation errors, conditions
has been provided.

Based on the predictive value of the proposed markers, improved diagnosis of [K+] variations could
be achieved, leading to a better means for clinical decision on the specific treatment required by ESRD
patients.

6.4 Future works

Some future research lines derived from this work are presented below. Some of them were already
proposed in the previous chapters as a possible solution to the acknowledged limitations (e.g. the
application of πCA instead of PCA as LSR technique before time warping analysis); others arise from the
obtained results.

• The DEKOALE dataset was investigated along this thesis, which comprises a small population
of only 29 ESRD patients and the majority of them were in hyperkalemia. Future studies should
replicate the same analysis over a larger population including both hypo- and hyperkalemia cases.
Moreover, new analysis should assess the correlation between the proposed time warping markers
and alterations in other electrolytes beyond potassium, like calcium, magnesium, or related to the
rate and amount of [K+] removal.

• Further studies should be performed in order to assess the how meals, medications and circadian
rhythm could affect the relationship between the proposed markers and ∆[K+].

• The proposed estimation models, presented in chapter 4, should be validated in a follow-up study
where the models are learned at the initial HD session and used in later HD sessions to measure
∆[K+]. In such studies, the complete learning with all the available ∆[K+] values (“m = a”) at
the initial HD session could be evaluated by its prediction value at subsequent sessions, without
any overfitting risk. At this future analysis, it is expected that this approach will show better
performance, in terms of correlation and estimation error, than the one reported here for the
leave-one-out (“m = o”) case, since the models’ coefficients will be estimated over the six ∆[K+]
values (and not just over five as in m = o), thus covering the full range of marker values for each
patient.

• The [K+] monitoring power of the proposed markers, should be evaluated also in subjects at risk of
[K+] imbalance, such as those with DM [241] or severe CV events like myocardial infarction [242,243].
Analogous considerations can be made regarding the accuracy of the proposed regression models.

• The MUSIC dataset was investigated in chapter 5, which comprises a population of CHF patients.
Future studies should validate the predictive value of the indices proposed in this thesis, with
particular reference to TMR, in different populations to assess the reproducibility of the results.

• Because the MUSIC dataset is a retrospective study, further investigations on the applicability of
the proposed WFs (presented in chapter 5) and the defined cut-off points on the extension of the
analysis to other CHF and non-CHF populations are needed to confirm the prognostic value of the
TMR with weighting procedure.

• The clinical validity and meaningfulness of the proposed WFs over extreme TW morphological
variations, such as biphasic TWs, remains to be tested.
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