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Abstract: Two-dimensional materials have moved into the spotlight of researchers. The isolation of single 
graphene sheets has shown that restricted dimensionality can lead to interesting properties. Bottom-up synthesis 
of organic, covalently-bonded structures is, however, still challenging. In this publication we give a synopsis of 
a recently published monomer that is easily accessible and reversibly provides chiral two-dimensional polymer 
single crystals, which can be exfoliated into nanometer-thin sheets and show promise for applications in, for 
example, nonlinear optics and ultrathin membranes.
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In 2004 Novoslov and Geim discov-
ered that graphite can be exfoliated by the 
simple use of scotch tape down to mono-
layered graphene sheets.[1] The phenom-
enal properties of graphene sparked the 
interest of many researchers to look at this 
novel material.[1,2] Today, research efforts 
have been widened to include other two-di-
mensional materials such as MoS

2
, h-BN, 

etc.[3] These materials show great promise 
for applications in next-generation elec-
tronics.[4] They are mainly obtained by ex-
foliation of their layered bulk precursors 
or through chemical vapor deposition of 
the corresponding precursors at elevated 
temperatures.[5,6] The mild organic synthe-
sis of periodic, monolayered sheets – two-
dimensional polymers (2DP) – from cheap 
chemicals, however, is still challenging. 
Such a synthesis would enable a tunabil-
ity of the 2DP-sheet structure and thus of 
the sheet properties.[7] In 2012 and 2013, 
the first organic syntheses of 2DPs were 
achieved.[8,9] They employed anthracene-
based monomers that were preorganized 
in layered single-crystals and subsequently 
polymerized by a photoreaction to the cor-
responding 2DPs. 

In both of these cases, however, the 
structural changes upon irradiation caused 
the single crystals to lose their integrity, 
rendering structural analysis by single-
crystal X-ray crystallography impossible. 
Moreover, the reported syntheses for the 
monomer systems were rather laborious 
and did not allow for larger amounts, as 
required for application-oriented explora-
tions of the corresponding 2DPs.

In back-to-back publications with the 
King group, we recently reported two new 
monomer systems that led to the synthe-
sis of the first crystallographically proven 
synthetic 2DPs according the above defini-
tion.[10,11] The monomers employ the well-
studied [4+4] photodimerization reaction 
of anthracene (see Fig 1b) for polymeriza-
tion.

In the following we recall important 
steps of our findings.

Monomer 1 (see Fig. 1a) is a rotor-
shaped double-decker compound. It is 

based on two triazine cores to which three 
anthracene blades are symmetrically con-
nected. Synthesis of 1 is highly scalable 
and can be achieved from cheap, commer-
cially available starting materials without 
any column chromatographic purification, 
only by simple precipitation.[12] The low 
solubility of the monomer was intended 
to enhance crystallizability. And indeed, 
dissolution in high-boiling solvents such 
as nitrobenzene or benzonitrile gave nee-
dle-shaped crystals by cooling of the hot 
solutions. Single-crystal X-ray analysis re-
vealed a desired layered structure. Within 
the individual layers the anthracene-units 
of the monomers, however, stack in an 
edge-to-face fashion, thus a monomer 
packing not suitable for two-dimensional 
polymer synthesis (Fig. 2). 

Other organic solvents were therefore 
tested. 2-cyanopyridine (cpy) proved par-
ticularly useful. Monomer crystallization 
from cpy now revealed a different crystal 

R

R
R

R
R

R

hν

ΔT or hν'O
N

O
N
O N

O
N O

N

O N

(a) (b)

1

R

R

Fig. 1. (a) Molecular structure of the rotor-shaped double-decker monomer employed for the syn-
thesis of the two-dimensional polymer single crystals. (b) Well-studied [4+4] photodimerization of 
anthracene and its thermally or photo-triggered back-reaction.
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1 of the template was moved upwards and 
became slightly tilted (see Fig. 3c,d). 

To test the feasibility of polymeriza-
tions on larger scales, crystal irradiations 
were carried out on a gram-scale. To this 
purpose crystals of diameter 20–30 µm 
were suspended in argon-purged methanol. 
After 90 minutes no further conversion was 
visible, as determined by IR-spectroscopy 
and powder X-ray analysis.

As a next step, exfoliation of the po-
lymerized crystals to the individual 2DP 
sheets was addressed. The exfoliation of 
two-dimensional materials in liquids bears 
several advantages; it is potentially scal-
able, and allows for the formation of thin 
films and composites.[13] For the 2DP crys-
tals described, it was found that polymer-
ized crystals strongly swell up in perfluoro 
carboxylic acids. Fig. 4 shows an SEM 
picture of crystal swollen in perfluoro hep-
tanoic acid. Gentle stirring was shown to 
delaminate the crystals in nanometer-thin 
sheets (Fig. 5). In many cases the crystals 
retained their original dimensions. 

Reversibility of the Employed 
Polymerization

The polymerization based on the [4+4] 
photodimerization of anthracene offers the 
opportunity to thermally induce a back 
reaction. This was tested by heating po-
lymerized single crystals to a temperature 
of 180 °C. Single-crystal X-ray analysis 
of crystals heated for 4 days showed that 
two-thirds of the polymer had reacted to 
monomer, crystals heated for 21 days re-
vealed the monomer crystal structure. In 
another experiment monomer single crys-
tals were polymerized, heated to induce 
full back reaction, and then repolymer-
ized. The process could be monitored by 
IR-spectroscopy proving the reversibility 
of the photopolymerization reaction.

Conclusion

Utilizing the novel triazine-based 
double-decker monomer 1, monomer sin-
gle crystals can be grown in a controlled 
fashion and subsequently polymerized to 
the corresponding 2DP crystals, of which 
the structure could be solved by single-
crystal X-ray crystallography. This estab-
lishes the first unequivocal proof of a 2DP. 
When exposed to perfluoro carboxylic 
acids, the polymerized crystals swell up; 
mild stirring of the crystal suspensions in 
acid leads to the crystals’ exfoliation into 
nanometer-thin sheets. Heating the polym-
erized crystals causes back reaction to the 
corresponding monomer crystals in a sin-
gle-crystal-to-single-crystal fashion. This 
process could be shown to be reversible, 

habit. In addition to needle-shaped crystals 
also platelet-shaped and hexagonal crystals 
were observed. These crystals exhibited a 
packing, where the anthracene blades of 
adjacent monomer units stack face-to-face 
to form an infinite hexagonal arrangement 
(Fig. 3a). In this arrangement the cavities 
are filled with a template that consists of 
monomer compound 1 (shown in red) and 
cpy solvent molecules (shown in black): 
three solvent molecules around compound 
1 of the template and additional cpys sand-
wiched between the layers. Crystallization 
from cpy was optimized such that now 
controlled crystallizations of the monomer 

can give single crystals with desired shapes 
and sizes of up to a millimeter.

To transform the hexagonal face-to-
face arrangement of the monomer units 
into the corresponding covalently bonded 
two-dimensional network, platelets or 
hexagonally-shaped single crystals were 
irradiated with UV-light. (λ = 465 nm, 48 
h). The crystals fully retained their bire-
fringence. Single-crystal X-ray analysis 
revealed their polymerization. Anthracene-
blades of adjacent monomer units that 
were previously stacking face-to-face, un-
dertook dimerization by the desired [4+4] 
photoreaction. At the same time compound 

Fig. 2. (a) Layered crystal structure of monomer compound 1 obtained through crystallization from 
benzonitrile. (b) Edge-to-face packing of the anthracene blades of the monomer units. This arran-
gement is not suitable for two-dimensional polymerization.

Fig. 3. (a) Top view of the monomer crystal structure. Monomer compound 1 serves two functions: 
1) as reactive species for two-dimensional polymerization (blue) as part of the template (red). 
Compound 1 of the template is surrounded by three 2-cyanopyridine molecules. (b) Side view of 
the monomer crystal structure. (c) Top view of the polymer crystal structure. The monomer units 
have reacted to form a two-dimensional polymer. (d) Top view of the polymer crystal structure. 
Compound 1 of the template is moved upwards and becomes slightly tilted.
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which is truly remarkable considering the 
large structural changes occurring during 
polymerization and depolymerization. The 
accessibility of the 2DP sheets combined 
with their manifold properties provide a 
promising starting point for application-
oriented explorations.
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Fig. 4. (a) SEM picture (2kV) of a swollen two-dimensional polymer crystal after exposure to per-
fluoro heptanoic acid for 5 days. (b) SEM picture (2kV) of a very thin sheet package on a quantifoil 
grid. The hole size is 2.5 µm.

500 nm

1

2

0.50

1

2

3

1.20

5

10

15

0
x [µm]

z
[n
m
]

z
[n
m
]

0
nm

15
nm

Fig. 5. AFM picture of nanometer-thin two-dimensional polymer sheets and their height profile. 


