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Oxidative stress inhibits IFN-a-induced antiviral gene expression
by blocking the JAK–STAT pathway
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Background/Aims: Unresponsiveness to IFN-a is common in chronic hepatitis C. Since conditions associated with an

increased oxidative stress (advanced age, steatosis, fibrosis, iron overload, and alcohol consumption) reduce the likelihood

of response, we hypothesized that oxidative stress may affect the antiviral actions of IFN-a.

Methods: We examined in a human hepatocellular carcinoma cell line (Huh-7) the effect of hydrogen peroxide (H2O2),
as a generator of oxidative stress, on the IFN-a signaling pathway.

Results: Pretreatment of Huh-7 cells with 0.5–1 mM H2O2 resulted in the suppression of the IFN-a-induced antiviral

protein MxA and of IRF-9 mRNA expression. The reduced expression of these genes was associated to H2O2-mediated

suppression of the IFN-a-induced assembly of signal transducer and activator of transcription (STAT) factors to specific

promoter motifs on IFN-a-inducible genes. This was accomplished by preventing the IFN-a-induced tyrosine phosphory-

lation of STAT-1 and STAT-2 through the inactivation of the upstream receptor associated tyrosine kinases, JAK-1 and

Tyk-2. The suppression was fast, occurring within 5 mins of pretreatment with H2O2, and did not require protein synthesis.

Conclusions: In conclusion, oxidative stress impairs IFN-a signaling and might cause resistance to the antiviral action of
IFN-a in chronically HCV infected patients with high level of oxidative stress in the liver.
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1. Introduction

Interferons (IFN)-a/b are crucial components of the
early host response against virus infections. The biolog-
ical activities of IFNs are mediated by a conserved sig-
nal transduction pathway [1]. Upon ligand binding to
the IFN-a/b receptor, which lacks intrinsic kinase activ-
ity, the receptor-associated Janus family kinases, JAK-1
and Tyk-2, autophosphorylate on tyrosine residues and
activate the cytoplasmic signal transducers and activa-

tors of transcription proteins, STATs. Phosphorylated
STATs translocate to the nucleus to activate transcrip-
tion of many target genes [1].

In recent years, a considerable body of evidences has
accumulated demonstrating that the balance of the oxi-
dative and reductive potentials within the cell (cellular
Published by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/53236222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dibona@ibim.cnr.it


272 D. Di Bona et al. / Journal of Hepatology 45 (2006) 271–279
redox state) can have profound consequences on signal
transduction pathways, and the transduced signal can
be sensitively modulated, or even abrogated, by preva-
lent cellular conditions [2–4].

The intracellular redox balance is tightly controlled
in most cell types, but it can be altered by the produc-
tion of reactive oxygen species (ROS) during patho-
logic conditions such as chronic inflammatory
diseases [5].

IFNs are currently used as pivotal treatment in
chronic hepatitis C. However, most patients are poorly
responsive to IFNs [6,7]. Mechanisms underlying resis-
tance to IFNs are not clear, and both viral and host fac-
tors have been proposed [6–11]. Clinical data indicate
that patients with chronic hepatitis C who have condi-
tions associated with elevated oxidative stress, such as
advanced age [12], hepatic steatosis [13], liver fibrosis
[14], iron overload [15] and alcohol consumption [16],
have a reduced likelihood of response to IFN treatment.

Here, we tested the hypothesis that increased oxida-
tive stress may be involved in an inhibitory pathway of
the IFN-a activity.

The relationship between ROS and STATs was poor-
ly explored [17,18] and to date, no study has investigated
the effects of oxidants on STATs regulation in liver cells,
as important potential targets for oxidants during
chronic hepatitis. To understand whether IFN signalling
may be influenced by oxidative stress, we investigated
the effects of oxidants on IFN-a-induced activation of
the JAK/STAT pathway in a human hepatocellular car-
cinoma cell line, and we demonstrated that oxidative
stress inhibits IFN-a-induced STAT activation and anti-
viral protein expression.
2. Materials and methods

2.1. Cell lines, reagents, and treatments

Huh-7, human hepatoma cells were cultured in Dulbecco’s modified
Eagle’s culture medium, supplemented with 10% fetal calf serum (Euro-
clone, UK), antibiotics, and glutamine (Euroclone, UK). All the exper-
iments were performed with cells at low (20–30%) confluence. In all
experiments, after pretreatment with various agents, culture medium
was changed and stimulation with IFN-a was done in fresh culture
medium. Recombinant human IFN-a (Intron A) was from Schering-
Plough (Kenilworth, NJ). H2O2 and diethyl maleate were purchased
from Sigma (St Louis, MO). Antibodies to phospho-Stat-1 (Tyr701),
phospho-JAK-1 (Tyr1022/1023), phospho-Tyk-2 (Tyr1054/1055), and
JAK-1 were purchased from Cell Signaling (Beverly, MA). Antibody
to phospho-Stat-2 (Tyr689) was from Upstate Biotechnology (Lake
Placid, NY). Antibodies to Stat-1, Stat-2, Tyk-2, IFNAR1, and
phospho-IFNAR1 (Tyr466) were from Santa Cruz Biotechnology (Santa
Cruz, CA). Monoclonal antibody to IFNAR1 (AA3 mAb) [23] was
kindly provided by Dr Sandra Pellegrini (Institut Pasteur, Paris,
France).

2.2. RNA isolation and RT-PCR

Total RNA was extracted from cells using Trizol� reagent (Life
Technology, Grand Island, NY). One to two micrograms of total
RNA were reverse-transcribed (Promega, Madison, WI), and aliquots
were used in subsequent PCR reactions. Primer sets are as follows:
MxA sense, 5 0-GCTACACACCGTGACGGATATGG-30 and MxA
antisense, 5 0-CGAGCTGGATTGGAAAGCCC-30; 2 0,5 0-OAS sense,
5 0-ATT GACAGTGCTGTTAACATCATC-3 0 and 2 0,5 0-OAS anti-
sense, 5 0-AGATCAATGAGCCCTGCA TAAACC-3 0; IRF-9 sense,
5 0-CAAGCAGGACTTCCGGGAGG-30; IRF-9 antisense, 5 0-
CTTCCTGTGGCTCAGGGCTG-3 0; b-actin sense 5 0-GTGGGGC
GCCCCAGGCACCA-3 0 and b-actin antisense, 5 0-CTCCTTAATGT
CACGCACGATTTC-3 0. Semiquantitative PCR conditions were opti-
mized to obtain reproducible and reliable amplification within the log-
arithmic phase of the reaction.

2.3. DNA transfection and luciferase assay

Huh-7 cells were transfected by electroporation using the
pGAS-TA-Luc plasmid (Clontech Laboratories, Palo Alto, CA),
containing the luciferase reporter gene under the control of two
copies of a STAT-1 enhancer element, located upstream of a
minimal TATA-box sequence of the Herpes Simplex Virus thymi-
dine-kinase promoter. About 4·106 cells were transfected by
electroporation, at 200 mV and 950 lF, with 15 lg of reporter plas-
mid. Cells were then split into six 60-mm cell culture dishes in
complete culture medium. After 24 h, cells were treated with differ-
ent stimuli and harvested for luciferase assay by four cycles of
rapid freezing and thawing. Protein concentration was quantified
by the BCA method (Pierce, Rockford, IL). Luciferase activity
was read using the luciferase assay system (Promega, Madison,
WI) following the manufacturer’s instructions.

2.4. Whole cell extract

After treatments, cells were resuspended in lysis buffer (30 mM Tris
pH 8, 150 mM NaCl, 5 mM EDTA, 1% Triton, 10% glycerol) contain-
ing 20 mM b-glycerophosphate, 1 lM sodium orthovanadate, 10 mM
sodium fluoride, 1 mM phenylmethylsulphonyl fluoride, 0.5 mM
dithiotreithol, 1 lg/mL leupeptin, and 1 lg/mL aprotinin. Lysates
were pre-cleared by centrifugation and protein concentration was
determined as described above.

2.5. Electrophoretic mobility shift assay (EMSA)

EMSAs were performed as described in [19], using whole cell
extracts (10 lg). Oligonucleotides were purchased from MWG-Biotech
(Ebersberg, Germany). The double-strand probes were end-labeled
with [c-32P]ATP by using T4 polynucleotide kinase. The following
double-strand oligomers were used as specific labeled probes or cold
competitors: the Stat binding site, SIE-m67 (the high affinity mutated
serum-induced element) 5 0-GTCGACATTTCCCGTAAATCGTC
GA-3 0, and OCT (human histone H2b, �60 to �35 bp), 5 0-agCT
CTTCACCTTATTTGCATAAGCGAT-3 0.

2.6. Western blot analysis

Forty to fifty micrograms of whole-cell extracts were run on
12% denaturing SDS-polyacrylamide gels. Proteins were then
electroblotted onto nitrocellulose membranes (Schleicher and
Schuell, Keene, NJ) and blocked in 3% milk in TBST. Immu-
noreactive bands were visualized on the nitrocellulose mem-
branes, using horseradish-peroxidase-coupled goat anti-rabbit or
anti-mouse immunoglobulins and the ECL detection system
(Amersham, Arlington Heights, IL), following the manufacturer’s
instructions.

2.7. Flow cytometry

Surface IFNAR1 levels were monitored by incubating cells with
10 lg/mL of AA3 mAb [20], followed by incubation with 10 lg/mL
of biotinilated anti-mouse IgG Abs and with streptavidin–phycoery-
thrin. Cells were analyzed with a FACScan flow cytometer (Becton
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Dickinson). Assessment of cell viability and apoptosis was performed
by propidium iodide/annexin V staining (Bender MedSystems, Vienna,
Austria, Europe).
3. Results

3.1. H2O2 inhibits IFN-a-stimulated gene expression and

transactivation

To determine the effect of oxidative stress on IFN-a-
stimulated gene expression, we examined the activity of
H2O2 on IFN-a-induced gene expression in Huh-7
human hepatoma cells. The antiviral gene MxA and
IRF-9 (p48, part of the IFN-stimulated gene factor-3
transcriptional complex) were here used as indicators
of IFN-a-induced gene expression. RNA was prepared
from Huh-7 cells and the induction of IFN-a-stimulated
genes was analyzed by RT-PCR. Treatment of
Huh-7 cells with IFN-a caused an increase of MxA
and IRF-9 mRNA (Fig. 1A), but pretreatment with
H2O2 (0.5–1 mM) reduced or abrogated IFN-a-induced
expression of these genes (Fig. 1A). In all experiments,
expression levels of b-actin were not affected, indicating
that the effect of H2O2 on IFN-a-induced genes was not
caused by a nonspecific toxicity. H2O2 alone did not
affect the expression of MxA and IRF-9 (data not
shown).
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activity of H2O2 on IFN-a-induced genes, we tested
the activity of a luciferase reporter vector driven by
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STAT pathway in the inhibitory activity of H2O2
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Fig. 2. H2O2 inhibits IFN-a-induced STAT-1 homodimer formation. (A) Huh-7 cells were pre-treated with 0.5 and 1 mM H2O2 for 30 min, followed

after wash with fresh culture medium, by a 30-min stimulation with IFN-a (200 U/mL) in normal culture medium. Cell extracts were then prepared for

EMSA. One experiment representative of three is shown. (B) DEM inhibits IFN-a-stimulated STAT activation in the absence of H2O2. Huh-7 were pre-

treated with different doses of DEM for 1 h, and then, after wash with fresh culture medium, treated with IFN-a (200 U/mL) for 30 min. One experiment

representative of three is shown. (C) Competition experiments with 100-fold molar excess of unlabeled m67 oligonucleotides (SIE) and a non-specific

control oligonucleotides (OCT) confirmed the specificity of the complex. (D) Supershift analysis with antibodies to STAT-1 verified that the probe binds

STAT-1 homodimers.
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Huh-7 treated with IFN-a (data not shown). However,
in this cell line, the basal level of p48 (IRF-9) is limiting
(Fig. 1A), thus hampering the early assembly of the
ISGF3 complex. Therefore, the ability of IFN-a to stim-
ulate the formation of STAT dimers was tested by
EMSA experiments utilizing the m67 (high-affinity
mutated serum-induced element) as probe. The m67 ele-
ment binds to IFN-a-activated STAT (Fig. 2A). Thirty
minutes pretreatment of Huh-7 cells with H2O2 inhibited
IFN-a-induced STAT binding in a concentration-depen-
dent manner, whereas H2O2 itself had no effects on
STAT binding (Fig. 2A). H2O2 inhibition of IFN-a
activity was evident at 500 lM, while a complete inhibi-
tion of STAT binding occurred at 1 mM (Fig. 2A).

To evaluate whether the inhibitory activity of H2O2

was IFN-a-specific or whether this effect was evident
for other cytokines activating the JAK/STAT transduc-
tion pathway, we assessed the ability of H2O2 to inhibit
IFN-c-induced STAT activation. A 5 min pretreatment
of HUH-7 cells with with 1 mM H2O2 resulted in an
inhibition of STAT activation assessed by EMSA (data
not shown), demonstrating that in this cell line the pre-
valent effect of H2O2 is the inhibition of the JAK/STAT
pathway.

Pretreatment of cells with the glutathione chelating
agent diethyl-maleate (DEM) produced the same inhib-
itory effect of H2O2 on IFN-a-induced STAT activation
(Fig. 2B), suggesting that the inhibition of the JAK–
STAT pathway is the result of a general increase of
the oxidative stress in the cells. As a control for equal
proteins loading, the same amount of proteins was run
in the presence of an Octamer factor(s)-specific probe
(Fig. 2A and B).

Cold competition experiments confirmed the specific-
ity of the complex (Fig. 2C). Supershift analysis with
antibodies to Stat-1 showed that the m67 probe binds
STAT-1 homodimers (Fig. 2D).

To determine the rate of onset of the inhibitory effect
of H2O2, cells were exposed to 1 mM H2O2 for various
times before IFN-a stimulation. As shown in Fig. 3A,
almost complete inhibition of STAT-1 activation was
evident after a 5 min pre-incubation of cells with H2O2.

We then investigated whether this effect was revers-
ible. Huh-7 cells were treated with H2O2 for 5 min after
which H2O2 was removed and cells were left in normal
growth conditions and stimulated with IFN-a after
24 h. As shown in Fig. 3B, the inhibitory effect of
H2O2 significantly subsided (lanes 7 and 8), although
the IFN-a-induced STAT-1 binding remained lower
than control cells (lane 2), suggesting that the IFN-a sig-
naling is not permanently compromised, and that cells
can recover this function if oxidative stress is removed.



Fig. 3. Inhibition of IFN-a-induced STAT-1 by H2O2 is rapid and reversible. (A) Huh-7 were treated with H2O2 for 5, 15, and 30 min and then, after

wash with fresh culture medium, incubated with IFN-a (200 U/mL) for 30 min in normal culture medium. One experiment representative of three is shown.

(B) Huh-7 cells were treated with H2O2 for 5 min and then, after wash with fresh culture medium, incubated with IFN-a (200 U/mL) for 30 min in normal

culture medium (lanes 2–4), or, after removal of H2O2, cultured in normal culture medium for additional 24 h (lanes 5–8), and then stimulated with IFN-a
for 30 min (lanes 7 and 8). One experiment representative of three is shown. (C) HUH-7 cells were pre-treated with 1 mM H2O2 for 5 min and then, after

wash with fresh culture medium, incubated with 200 U/mL IFN-a for 30 min. The cells were stained with Annexin V-FITC and PI. Percent of single- and

double-positive cells is displayed in each panel. The experiment is representative of three independent experiments all displaying similar results.
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The inhibition of IFN-a-induced STAT-1 activation
was not due to a significant decrease in cell viability.
Quantitative discrimination between the viable, early
apoptotic, and necrotic subpopulations of H2O2 pre-
treated cells was obtained by fluorescence-activated cell
sorting analysis done in parallel with EMSA experi-
ments (Fig. 3C). Although the ability of the cells to acti-
vate STATs in response to IFN-a was significantly
impaired, cells pre-treated with 1 mM H2O2 retained
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by propidium iodide exclusion and a lack of surface-ac-
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As outlined above, STAT proteins are activated by
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Fig. 5. H2O2 inhibits IFN-a-stimulated tyrosine phosphorylation of JAK-1, Tyk-2, and the a-subunit of the IFN-a/b receptor (IFNAR1), without

lowering cell surface levels of IFNAR1. Huh-7 were incubated with or without 1 mM H2O2 for 5 min and then, after wash with fresh culture medium,

incubated with 200 U/mL IFN-a for 15 min. Whole cell extracts were subjected to Western blotting using antibodies specific to phosphorylated JAK-1

(PY-JAK-1) and JAK-1 (A), to phosphorylated Tyk-2 (PY-Tyk-2) and Tyk-2 (B), and to phosphorylated IFNAR1 (PY-IFNAR1) and IFNAR1 (C). One

experiment representative of three is shown. (D) The level of cell surface IFNAR1 was determined by flow cytometry using the AA3 mAb. Thin lines

represent staining with the secondary biotinilated anti-mouse IgG antibody. IFNAR1 surface levels of cells left untreated (top panel; bold line, mean

24.85), or treated with 0.5 (middle panel; bold line, mean 24.10) or 1 mM H2O2 for 30 min (bottom panel; bold line, mean 21.03) are shown. One

experiment representative of three is shown.
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Fig. 6. H2O2 inhibits IFN-a-stimulated STAT activation is not dependent on tyrosine phosphatase activity and new protein synthesis. (A) Huh-7 cells
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a for 30 min in new culture medium. Cell extracts were then subjected to EMSA. One experiment representative of three is shown. (B) Huh-7 cells were

incubated with cycloheximide (CHX, 20 lg/mL) for 30 min, then treated with H2O2 for 5 min followed by a 30-min stimulation with IFN-a (200 U/mL) in

new culture medium. Cell extract were then subjected to EMSA. One experiment representative of three is shown.
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downstream of the SH2 domain. To test whether the
H2O2-mediated inhibition of STAT-DNA binding was
caused by impaired STAT activation, IFN-a-induced
tyrosine phosphorylation of STAT-1 and STAT-2 was
examined. Pretreatment of Huh-7 cells with H2O2 inhib-
ited IFN-a-stimulated tyrosine phosphorylation of both
STAT-1 (Fig. 4A) and STAT-2 (Fig. 4B). The blots were
reprobed with their respective STAT-specific antisera to
ensure that equal amounts of proteins were present in
each sample (Fig. 4A and B).

3.4. H2O2 inhibits IFN-a-stimulated tyrosine

phosphorylation of JAK-1, Tyk-2, and the a subunit of the

IFN-a/b receptor (IFNAR1), without lowering the cell

surface expression of IFNAR1

To define whether H2O2 suppression of IFN-a-in-
duced tyrosine phosphorylation of STAT-1 and
STAT-2 could be due to inactivation of upstream
kinases, the effect of H2O2 on JAK-1 and Tyk-2 was
examined. Pretreatment of Huh-7 with H2O2 significant-
ly inhibited IFN-a-induced tyrosine phosphorylation of
both JAK-1 (Fig. 5A) and Tyk-2 (Fig. 5B), demonstrat-
ing that the block of IFN-a signaling is present at the
level of receptor-associated tyrosine kinases. Equal
amounts of both JAK-1 and Tyk-2 were present in all
samples, ruling out the possibility that incubation of
Huh-7 with H2O2 induced a selective degradation of
these proteins (Fig. 5A and B).

Since IFNAR1 has been shown to be rapidly tyrosine
phosphorylated as result of exposure of cells to IFN-a
[1], we examined the effect of H2O2 on the receptor phos-
phorylation, and we found that H2O2 had the same
inhibitory effect on this outcome (Fig. 5C). Western blot
analysis revealed no change in the relative level of
expression of IFNAR1 after H2O2 treatment, and cyto-
fluorimetric analysis using an antibody specific to
IFNAR1, showed no H2O2-mediated reduction of
IFNAR1 cell surface expression (Fig. 5D), ruling out
the possibility that decreased IFNAR1 cell surface
expression could account for the inhibitory action of
H2O2 on IFN signaling.

3.5. Activation of protein tyrosine phosphatases (PTPs)

and protein synthesis are not involved in H2O2-mediated
inhibition of IFN-a-activated signal transduction

From the results presented above, it appeared that
H2O2 treatment inhibited tyrosine phosphorylation of
the IFN-a receptor associated tyrosine kinases. A possi-
ble mechanism to explain this effect could be that H2O2

activates tyrosine phosphatases, which in turn dephos-
phorylate activated JAK-1 and Tyk-2. In this case, the
incubation of cells with the tyrosine phosphatase inhib-
itor vanadate should reverse the inhibitory effect of
H2O2. Huh-7 cells were incubated for 30 min with van-
adate, prior to the addition of H2O2 for 5 min, and
IFN-a for further 30 min. While no activation of STAT
complexes was visualized after incubation with H2O2

(data not shown) or vanadate alone, the simultaneous
exposure to both compounds resulted in activation of
STAT-1 (Fig. 6A, lane 2), due to the enhanced inhibito-
ry effect of vanadate on basal active PTPs in the pres-
ence of peroxides [21]. However, pre-incubation of
Huh-7 with vanadate did not prevent the inhibition by
H2O2 of IFN-a-induced formation of STAT complexes
(Fig. 6A, lane 4), ruling out the possibility that the
inhibitory action of H2O2 could be related to activation
of PTPs.

An important mechanism responsible for down-regu-
lation of the JAK–STAT pathway is the induction of
newly synthesized inhibitory proteins [22]. Therefore,
we investigated whether the H2O2-mediated inhibition
of STAT activation was affected by blocking new
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protein synthesis. As shown in Fig. 6B, blocking new
protein synthesis with cycloheximide did not abolish
H2O2-mediated suppression of IFN-a-activated STAT,
suggesting that rapid inhibition of IFN-a signaling is
not due to de novo synthesis of inhibitory proteins.
4. Discussion

We demonstrate that, in a human hepatocellular car-
cinoma cell line, oxidative stress elicited by H2O2 or
DEM, inhibits IFN-a-induced activation of STAT-1
and STAT-2 that results in the reduction of STAT-de-
pendent gene transcription. The effect of the oxidative
stress on STATs is accomplished by inhibition of IFN-
a-induced activation of JAK-1 and Tyk-2. The inhibito-
ry effect of oxidative stress on the JAK/STAT pathway
is rapid, and is not dependent on new protein synthesis.
The inhibition of IFN-a signalling by H2O2 is reversible
upon removal of H2O2, suggesting that this inhibition
was not due to irreversible cell damage.

Different transcription factors are modulated by oxi-
dative stress, such as NF-jB or AP-1 [3,4]. To date, the
only published studies on the relationship between
STAT factors and oxidative stress have reported that
H2O2 is able to activate STAT-3 and slightly STAT-1,
in rat fibroblasts and in a human epidermoid carcinoma
cell line [17], and STAT-3 in human lymphocytes pre-
treated with aminotriazole, a catalase inhibitor [18].
These studies have not considered the effect of the cyto-
kines after exposure of the cells to oxidants. Our data
demonstrate that in a human hepatocellular carcinoma
cell line, endogenously produced or added H2O2 does
not activate any STAT factors, and inhibits IFN-a-in-
duced STAT-1 and STAT-2 activation. These findings
are similar to those reported in some studies on other
transcription factors, such as NF-jB [3,23]. In this
regard, it was demonstrated that NF-jB could be direct-
ly activated by oxidative stress; however, this activation
is not observed in all cell lines, but is strictly cell type
dependent [3]. Moreover, the cytokine-induced activa-
tion of NF-jB can be also inhibited in the presence of
H2O2 in several cell lines [23]. Our data suggest that,
similarly to what reported for NF-jB, also the regula-
tion of the JAK/STAT by oxidants is cell type depen-
dent, and that the cytokine-induced activation of this
pathway could be widely modulated by the oxidative
microenvironment.

Our data provide evidence that the inhibition of
STAT signaling is accompanied by the inhibition of
the receptor-associated kinases JAK-1 and Tyk-2, sug-
gesting that these two kinases could be a possible target
of oxidative stress-mediated inhibition. We found a nor-
mal expression level of IFN-a receptor on cell surface in
cells pre-treated with H2O2, indicating that oxidative
stress does not prevent activation of the JAK-1 and
Tyk-2 by decreasing the expression of IFN-a receptor
on cell surface.

Tyrosine phosphorylation of proteins is dependent on
the balance between kinases and PTPs within the cell.
We tested the hypothesis of an involvement of PTPs in
the inhibitory effect of oxidative stress on STAT activa-
tion, through a dephosphorylation of the activated pro-
teins of the JAK/STAT pathway. We observed that the
inhibitor of PTPs, vanadate, was not able to revert the
inhibitory effect of H2O2 on IFN-a-induced STAT acti-
vation, therefore, the inhibitory effect of oxidative stress
on JAK/STAT activation can not be due to increased
activity of PTPs induced by oxidative stress.

Duhè et al. reported that JAKs are redox-sensitive
enzymes [24]. The autokinase activity of JAKs can be
directly and reversibly inhibited by thiol oxidants, such
as nitric oxide [24]. Accordingly, a possible explanation
for the observed inhibitory effect of oxidative stress on
IFN-a signaling in Huh-7 cells, could be that oxidative
stress, caused by H2O2 or DEM, directly inactivates
the receptor associated kinases Jak-1 and Tyk-2, by oxi-
dizing their intramolecular thiol groups.

The differences between our results and those report-
ed from other groups [17,18] on the redox regulation of
STAT components can be reconciled by the consider-
ation that both protein tyrosine kinases and protein tyr-
osin phosphatases, which together influence the activity
of the JAK/STAT pathway, are redox sensitive
enzymes. Similarly to the IFNAR1-associated protein
kinases, the PTPs are inactive when the thiol group in
the catalytic site is oxidized to a disulfide. Therefore,
the net outcome of redox perturbation of IFN-a signal
transduction will depend on the net balance of active
and inactive forms of kinases and the counteracting
phosphatases. An essential determinant of this balance
could be the chemical nature and the abundance of the
intracellular redox modifiers, which widely vary among
the different cell types, thus explaining the cell specificity
activatory or inhibitory effect on the JAK/STAT path-
way [25].

Almost all the cytokines, released during inflammato-
ry processes by the cells of immune system, activate
STAT factors. Interestingly, during the inflammatory
response, high levels of ROS are generated [5]. Consid-
ering the role of oxidative/reductive events within the
cells in conditioning signalling, it is important to under-
stand the function of the JAK/STAT pathway under
conditions similar to those occurring during pathologi-
cal states. In this work, we provide evidences that oxida-
tive stress suppresses IFN-a-induced STAT activation in
human hepatocellular carcinoma cells. The results sug-
gest that under inflammatory conditions or other disease
states, where H2O2 or other oxidants are formed, the
activation of the JAK/STAT pathway could become
depressed in certain cell types. It has been reported that
reactive oxygen species (ROS) are elevated in the liver
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during chronic hepatitis C, due both to the direct contri-
bution of the virus and to the inflammatory process
[5,26–29]. Therefore, the oxidative inhibition of the
JAK/STAT pathway could be one of the mechanisms
to explain the resistance to the antiviral action of IFN-
a in HCV chronically infected patients with conditions
associated with high level of oxidative stress in the liver
such as advanced age, steatosis, fibrosis or iron over-
load. Our findings might support the concept that the
antioxidants, which are able to counteract ROS, could
be investigated as potential adjunct therapeutic agents
for chronic hepatitis C. Clearly, further studies are war-
ranted to confirm this hypothesis, and to elucidate the
exact mechanism of inhibition of the JAK/STAT signal-
ing by oxidants in hepatic cells.
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