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Introduction

The importance of surface catalysis for 
modern society is immense and growing, 
as is evident from the demand for catalytic 
systems with improved efficiency, selec-
tivity and environmental compatibility. 
Characteristic spatial and temporal scales 
in surface catalysis are dictated by the 
length of a chemical bond (0.1 nm) and by 
a typical molecular vibration period (0.01 
ps). These match well the photon wave-
length and pulse duration of X-ray Free 
Electron Lasers (XFELs), a prime exam-
ple of which, the SwissFEL,[1] is planned 
to go into operation at the Paul Scherrer 
Institute, in Würenlingen/Villigen, Swit-
zerland, in 2017. 

Pump-probe experiments at XFELs 
will, with the use of energy-dispersive de-
tectors, allow single-shot measurements of 
near-edge X-ray absorption spectra, which 
will yield time-resolved information on 
the electronic and geometrical structure 
of short-lived intermediate states during a 
catalytic reaction.[2] The trigger pulse for 
such studies should be non-ionizing, of 
sub-picosecond duration and capable of 
manipulating the local chemical environ-

ment. A candidate for such a trigger is an 
energetic single or few-cycle electromag-
netic pulse in the terahertz (THz) frequen-
cy region. The inclusion of a synchronized 
source of THz pump pulses is envisaged 
for the SwissFEL project. In preparation 
for these developments, we are undertak-
ing a demonstration, on model systems, of 
the effectiveness of THz pulses to initiate 
surface catalytic reactions.

THz and IR Initiation of Chemistry

Various mechanisms have been dis-
cussed for the initiation of surface chem-
istry using THz and IR pulses. Ogasawara 
et al.[3] have suggested that such initiation 
can proceed via a) local heating, b) reso-
nant excitation of molecular motions or c) 
collective displacement of polar species. 
Redlich et al.[4] have demonstrated the 
IR-induced desorption of adsorbed N

2
O 

from NaCl (100) when an energetic pulse 
is resonant with an IR-active mode of the 
molecule. Using multiple-photon IR ab-
sorption, Hamilton et al.[5] have triggered 
a reconfiguration of N

2
O adsorbed on a Rh 

cluster. Experimental and theoretical stud-
ies of bio-enzymes by Masgrau et al.[6] in-
dicate that proton-tunneling reactions are 
promoted by short-range protein motions 
in the THz frequency range. Finally, avoid-
ed-level crossings induced by the Stark ef-
fect in a time-dependent electric field have 
been predicted by Murgida et al.[7] to con-
trol the LiNC ↔ LiCN isomerization reac-
tion in the gas phase.

THz-induced Dissociative 
Adsorption

We consider as a model system for 
catalytic initiation by a THz pulse the 

dissociative adsorption of a simple mol-
ecule on a reactive surface, such as CO on 
a transition metal. At room temperature, 
CO is known[8] to adsorb associatively, 
as a molecule, on the surface of transi-
tion metals to the right of Co, Ru and Re 
in rows 4, 5 and 6 of the periodic table, 
respectively, and to undergo dissociative 
adsorption on metals to the left. The ad-
sorbed molecule is generally situated per-
pendicular to the surface, with its C-atom 
bound atop a single metal atom.[9] Two 
characteristic vibrations of the adsorbed 
molecule[10] are the CO stretch and the 
hindered-translation bend modes, at fre-
quencies of approximately 2000 and 80 
cm–1, respectively. The first corresponds 
to an IR wavelength of 5 mm and the sec-
ond to a frequency of 2.5 THz.

The adsorbed CO has a dipole mo-
ment; on the Ni (111) surface, work func-
tion measurements[11] yield a value of 0.28 
Debye, corresponding to 0.052 elementary 
charges separated by the 1.13 Å CO bond 
distance. Hence, for a metal surface just 
to the right of the associative/dissociative-
adsorption boundary, e.g. Rh, an oscilla-
tory electric field applied parallel to the 
surface and which is resonant with the 
hindered-translation mode may excite an-
gular excursions and C–O bond stretching, 
leading to adsorptive dissociation (Fig. 1). 
(Note: local screening of the THz field by 
the metal surface may be avoided by using 
an ultrathin metallic layer on an insulating 
substrate.) Semi-empirical calculations for 
CO adsorbed on Rh (111) predict[12] that 
the transition state along the absorptive-
dissociation reaction pathway is reached 
at a 70o tilt and a 60% stretch. One may 
expect the dipole-THz field interaction, 
when resonant with the hindered-transla-
tion mode, to drive a lowering of the dis-
sociation barrier along a direction parallel 
to the THz polarization. 
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measurement. Our preliminary DFT cal-
culations, with non-optimized atomic po-
sitions, of adsorbed CO on a (111) Rh

10
 

cluster indicate a 5% softening of the CO 
stretch frequency upon rotation of the mo-
lecular axis by 90o with respect to the sur-
face normal.

Laser-based THz Generation

Our source of energetic THz pulses is 
the laser-based optical rectification setup 
at the PSI-SwissFEL test injector. Inci-
dent pump pulses (0.7 mJ, 80 fs) at 1.3 
mm wavelength are produced by an opti-
cal parametric amplifier, and optical rec-
tification to THz frequencies is performed 
in the organic crystal DAST.[15] After fo-
cusing, the setup is presently capable of 
producing few cycle THz pulses (Fig. 2) 
with a peak electric field in excess of 0.3 
MV/cm (0.03 V/nm). Significantly stron-
ger fields are anticipated with the use of 
an organic crystal with improved conver-
sion efficiency.[16] We are also pursuing 
the possibility of employing microfabri-
cated antenna structures to dramatically 
increase the field strength; a 100-fold 
field enhancement at 1 THz has been ob-
served within a 70 nm wide slit in a 60 nm 
thick gold film.[17]

THz Pump/X-ray Probe

When the SwissFEL becomes op-
erational, THz-pump/XFEL-probe ex-
periments will be performed, in which 
a surface catalytic reaction will be initi-
ated with a THz pulse and the subsequent 
time-dependent intermediate states will 
be probed with synchronized XFEL mea-
surements of near-edge X-ray absorption 
spectroscopy[2,18] (Fig. 3). The use of 
wavelength-dispersive X-ray detectors[19] 

will allow the measurement of the entire 
near-edge absorption spectrum in a single 
SwissFEL shot, lasting only 20 fs. When 
operating in the so-called overchirped 
broadband mode,[1] the SwissFEL will 
have a relative bandwidth of 1.5%, cor-
responding to ±90 eV at the 11.57 keV 
L

3
-edge of platinum.

Acknowledgements
The authors wish to acknowledge ongoing 

discussions with A. Wokaun, M. Brown, R. 
Westerström and the PSI-SwissFEL team. They 
also acknowledge financial support from the 
NCCR-MUST program of the Swiss National 
Science Foundation.

Received: March 11, 2011

[1] 	 B.D. Patterson, R. Abela, H.-H. Braun, U. 
Flechsig, R. Ganter, Y. Kim, E. Kirk, A. Oppelt, 
M. Pedrozzi, S. Reiche, L. Rivkin, T. Schmidt, 

The influence on adsorptive dissocia-
tion of a static electric field applied per-
pendicular to the surface has been inves-
tigated experimentally and theoretically 
for the case of NO on Pt (111). Hückel 
calculations[13] yield a reversed dipole mo-
ment on atop-bound NO, i.e. with the O 
end positively charged. And with a field 
of 4 V/nm, electron redistribution among 
the molecular orbitals causes a dramatic 

reduction in the dissociation barrier. This 
is in accordance with the E-field induced 
dissociation observed[14] using pulsed field 
desorption mass spectrometry. 

In preparation for an experiment at 
the XFEL, we plan to observe the effect 
of resonant excitation of the 2.5 THz hin-
dered-translation mode by monitoring the 
frequency of the 5 mm CO stretch mode 
in a time-resolved THz-pump/IR-probe 

Fig. 1. A schematic 
representation of THz-
induced dissociative 
absorption of CO 
(yellow = C, red = O) 
on a Rh surface.

Fig. 2. An electro-
optic sampling trace 
of the THz signal 
from the PSI optical 
rectification setup.

Fig. 3. A (static) near-edge X-ray absorption spectrum taken at the Pt edge at a synchrotron.[18] 
From the good match with theory, it is clear that the adsorbed CO is situated in the atop position.
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