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Abstract:�Donor-substituted�cyanoethynylethenes�(CEEs)�are�planar�push–pull�chromophores�featuring�intense�
intramolecular�charge-transfer�(CT)�interactions�and�high�third-order�optical�nonlinearities.�Their�thermal�stability�
allows�for�the�formation�of�crystalline�thin�films�by�vapor-phase�deposition.�On�the�other�hand,�high-quality�amor-
phous�thin�films�are�preferred�for�opto-electronic�applications�and�such�films�can�be�prepared�using�nonplanar�
push–pull�chromophores�with�a�less�pronounced�propensity�to�crystallize.�By�taking�advantage�of�a�versatile,�
atom-economic�‘click-chemistry’-type�transformation,�involving�a�formal�[2�+�2]�cycloaddition�of�tetracyanoeth-
ene�(TCNE)�to�electron-rich�alkynes,�followed�by�cycloreversion,�stable�donor-substituted�1,1,4,4-tetracyanobu-
ta-1,3-dienes�(TCBDs)�are�obtained�in�high�yield�and�large�quantities.�These�nonplanar�push–pull�chromophores�
also�feature�intense�intramolecular�CT�and,�in�many�cases,�high�third-order�optical�nonlinearities.�Some�of�these�
compounds�form�high-optical-quality�amorphous�thin�films�by�vapor-phase�deposition,�and�first�applications�in�
next-generation�opto-electronic�devices�have�already�been�demonstrated.�Chiral�derivatives�display�high�helical�
twisting�power�and�are�efficient�dopants�to�translate�molecular�into�macroscopic�chirality,�by�switching�nematic�
into�cholesteric�liquid�crystalline�phases.
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Introduction

Highly conjugated organic molecules, 
featuring tunable structural and opto-elec-
tronic properties, have been recognized as 
promising candidates for use in electronic 
and opto-electronic devices.[1–3] Compared 
to their inorganic counterparts, organic ma-
terials are of particular interest due to the 
ease of structural variation to enhance spe-
cific properties for specialized applications 
and the low costs of their fabrication.[4,5] 
Their highly polarizable π-conjugated 
structures frequently result in efficient 
second- and third-order nonlinear optical 
(NLO) responses.[6–9] 

Molecular organic donor–acceptor 
(D-π-A) chromophores, in particular, not 
only show strong second-order nonlinear 
optical responses but also enhanced third-
order nonlinear optical polarizabilities.[10] 
Most of the known D-π-A molecules are 
planar structures in order to ensure effi-
cient π-conjugation between donor and 
acceptor. As a result of strong π–π stack-
ing interactions and antiparallel molecu-
lar dipole alignment in the solid state, they 
tend to form crystalline films. For use in 
electronic and opto-electronic devices, 
however, amorphous thin films, which 
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can achieve high homogeneity and a high 
optical quality over large areas, are pre-
ferred. Thus, a key issue in our research 
has become molecular design to control 
the morphology of thin films. We found 
that nonplanar D-π-A push–pull chromo-
phores have certain advantages in terms 
of solubility, aggregation, and sublimabil-
ity over their planar counterparts, thereby 
enabling the formation by vapor-phase 
deposition of high-optical-quality amor-
phous thin films for use in opto-electronic 
devices.[11–13] These recent developments 
in our laboratories are summarized in this 
article.

Cyanoethynylethenes

In the early 2000s, the Diederich group 
introduced a new class of planar CT chro-
mophores, the donor-substituted cyano-
ethynylethenes (CEE), such as 1–4,[14–17] 
and demonstrated their outstanding opto-
electronic properties which include intense 
low-energy CT bands and facile electron 
uptake capability (Fig. 1). The third-order 
NLO properties were investigated by de-
generate four-wave mixing (DFWM), re-
sulting in extraordinarily large third-order 
optical nonlinearities, relative to the small 
molecular mass of the chromophores.[18]

All of the CT chromophores are ther-
mally stable up to 250 °C. Most of them 
can be sublimed without decomposition, 
thus allowing thin film formation by va-
por-phase deposition. In this way, donor-
substituted CEE 1 yielded a high-quality 
crystalline thin film (20 nm thickness) 
on highly orientated pyrolytic graphite 
(HOPG).[19] Nanoscale data recording into 
the crystalline film by scanning tunneling 
microscopy (STM) yielded dots featuring 
an average diameter of approximately 2.1 
nm, which corresponds to a possible stor-
age density of 1013 bits cm–2. The chem-
istry of acetylene-based, planar push–pull 
chromophores, such as donor-substituted 
CEEs and donor-acceptor-substituted tet-
raethynylethenes (TEEs), has recently 
been reviewed.[20]

Donor-substituted 
1,1,4,4-Tetracyanobuta-1,3-dienes

Bruce and coworkers reported in 1981 
the first example of a [2+2] cycloaddition 
of tetracyanoethene (TCNE) with electron-
rich ruthenium acetylides, which was fol-
lowed by a cycloreversion to give organo-
metallic 1,1,4,4-tetracyanobuta-1,3-dienes 
(TCBDs).[21] While a variety of other cy-
cloadditions to metal acetylides were de-

scribed in the following years, only a few 
examples of TCNE additions to organo-
donor-substituted alkynes had been inves-
tigated.[22,23]

In systematic and comprehensive stud-
ies since 2005, we showed that alkynes, 
substituted by a variety of organic donors, 
generally undergo facile, high-yielding 
[2+2] cycloaddition with TCNE, followed 
by cycloreversion of the initially formed 
cyclobutenes, to give nonplanar donor-
substituted TCBDs, such as 5–11.[22,24–28] 
(Scheme 1). Some of these atom-economic 
conversions, with the character of ‘click’-
reactions, even proceed quantitatively in 
the absence of solvent, in a ballmill or us-
ing mortar and pestle. Despite their pro-
nounced nonplanarity, the resulting push–
pull chromophores feature intense intra-
molecular charge-transfer interactions.

Donor-substituted TCBDs are thermal-
ly stable up to 300 °C, as determined by 
thermogravimetric analysis (TGA), and can 
be sublimed without decomposition. DD-
MEBT (7, 2-[4-(dimethylamino)phenyl]-
3-([4(dimethylamino)phenyl]-ethynyl)
buta-1,3-diene-1,1,4,4-tetracarbonitrile) 
shows a large third-order nonlinear optical 
response with g

rot
 = 12 ± 2 × 10–48 m5 V–2.[24] 

This value is comparable to the highest 
values obtained for planar, donor–accep-
tor substituted tetraethynylethenes (TEEs) 
and other potent NLO chromophores and 
is quite significant, considering the small 
number of delocalized π-electrons in the 
nonplanar chromophore. 

Both high stability and easy accessi-
bility of larger compound quantities make 
donor-substituted TCDBs attractive chro-
mophores for the fabrication of opto-elec-
tronic devices. DDMEBT is especially im-
portant in this context because it does not 
form crystalline films by vapor-phase de-
position, but rather produces high-optical-
quality amorphous thin films (Fig. 2).[11] 
This desirable film-forming behavior is a 
direct consequence of the nonplanarity of 
the push–pull chromophore and the result-
ing reduced tendency for crystalline self-
association in the solid state.

Degenerate four-wave mixing mea-
surements on thin films of DDMEBT 
revealed an exceptionally high isotropic 
third-order susceptibility with the c(3)

1111 
value of 2 ± 1 × 10–19 m2 V–2 at the off-
resonant wavelength of 1.5 mm. This value 
is ∼103 times larger than the value for fused 
silica (1.9 × 10–22 m2 V–2).[11] A transmis-
sion spectrum taken at normal incidence 
for an amorphous DDMEBT film is shown 
in Fig. 3 together with the extinction coef-
ficient of the same molecule in solution. 
The films have a wide transparency range 
starting at wavelengths above 700 nm, with 
a modulation in the transmission at longer 
wavelengths as a result of multiple reflec-
tion. Such a clear transmission modulation 
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Fig.�1.�Examples�of�donor-substituted�cyanoethynylethenes�(CEEs)�1–4.�Given�are�the�reversible�
first�one-electron�reduction�potentials�E1,red�(V)�in�CH2Cl2�(+0.1�M�nBu4NPF6,�vs.�Fc+/Fc),�the�
maxima�of�the�intramolecular�CT�bands�λmax�(nm�and�eV)�in�CH2Cl2�at�298�K,�and�the�third-order�
polarizability�grot�measured�by�degenerate�four-wave�mixing�(DFWM)�experiments�in�CH2Cl2.
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with wavelength indicates the high quality 
of the film with respect to small absorption 
and scattering losses. 

Atomic force microscopy (AFM) con-
firms that the vapor-phase deposited films 
of 7 are homogenous with surface height 

variations of less than 5 nm over distances 
of 0.5 mm in films with a thickness of 1 
mm (Fig. 4).[11] Many square centimeters 
of any substrate can easily be covered with 
such high-quality nonlinear optical film, 
which makes this an almost ideal material 

for integration with existing guided-wave 
photonic technology, and for the develop-
ment of new hybrid optical devices.

Amorphous films of DDMEBT, ob-
tained by vapor-phase deposition, have 
been introduced in a multidisciplinary 
collaboration into highly nonlinear sili-
con-organic hybrid slot waveguides for 
all-optical high-speed processing with 
excellent performance.[11,12] In these hy-
brid silicon-on-insulator waveguides, the 
organic material provides the nonlinearity 
while silicon takes the role of the passive 
material that provides for waveguiding. In 
particular, and almost importantly, the va-
por deposition process was able to homog-
enously and completely fill a 160 nm wide 
and 220 nm tall trench between two silicon 
waveguides (Fig. 5).[11,29] The resulting hy-
brid waveguide had a record nonlinearity 
coefficient of g ≈ 1 × 105 W–1 km–1 and was 
the first silicon-organic-hybrid implemen-
tation to perform all-optical demultiplex-
ing of a 170.8 Gb s–1.[12]

For some time we have also been in-
terested in translating molecular into mac-
roscopic chirality, by developing potent 
dopants with a high helical twisting power 
(HTP) to switch nematic into cholesteric 
liquid crystalline phases.[30,31] For this 
purpose, we recently prepared the axially 
chiral, nonplanar push–pull chromophore 
TCBD (S,S)-11 by addition of TCNE to a 
buta-1,3-diyne activated by two N-arylated 
3,5-dihydro-4H-dinaphtho[2,1-c:1’,2’-e]
azepines (‘N-arylated dinaphthazepines’). 
Comparative analysis of bond-length al-
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Scheme�1. Top:�Reaction�between�TCNE�and�an�alkyne,�substituted�with�an�electron-donating�
group�(EDG).�Bottom:�Examples�of�donor-substituted�TCBDs�5–11.�Given�are�the�reversible�first�
one-electron�reduction�potentials�E1,red�(V)�in�CH2Cl2�(+0.1�M�nBu4NPF6,�vs.�Fc+/Fc),�the�maxima�of�
the�intramolecular�CT�bands�λmax�(nm�and�eV)�in�CH2Cl2�at�298�K,�the�third-order�polarizability�grot�

measured�by�degenerate�four-wave�mixing�(DFWM)�experiments�in�CH2Cl2�for�DMA-substituted�
TCBDs,�and�the�helical�twisting�power�β�for�N-phenyl-dinaphthazepine-appended�TCBD�(S,S)-11.

Fig.�2. Photograph�of�a�high-optical-quality�
amorphous�DDMEBT�thin�film�on�glass�
obtained�by�vapor-phase�deposition.
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ternation in X-ray diffraction analyses 
and electrochemical and UV/Vis measure-
ments confirmed that chiral N-arylated 
dinaphthazepine are similarly potent to 
achiral N,N-dimethylanilino (DMA) moi-
eties in terms of electron donor strength 
and their capacity to engage in strong in-
tramolecular CT interactions. Additionally 
as a result of their chirality, they feature 
high chiroptical responses and are potent 
cholesteric inducers. Electronic circular 

dichroism (ECD) spectra of their push–
pull chromophores, obtained in the ‘click’-
reaction with TCNE, feature Cotton effects 
of exceptional intensity with molar circular 
dichroisms ∆e reaching values above 1000 
M–1 cm–1. With their elongated shape and 
the rigidity of the chiral N-dinaphthaze-
pine donors, push–pull chromophores such 
as (S,S)-11 are also effective inducers of 
cholesteric supramolecular assemblies in 
nematic liquid crystals (LCs).[26] Collab-

orative efforts revealed for (S,S)-11 a high 
value of the helical twisting power β (+132 
mm–1), that describes the ability of a chiral 
dopant to twist a nematic phase. Only few 
examples of dopants have been reported 
with β values of the order of hundreds of 
mm–1.[31]

In summary, the examples from our 
recent research reviewed in this article 
demonstrate the power of a synthesis-
driven approach towards new, acetylene-
based CT materials. The ‘click’-reaction 
of TCNE and other strong acceptors to 
electron-donor-activated alkynes enables 
versatile access to a broad range of highly 
stable, non-planar, and sublimable push–
pull chromophores and organic super-
acceptors (currently with potentials for 
first reversible one electron-uptake up 
to E

1,red
 = + 0.16 vs. Fc+/Fc in CH

2
Cl

2
 (+ 

0.1M n-Bu
4
NPF

6
),[32] and the investiga-

tions of their technological potential in 
fertile collaborative efforts is just at the 
beginning.  
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