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Abstract: The discovery of quasicrystals has extended the traditional concept that crystalline matter is a
periodic arrangement of identical units such as atoms or molecules. The typical quasicrystal is an intermetallic
compound in which the building blocks are arranged in a non-periodic but highly ordered way. Of particular
interest is the study of these ordering principles as a function of chemical composition and temperature in
decagonal quasicrystals where periodic and aperiodic ordering even coexists in the same crystal structure.
Structural information from diffraction experiments is the key for revealing these ordering principles and the
prerequisite for a comprehensive study of the structure-property relationships. We present here the first all-
inclusive in-situ high-temperature X-ray diffraction study of decagonal AI7oCo12Ni1B, a stable quasicrystal with
a wealth of diffraction phenomena.
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'Good order is the foundation of all
good things'

Edmund Burke.

Reflections on the Revolution in France. 1790

Introduction

Structural investigations of crystalline
materials have contributed much to the
present day understanding of the solid
state of matter. The foundation to crystal
structure analysis with X-rays was laid
by Max von Laue at the beginning of the
twentieth century by showing that crys-
talline matter is a periodic arrangement
of atoms or molecules, and that an X-ray
diffraction pattern of crystalline matter
reflects this inherent periodicity. For al-
most three quarters of a century, crystal-
linity became a synonym for periodicity
and order. This dogmatic belief had to be
revised when the quasicrystals were dis-
covered [1]. Quasicrystals exhibit decag-
onal or even icosahedral diffraction sym-
metry, which is not consistent with perio-
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dicity, yet the diffraction patterns show
sharp Bragg reflections. In fact, the long-
range order in quasicrystals can be as
good as in perfect silicon crystals.

Technically speaking, the meaning of
the term 'crystal' was extended by the
IUCR Commission on Aperiodic Crystals
to 'any solid having an essentially dis-
crete diffraction diagram'. The term
'aperiodic crystal' then means 'any crys-
tal in which three-dimensional lattice pe-
riodicity can be considered to be absent.'
The structure of aperiodic crystals such
as quasicrystals, incommensurately mod-
ulated phases and composite crystals, can
be properly described as 3D sections of
nD hypercrystal structures (n ~ 3) (see [2]
and references therein). In reciprocal
space, this corresponds to a projection of
the nD reciprocal space onto the 3D
physical space. The number of reciprocal
space basis vectors needed for integer in-
dexing the Bragg reflections determines
the dimension n of the embedding space.

Many of these quasicrystals are alu-
minium-based intermetallic compounds,
which exhibit technologically important
properties such as high strength, corro-
sion resistance, low thermal conductivi-
ty, or high thermopower. The in-depth
understanding of the formation and
growth as well as the crystal structure of
these compounds is a prerequisite when
exploring the structure-property rela-

tionships for the design of novel materi-
als.

The activities of the quasicrystal re-
search group at the Laboratory of Crys-
tallography at ETHZ are directed towards
the study of the structure of stable decag-
onal phases, their structural ordering phe-
nomena and phase transformations as a
function of composition and temperature.
We want to understand the structural
building principles of decagonal quasi-
crystals, the factors governing their for-
mation and stability, as well as the mech-
anisms of their transformation into differ-
ently ordered quasiperiodic phases or
periodic crystals. In the following, we
present some high-temperature diffrac-
tion experiments on decagonal
AI70Co12Ni18, an example of a quasiperi-
odic superstructure [3-5].

What is a decagonal phase (Fig. I)?
The structure of a decagonal phase is
quasiperiodic in two dimensions and pe-
riodic in the third dimension, i.e. along
the ten-fold axis [2]. Its diffraction sym-
metry can be described by one of the
Laue groups 10/mmm or lO/m, respec-
tively. All reciprocal space vectors
H E M* can be represented on a basis
a/= a/Ccos27ri/5, sin27ri/5,O), i = 1,.. ,4
and as·= as·(O,O,I) as

~
= Lh,a:

I I
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The vector components refer to a Car-
tesian coordinate system in physical (par-
allel) space. Thus, according to the
number of independent reciprocal basis
vectors needed to index all Bragg reflec-
tions with integers, the dimension of the
embedding space has to be five. The set
of all diffraction vectors H forms a Fouri-
er module

hand, most quasicrystals have been found
by searching at a given valence electron
concentration, i.e. assuming a kind of
Hume-Rothery-type stabilisation. The
electronic conductivity decreases drasti-
cally with temperature down to the mK
region indicating that the quasicrystal
does not undergo any phase transition
until that temperature. On the other hand,
quasi crystals seem to be best ordered at
high temperatures where a significant
number of atoms perform phason jumps.

The structural ordering phenomena of
quasicrystals as reflected in the variation
of the diffraction pattern with tempera-
ture (Bragg and diffuse scattering) can
give some insight into the stabilisation
mechanism of the quasicrystalline phase.
If quasicrystals were perfectly quasiperi-
odic at zero K (i.e. energy stabilised) then
the number of defects typical for quasipe-
riodic structures such as atomic jumps re-
lated to phason flips of a Penrose tiling
(jumps in a double-well potential) should
increase with temperature. Within the nD
embedding approach, this could be de-
scribed on a time and space average by a
phasonic Debye- Waller factor analo-
gously to the conventional (phononic)
Debye- Waller factor. This phasonic De-
bye-Waller factor strongly depends on
the perpendicular space norm of scatter-
ing vectors. Consequently, the intensities
of reflections with high perpendicular
space norm should decrease with increas-
ing temperature.

In case of entropy stabilisation, the
ground state was a periodic structure (ap-
proximant). With increasing temperature
the structure would approach more and
more an, on average quasiperiodic, ran-
dom tiling. The increasing configuration-
al entropy would drive the stabilisation of
the quasiperiodic structure. In the nD de-
scription the hyperatoms would start to
condense with increasing temperature in-
dicating the 'better' quasiperiodic order
of the random tiling compared to the ap-
proximant. This leads the intensities of
reflections with high perpendicular space
norm to increase at higher temperature.

We are working, however, on a third,
new approach, which - most plausibly -
includes both mechanisms of stabilisa-
tion, at the same time solving some con-
tradictory or implausible features of both
approaches [8]. A basic intermetallic
cluster unit would be its base. An or-
dered, ideally quasiperiodic configura-
tion with this cluster as its basic element
would produce a quasicrystal. The ideal
quasiperiodicity of the cluster arrange-
ment would be counterbalanced by a
strong internal disorder in the component

Smm

2. Factors Stabilising Quasicrystals

There are two fundamentally different
approaches to understand the stability of
quasicrystals (see [7] and references
therein). The one theory says that an en-
ergetically very favourable cluster with
non-crystallographic symmetry is the ba-
sic building unit of a quasicrystal. The
only way to get the maximum packing
density of such a cluster in a crystal struc-
ture is to pack it quasiperiodically. Since
the driving force is the minimisation of
energy, the quasicrystal could also be sta-
ble at zero K, it could be a ground state of
matter. The other theory is based on the
special property of quasiperiodic tilings
that matching rules are needed for their
construction. In absence of these rules,
with the only restriction that no overlaps
or gaps are allowed, maximally random
tilings are obtained. The configurational
entropy should be maximum in case of an
on average quasiperiodic tiling. At low
temperature, nuclei of energetically fa-
vourable periodic approximant structures
would form and grow larger and larger.
The ground state at zero K would be a
periodic approximant structure.

There are experimental indications
supporting either theory. On the one

The determinant of the transformation
matrix has the value five, i.e. the volume
of the 5d unit cell of the superstructure is
five times that of the basic structure (it
contains five subcells of the basic struc-
ture).

Fig. 1. Centimetre-sized single crystals of
decagonal AI-Co-Ni grown by the self-flux
method.

= Lh,a;lh, E
",1

of rank five in physical space which can
be decomposed into two submodules
M* = M]*fBM2*. MI* = {h]a]*+ h2az*
+ h3a3*+ h4a/} corresponds to a Zmod-
ule of rank four in a 2D subspace, M2*=
{hsas *} corresponds to a Zmodule of
rank one in a ID subspace. Consequent-
ly, the first submodule can be considered
as a projection from a 4D reciprocallat-
tice, MI * = n11(1;*), while the second sub-
module is of the form of a regular ID re-
ciprocal lattice, M2 * = A *. The Bragg re-
flections related to the Zmodule M] * fill
the reciprocal planes densely. This leads
to the fundamental experimental problem
of the collection of a 'full data set' [6].
Even a limited section of the physical
reciprocal space contains an infinite
number of Bragg reflections. Most of
them are too weak to be experimentally
accessible. To detect all observable re-
flections the reciprocal space must be
mapped employing area detectors.

If decagonal A170Co12Ni]8 is de-
scribed as a superstructure of the nickel-
rich basic decagonal phase [3-5] then its
reflections can be grouped into three par-
ity classes depending on the value of m

Reflections with m = 0 are called
main reflections, they are related to the
quasiperiodic average structure of the
quasiperiodic superstructure. Satellite or
superstructure reflections of first order
are defined by m = ±l, those of second
order by m = ±2. Since the main reflec-
tions are often given in the setting used
for the nickel-rich basic decagonal phase
[5], it is useful to give the transformation
matrix between both settings

til =
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Fig. 2. Single crystal of decagonal AI-Co-Ni
clamped between 1a ~m-thick alumina fibres.
On the upperend, the fibres are glued together
with high-temperature cement. At the lower
end, they are mounted on an alumina capillary
with 500 ~m diameter [13].

cluster. Enough entropy (close to the val-
ues of metal glasses) can be generated in
this way to explain the quasicrystal's
thermodynamic stability at high tempera-
ture. Long-range-correlation terms in the
total energy (explaining and reinforcing
the Hume-Rothery effect [8][9]) can be
most easily introduced in this way. In this
frame, at high temperatures, the ground
state would be the quasicrystal, as the

structural and energetic limit of approxi-
mants with increasingly large unit cell.
Small-un it-cell approximants, with more
ordered clusters, would be the ground
state at lower temperatures. The high-
temperature behaviour of the main Bragg
ref1ections can also be easily justified
[10], without the need to introduce ran-
dom tilings in the strict sense, which have
never been proven to have Bragg peaks in
their diffraction pattern.

3. Diffraction Phenomena at
High Temperature

To study the variation of the diffrac-
tion patterns with temperature, diffrac-
tion data was collected at the Swiss-Nor-
wegian Beam Lines (SNBL) at the Euro-
pean Synchrotron Radiation Facility
(ESRF) in Grenoble, France. For the
high-temperature studies we designed
and manufactured a furnace with a novel
ceramic heating core using a technology
known as 'direct ceramic machining'
which was initially developed for the fab-
rication of all-ceramic dental bridges
[11][12]. The furnace is designed for the
X-ray rotation method and the mar345
imaging-plate detector system (X-ray
Research GmbH). Special emphasis was
given to easy handling and good reliabil-
ity, which is absolutely essential when
working within a tight time regime, as
for instance at a synchrotron radiation
source. We also employed a new mount-
ing technique by clamping the single-
crystal specimen between 10 !lm alumina
fibres instead of gluing it with high-tem-
perature cement onto a holder (Fig. 2)
[13].

In the following we show the diffrac-
tion data from a single crystal of decago-
nal A170C012Ni18' Due to the way the X-
ray diffraction data is recorded - with the
rotation method at a fixed wavelength -
the raw diffraction patterns show a dis-
torted image of the diffraction space (re-
ciprocal space). For further analysis, the
raw data has to be processed first into un-
distorted images of the reciprocal space
in a fully quantitative manner. This pro-
cess involves the interpolation and aver-
aging on a curvilinear grid, and the appli-
cation of correction factors for specimen
absorption, polarisation, and intensity
variations of the primary beam. For a typ-
ical data set (several hundred frames
comprising gigabytes of information) it is
not possible to keep the entire data in the
main memory of a standard computer. In-
put/Output (I/O) communication be-
tween fast main memory and slower ex-

ternal-memory (hard disk) becomes a
major bottleneck. Based on an external
memory algorithm, software was devel-
oped to handle this challenge (program
Xcavate) [14][15]. The reciprocal space
section shown in Figs. 3 and 4 were re-
constructed from 360 frames with oscil-
lation angle Ll<j> = as. The sections
shown in the first column have been tak-
en at room temperature. The crystal is
taken from a sample quenched from
900 °C by switching off the high-vacuum
furnace. The sections shown in the sec-
ond and third column have been taken
from the same crystal but now in situ at
800 °C and 850 °C, respectively. Going
from top to bottom, we see that only eve-
ry other layer ('Bragg layers') contains
sharp Bragg reflections. This sequence of
Bragg layers corresponds to a period of
two quasi-periodic atomic layers along
the tenfold axis. The diffuse interlayers
indicate a two-fold superstructure with
long correlation length along the ten-fold
axis and a much shorter one within the
quasiperiodic layers. The correlation length
changes, however, with temperature. Go-
ing from room temperature to 800 °C,
surprisingly, the extended diffuse scatter-
ing phenomena condense into almost
Bragg ref1ection-like diffuse maxima.
This means, the correlation length of
some ordering phenomena increases
drastically with temperature while Bragg
reflection widths do not change within
the experimental resolution. How can
this phenomenon be interpreted? We
know from many experimental studies
that decagonal AI-Co-Ni phases are build
from columnar clusters with approxi-
mately 20 A diameter [5]. According to
the small width of the diffraction phe-
nomena parallel to the periodic direction,
these columns must have rather perfect
four-layer periodicity along the ten-fold
axis. The narrow width of the Bragg re-
flections indicates also almost perfect
quasiperiodic long-range order of the col-
umns on a two-layer scale. On the four-
layer scale, the correlation length is of the
order of a few cluster diameters for the
quenched sample at room temperature. It
increases by one or two orders of magni-
tude at 800°C and breaks down almost
completely at 850 0c. At this temperature
also the four-layer correlation length
along the ten-fold axis decreases. This in-
dicates, that at least for this composition,
the decagonal phase is better ordered at
high temperature.

A closer inspection of the Bragg lay-
ers (Figs. 3 and 4) shows that with in-
creasing temperature the intensities of
first order superstructure reflections



Fig. 3. Series of reciprocal space sections reconstructed from 360 image plate scanner frames
at each temperature (marresearch 345, wave length A= 0.7 A, oscillation angle L\ljl = 0.5°, Swiss-
Norwegian Beam Lines/ESRF, Grenoble). In the first column, sections of the reciprocal space
layers h1h2h3h4h5 with h5 = 0, 1/2, 1, 1.5 and of the section h1hiiii1h5 perpendicular to them, all
taken at room temperature, are shown. The second and the third column contain the sections
collected at 800 °C and 850 °C, respectively. The reference basis of Steurer et al. [5] was used
for indexing.
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clearly decrease while those of second
order superstructure reflections increase.
It is also remarkable that at the same time
main reflections with large perpendicular
space component of the diffraction vec-
tors strongly increase their intensities.
The increase of the intensities of the
second order superstructure reflections
might also be due to the large perpendic-
ular space components of their diffrac-
tion vectors. In previous in situ studies,
going with exploratory scans close to the
melting temperature [16], as well as in
investigations on annealed samples [17],
it was found that above approximately
940 °C both types of superstructure re-
flections completely disappeared indicat-
ing a second order transition to the basic
decagonal phase.

4. Ordering of Clusters

During the last ten years, many struc-
ture models have been derived for the ba-
sic decagonal phase based on electron
microscopic and diffraction studies, for a
review see [8]. No quantitative analysis
of the quasiperiodic superstructure, how-
ever, has been performed yet. Several
models have been proposed based on
high-resolution electron microscopic
studies [18][19] (and references therein).
They all have in common that some kind
of ordering between the fundamental co-
lumnar clusters ("" 20 A diameter) is as-
sumed. To get a more quantitative and
reliable model, we calculated Patterson
and difference Patterson maps using all
reflections as well as the different reflec-
tion classes separately to figure out the
scale and type of ordering phenomena.
For that purpose, a large data set (7773
unique reflections) was used that was
collected on a sample with nominal com-
position Al71Co13Nil6 with synchrotron
radiation at HASYLAB/DESY [4]. The
difference Patterson maps (Fig. 5) clearly
indicate that the superstructure ordering
is on the scale of a Penrose tiling with
edge length Gr= 19.780 A [5]. This con-
firms, that the ordering causing the super-
structure reflections occurs between clus-
ters and not within clusters (compare
Fig. 5(d)). Since the basic Patterson vec-
tors are strictly oriented at angles
ire/lO, iE Z (compare also Fig. 5(b)), the
main inter-cluster ordering must be of the
substitutional and not of the displacive
type. The strongest peaks of the differ-
ence Patterson map calculated from first
order satellite reflections indicate a nega-
tive correlation between clusters along
the long diagonal of the fat Penrose
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Fig. 4. Enlarged (h1h2h3h40)-sections of the X-
ray diffraction data taken at 800 °e and 850 °e,
respectively. The surrounding of the 01100
reflection (i.e. the 3651 0 reflection in the super-
structure setting [4]) is shown. Main reflections
are guidelined by red pentagons, first order
satellite reflections are in the centres of these
red pentagons marked by blue arrows and
second order satellite reflections by green dec-
agons, pentagons or arrows. The blue star of
vectors shows the reciprocal space basis of
the superstructure setting, necessary to index
all reflections with a quintuplet of integers (five-
fold superstructure) [4].

rhomb. In case of maps calculated from
second order satellites this is along its
edge. This allows the different behaviour
of first and second order satellite reflec-
tions as a function of temperature to be
understood. The satellites (second order)
related to the shorter interaction vector of
the next neighbours survive to higher
temperatures than those (first order) re-
lated to the next nearest neighbours along
the diagonal of the Penrose rhomb.

5. Conclusions

The present high-temperature X-ray
diffractionstudy of decagonal Al71Co13Nil6
gave a first impression and interpretation
of the diverse ordering phenomena
this phase undergoes with temperature.
Future quantitative parametric in situ dif-
fraction studies on a finer temperature
scale will give us more insight in the fac-
tors governing formation, stability and
re-ordering of quasi crystals.
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Fig. 5. Structural information contained in the superstructure reflections. Patterson maps of the quasiperiodic plane at X3 = 0 are shown calculated
from (a)main reflections, (c) first and (e)second order satellite reflections, respectively. Black (red) contour lines indicate positive (negative) values
of the Patterson function. Electron density maps of (b) one quasiperiodic plane and (d) of the whole structure projected along the tenfold axis are
shown. The rhomb (edge length Qr = 19.795 A) and pentagon vertices mark typical cluster-cluster distances. All units are given as multiples of
a = 3.780 A. The cluster centre distribution is shown in (t). Centres of clusters of the parity class p = 1 and with distances of length Qr are connected
by lines. The parity classes are related to the position of the respective subcell in the 5D supercell. Subcell numbers n are colour coded: black
n = 0, p = 0; red n = 1,P = 1, blue n = 2, P = 2; azure n = 3, P = 2; pink n = 4, P = 1.


