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Abstract. Since artificial neural networks represent a commercially attractive tool for process modelling and
optimisation, some examples of their use in biotechnology are briefly reviewed. Models based on neural
networks can be successfully applied for the optimisation of industrial fermentation processes, as long as the
reliability of the network outputs is taken into account. Special network types provide a statistical measure that
indicates the particular reliability of the estimation.

a) Manuscripts of academic nature as well as further applications of artificial neural networks in
biotechnology [5], i.e., image analysis for taxonomy and biomass determination, analysis of DNA
and proteins, etc., are not listed.

Table. Overview of Data Published on Application of Artificial Neural Networks to Industrial
Fermentation Processesa)

Fermentation process (strain) Company Reference

Estimation, Penicillin Harbin Pharmaceutical [14J
(Prediction) factory (China)
&
Feedback- Penicillin G (P.chrysogenum) SmithKllne Beecham [3J [25J [26]
control (Irvine, UK)

Penicillin Gist-brocades (Delft, NL) [8]

Antibiotics Eli Lilly (Lafayette, USA) [27] [28]

OxytetracYCline Pfizer Ltd. (SandWich, UK) [29] [30]

Rekombinant protein Zeneca Pharmaceutics/s [25] [31]
(E. call) (Billingham, UK)

Glucoamylase (A.niger) 'Industry' [15]

Baker's yeast 'Industry' [321

Lysin 'Industry' [33]
(Brevibacterium flavum)

'Bioprocesslng' Novo Nordisk, Merck, [2] [27]
Life SCIences International, etc.

On-line Riboflavin (B. suMlis) F. Hoffmann-La Roche Ltd. (CH) (13)
optimisation
(model- Phytase (H. pOlymorpha) F. Hoffmann-La Roche Ltd. (CHI [12J
predictive
control)

1. Introduction

Commercial requirements for the devel-
opment of biotechnological processes in-
clude lower cost, higher output, better
quality, and rapid response to changing
markets. Although the benefits of the sci-
entific way that utilises process models to
achieve the commercial demands have
been accepted, the cost and time spent on
model development often outweigh the
perceived benefits and, thus, conventional
model-based approaches have been rarely
applied to the control of biotechnological
production plants. In daily industrial prac-
tice, most of the process improvements
have been accomplished in a pragmatic
way by development of the strains and
culture media, or by scaling-up.
In different industrial fields, artificial

neural networks (ANNs) are firmly estab-
lished as a valuable tool for both rapid and
reliable description of extremely complex
non-linear systems, (see, e.g., [1]). Since
such features are also intrinsic to biotech-
nological processes, ANN s became a com-
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mercially attractive means of data-driven
process modelling and optimisation (dis-
cussed in [2-6]). The above statement is
proven by the fact that more than ten

biotechnological companies have pub-
lished on the use of advanced supervisory
control of fermentations with neural net-
works (Table).
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2. Modelling Techniques

Process knowledge is available from
different sources simultaneously: from
huge databases of on-line and off-line
data, from mathematical (conventional)
models, and from heuristic knowledge of
specialists and operators (i.e., rule-based
knowledge). To avoid any loss of infor-
mation, hybrid modelling techniques are
preferable because they allow a quick im-
plementation of all accessible knowledge
into one process description [6-10].
ANNs are one key component of hy-

brid models and are used to describe the
parts of the process that are difficult to
elucidate using mathematical models or
where it is difficult to compensate for
errors in mathematical models, (see, e.g.,
[8][11]). Artificial neural models rely on
data from former cultivations and are ca-
pable of extracting input-output depend-
encies from these data. Such models are
. readapted with fresh data in order to incor-
porate new information continuously. In
general, the re-adaptation (= training) of
the ANN may proceed in two different
modes:
i) prior to each subsequent cultivation,

i.e., the ANN model is readapted with
data from the previous runs, and this
model is used to control the subsequent
cultivations [12][13]. In contrast to (ii),
such an approach allows process vali-
dation.

ii) on-line after each sampling interval
(for ~n attempt referred to as rolling
learning prediction, see [14]).

3. Control Strategy

Generally, control applications of
ANNs include estimation, prediction, and
optimisation of process variables.
By means of ANNs, variables that are

difficult to measure on-line, e.g., biomass
and product concentration, can be esti-
mated in quasi-real-time (e.g., software
sensors [15][16]).Furthermore, using read-
ily available on-line signals, the process
performance can be predicted for some
hours in advance. The length of the pre-
diction horizon is a compromise between
the accuracy of the prediction (small hori-
zon) and the ideally required prediction
up to the harvest point.
Applying model-predictive control

concepts [17-19], the ANN-models can
be used by an on-line optimiser to deter-
mine the optimum control signals (Fig. 1).
The control signals are updated during
each sampling interval. It should be noted
that the control signals are optimised on-
line, however, the model is most common-
ly readapted off-line prior to each subse-
quent fermentation (see the section on
Modelling Techniques).
ANNs possess satisfactory extrapola-

tion properties in a small range that sur-

rounds the process data already known.
Thus, the optimiser must be restricted to
operate only in this area. This can be
achieved using networks that indicate the
reliability ofthe prediction, e.g., theCMAC
adaptive memory [18][20] or the local
linear maps (LLM; [21]).

4. Results and Conclusions

The combination of neural models with
a predictive control scheme described
above (Fig. 1) has been developed to op-
timise the fed-batch process for the com-
mercialproductionofriboflavin [13]. The
optimisation goal was to find an optimum
operating mode while at the same time
maintaining the medium composition, the
applied strain, and the facility design [22].
The optimisation goal of achieving the
highest possible product concentration and
product yield at the time of harvesting was
realised by a continuous on-line search for
an optimum substrate feed. The results
presented for the riboflavin process (Fig. 2)
clearly show that ANNs can be used to
improve the process performance, i.e., the
substrate to product yield (Yp/s) increases
by more than 10%, and the reproducibility
of subsequent cultivations is enhanced.
The optimisation approach has been adapt-
ed and verified for the fed-batch produc-
tion of arecombinant protein (e.g.,phytase,
see [12]). Finally, it appears that the opti-
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Fig. 1. Structure of model-predictive control scheme. An optimiser simulates variations in the control signal, e.g., feed rate, and sends them to the
neural process model that forecasts the development of all important process parameters on-line for some hours in advance. The optimiser
assesses the predicted model outputs according to the desired process performance that is described by an objective function. The optimum
control signal is then applied to the process via a low-level controller. At each sampling interval, changes in the process state are monitored and
used to update the control signal on-line.
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Fig. 2. Yield (Yp/s)optimisation during the fed-batch process for the production of riboflavin by
recombinant Bacillus subtilis strain (adopted from [13]). White columns: batches controlled by
set-point profiles; black columns: batches controlled by means of ANNs. The value ofthe average
Yield of the batches controlled by set-point profiles is arbitrarily set to 100%; a change of 2.5%
is statistically significant. The shaded area indicates the data used to adapt (= train) different
networks. The letters a, b, c, d indicate different neural networks used as process models, i.e.,
the network a was trained with data from experiments controlled by set-point profiles, the training
data-set for network b included data from experiments controlled by set-point profiles and
additionally the data from all experiments a, etc.
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misation approach is quite general and can
also be applied to other biotechnological
processes [23][24].
Critical factors for the successful im-

plementation of advanced control systems
are both the quality and on-line availabil-
ity of experimental data. However, an
improvement of the equipment will cause
additional costs. On the other hand, it
should be taken into account that com-
pared to mathematical modelling,
i) the hybrid-modelling method activates
a larger part of available knowledge,

ii) the model-development times can be
drastically shortened, and

iii) the models can be readily readapted to
both newprocesses and newdata. Thus,
even from the industrial point of view,
the novel techniques of process opti-
misation are economically attractive
(Table).


