| MNA | 2-methyl-4-nitroaniline |
| :--- | :--- |
| MMONS | 3-methyl-4-methoxy-4'-nitrostilbene |
| m-NA | p-nitroaniline |
| POM | 3-methyl-4-nitropyridine 1-oxide |
| COANP | 2-(cycloctylamino-5-nitropyridine |
| PNP | 2-(N-prolinol)-5-nitropyidine |
| PMMA | poly(methyl methacrylate) |
| DR1 | 4-[N-ethyl- $N$-(2 hydroxyethyl)amino]-4'-nitroazobenzene (Disperse Red 1) |
| TCV | 4-(tricyanovinyl)-4-(diethylamino)azobenzene |
| NNDN | NN-N-diglycidyl-4 nitroaniline |
| NAN | N-(d-aminophenyl)-4-nitroaniline |
| DCV | 4-(dicyanovinyl)-4-(dimethylamino)azobenzene |
| DANS | 4-(dimethylamino)-4-nitrostylbene |
| 3RDCVXY | 4-(dicyanoviny-4'-(diethylamino)diazobenzene |

nances and $r^{2}$ the effect at optical frequencies (electronic contributions). For high speed electro-optical light modulators and deflectors $r^{5}$ should be as high as possible. Few measured data for $r^{r}$ are available at present. Since lattice contributions are expected to be small in organic materials one usually approximates $r^{s}$ with the purely electronic contribution $r$.
[1] K.D. Singer, M.G. Kuzyk, J.E. Sohn, J. Opt. Soc. Am. B 1987, 4, 968.
[2] H.E. Katz, C.W. Dirk, M.L. Schilling, K.D. Singer, J.E. Sohn, 'Material Research SocietyÛ, Pittsburgh, Pennsylvania, 1988, Vol. 109.
[3] J.W. Wu, J.F. Valley, S. Ermer, E.S. Binkley, J.T. Kenney, G.F. Lipscomb, R. Lytel, Appl. Phys. Lett. 1991, 58, 225.
[4] D. Jungbauer, B. Reck, R. Twieg, D.Y. Yoon,
C.G. Willson, J.D. Swalen, Appl. Phys. Lett. 1990, 56, 2610.
[5] K.D. Singer, M.G. Kuzyk, W.R. Holland, J.E. Sohn, S.J.Lalama, R.B. Camizzoli, H.E. Katz, M.L. Schilling, Appl. Phys. Lett. 1988, 53, 1800.
[6] G.R. Möhlmann, W.H.G. Horsthuis, SPIE Proc. 1990, 1337, 251.
[7] D. Haas, H. Yoon, H.T. Man, SPIE Proc. 1989, /147, 222 (SPIE-The International Society for Optical Engineering, Bellingham, Washington, 1989), Ed. G. Khanarian.
[8] Y. Shuto, H. Takara, M. Amano, T. Kaino, J. Appl. Phys. 1989, 28, 2508.

## Books:

P. Günter, J.P. Heignard, Eds.. 'Photorefractive Materials and Applications' Springer, Berlin, 1989, Vols. I and II.
'Nonlinear Optical Properties of Organic Molecules and Crystals', Eds. D.S. Chemla and J. Zyss, Academic Press Inc., Orlando, 1987, Vol. 2.
'Polymers for Lightwave and Integrated Optics', Ed. L.A. Hornak, Marcel Dekker, Inc., New York, 1992.

Chimia 47 (1993) 405
© Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293

## NLO-Polymers and Their Applications in Devices

Gustaaf R. Möhlmann*

Hyperpolarizable groups attached to polymers have been used as optically nonlinear materials for thin film guided wave, passive as well as active (electro-optic) devices. Multilayers comprising polymeric core and cladding layers thus forming slab waveguides on a substrate, have been prepared. Close to the glass transition temperature of the polymer (e.g. $140^{\circ}$ ), strong electric fields ( $100 \mathrm{~V} / \mu \mathrm{m}$ ) induced the electro-optic effect. Via UV bleaching through selected masks, channel waveguides have been realised by locally decreasing the refractive indices. Finally,

[^0]the metal top electrode was patterned. Passive (unpoled) as well as active guided wave structures such as: straight and bent channels, optical power splitters, phase modulators, Mach-Zehnder interferom-
eters and switches, have been made [1][2]. Switching voltages are ca. 10 V ; the extinction ratio's are around 20 dB . The measured intensity output of an optical power splitter is shown in the Figure. Also thermo-optically switchable elements have been made; here, heating the waveguide changes the refractive index; electrical switching powers are of the order of 10 's of mW's.

[^1]

Figure. Output intensity profile of a 1*4 passive optical power splitter

| MNA | 2-methyl-4-nitroaniline |
| :--- | :--- |
| MMONS | 3-methyl-4-methoxy-4'-nitrostilbene |
| m-NA | p-nitroaniline |
| POM | 3-methyl-4-nitropyridine 1-oxide |
| COANP | 2-(cycloctylamino-5-nitropyridine |
| PNP | 2-(N-prolinol)-5-nitropyidine |
| PMMA | poly(methyl methacrylate) |
| DR1 | 4-[N-ethyl- $N$-(2 hydroxyethyl)amino]-4'-nitroazobenzene (Disperse Red 1) |
| TCV | 4-(tricyanovinyl)-4-(diethylamino)azobenzene |
| NNDN | NN-N-diglycidyl-4 nitroaniline |
| NAN | N-(d-aminophenyl)-4-nitroaniline |
| DCV | 4-(dicyanovinyl)-4-(dimethylamino)azobenzene |
| DANS | 4-(dimethylamino)-4-nitrostylbene |
| 3RDCVXY | 4-(dicyanoviny-4'-(diethylamino)diazobenzene |

nances and $r^{2}$ the effect at optical frequencies (electronic contributions). For high speed electro-optical light modulators and deflectors $r^{5}$ should be as high as possible. Few measured data for $r^{r}$ are available at present. Since lattice contributions are expected to be small in organic materials one usually approximates $r^{s}$ with the purely electronic contribution $r$.
[1] K.D. Singer, M.G. Kuzyk, J.E. Sohn, J. Opt. Soc. Am. B 1987, 4, 968.
[2] H.E. Katz, C.W. Dirk, M.L. Schilling, K.D. Singer, J.E. Sohn, 'Material Research SocietyÛ, Pittsburgh, Pennsylvania, 1988, Vol. 109.
[3] J.W. Wu, J.F. Valley, S. Ermer, E.S. Binkley, J.T. Kenney, G.F. Lipscomb, R. Lytel, Appl. Phys. Lett. 1991, 58, 225.
[4] D. Jungbauer, B. Reck, R. Twieg, D.Y. Yoon,
C.G. Willson, J.D. Swalen, Appl. Phys. Lett. 1990, 56, 2610.
[5] K.D. Singer, M.G. Kuzyk, W.R. Holland, J.E. Sohn, S.J.Lalama, R.B. Camizzoli, H.E. Katz, M.L. Schilling, Appl. Phys. Lett. 1988, 53, 1800.
[6] G.R. Möhlmann, W.H.G. Horsthuis, SPIE Proc. 1990, 1337, 251.
[7] D. Haas, H. Yoon, H.T. Man, SPIE Proc. 1989, /147, 222 (SPIE-The International Society for Optical Engineering, Bellingham, Washington, 1989), Ed. G. Khanarian.
[8] Y. Shuto, H. Takara, M. Amano, T. Kaino, J. Appl. Phys. 1989, 28, 2508.

## Books:

P. Günter, J.P. Heignard, Eds.. 'Photorefractive Materials and Applications' Springer, Berlin, 1989, Vols. I and II.
'Nonlinear Optical Properties of Organic Molecules and Crystals', Eds. D.S. Chemla and J. Zyss, Academic Press Inc., Orlando, 1987, Vol. 2.
'Polymers for Lightwave and Integrated Optics', Ed. L.A. Hornak, Marcel Dekker, Inc., New York, 1992.

Chimia 47 (1993) 405
© Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293

## NLO-Polymers and Their Applications in Devices

Gustaaf R. Möhlmann*

Hyperpolarizable groups attached to polymers have been used as optically nonlinear materials for thin film guided wave, passive as well as active (electro-optic) devices. Multilayers comprising polymeric core and cladding layers thus forming slab waveguides on a substrate, have been prepared. Close to the glass transition temperature of the polymer (e.g. $140^{\circ}$ ), strong electric fields ( $100 \mathrm{~V} / \mu \mathrm{m}$ ) induced the electro-optic effect. Via UV bleaching through selected masks, channel waveguides have been realised by locally decreasing the refractive indices. Finally,

[^2]the metal top electrode was patterned. Passive (unpoled) as well as active guided wave structures such as: straight and bent channels, optical power splitters, phase modulators, Mach-Zehnder interferom-
eters and switches, have been made [1][2]. Switching voltages are ca. 10 V ; the extinction ratio's are around 20 dB . The measured intensity output of an optical power splitter is shown in the Figure. Also thermo-optically switchable elements have been made; here, heating the waveguide changes the refractive index; electrical switching powers are of the order of 10 's of mW's.

[^3]

Figure. Output intensity profile of a 1*4 passive optical power splitter


[^0]:    $\overline{\text { *Correspondence: }}$ Dr. G. R. Möhlmann
    AKZO Electronic Products B.V.
    Velperweg 76
    P.O. Box 9300

    NL-6800 SB Arnhem

[^1]:    [1] G.R. Möhlmann, W.H.G. Horsthuis, J.W. Mertens, M.B.J. Diemeer, F.M.M. Suyten, B. Hendriksen, C. Duchet, P. Fabre, C. Brot, J.M. Copeland, J.R. Mellor, E. van Tomme, P. van Daele, R. Baets, Proc. SPIE, Int. Soc. Opt. Eng. 1991, 1560, 426.
    [2] W.H.G. Horsthuis, M.M. Klein Koerkamp. J.-L.P. Heideman, J.W. Mertens, B.H. Hams, Proc. SPIE, Int. Soc. Opt. Eng. 1993, 2025. accepted.

[^2]:    $\overline{\text { *Correspondence: }}$ Dr. G. R. Möhlmann
    AKZO Electronic Products B.V.
    Velperweg 76
    P.O. Box 9300

    NL-6800 SB Arnhem

[^3]:    [1] G.R. Möhlmann, W.H.G. Horsthuis, J.W. Mertens, M.B.J. Diemeer, F.M.M. Suyten, B. Hendriksen, C. Duchet, P. Fabre, C. Brot, J.M. Copeland, J.R. Mellor, E. van Tomme, P. van Daele, R. Baets, Proc. SPIE, Int. Soc. Opt. Eng. 1991, 1560, 426.
    [2] W.H.G. Horsthuis, M.M. Klein Koerkamp. J.-L.P. Heideman, J.W. Mertens, B.H. Hams, Proc. SPIE, Int. Soc. Opt. Eng. 1993, 2025. accepted.

