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Abstract: Biosourced isohexides have attracted the considerable attention of both the academic and industrial
chemistry communities over the last 50 years. This highlight focuses on the synthesis of nitrogen-containing
isohexides and their applications in asymmetric catalysis.
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For the past few decades, the academic
landscape has been strongly modified due
to the concepts issuing from ‘green chem-
istry’. Even if some terminology was fi-
nally established by Trost,[1] Sheldon[2]
and Anastas,[3] for their contribution to
the atom economy principle, the E fac-
tor definition and the twelve principles of
green chemistry, pioneering work in this
field should be acknowledged as originat-
ing from Giacomo Ciamician in 1908. As
a confirmation of his thoughts, the use of
renewable materials or reagents is now
clearly indexed as Principle 7.[4]

Isosorbide 1 is a chiral dianhydrohexi-
tol and a major product of the starch indus-
try produced by Roquette Frères (Lestrem,
France)[5] that expanded its production to
several thousand tons in 2011. The indus-
trial process is initiated by double dehydra-
tion of sorbitol. The hydroxyl group on the
C

6
position has an exo configuration (point-

ing out from the cycle) whereas the one on
C

3
has an endo configuration (pointing into

the cycle) (Fig. 1). As a consequence, two
pivotal parameters have been highlighted
to influence the native reactivity: i) hydro-
gen bonding between the endo-hydroxyl
group and the endocyclic oxygen; ii) ste-
ric hindrance of the endo-hydroxyl group
compared to the exo one.

Along with isosorbide, the family of
1,4:3,6-dianhydrohexitols is completed
with two other symmetrical diastereomers:
isomannide 2 (endo/endo isomer) and isoi-
dide 3 (exo/exo isomer) (Fig. 1). Double
dehydration of d-mannitol and d-glucitol
have afforded isomannide and isosorbide
in a wide range of acidic conditions such as
formic acid/HF,[6] pyridinium chloride,[7]
H

2
SO

4
,[8] Amberlyst or Dowex resins,[9]

metal phosphates (of tin, zirconium, tita-
nium, niobium),[10] zeolites,[11] silicotung-
stic acid[12] and so on. Simple metallic or
bifunctional catalysts also efficiently per-
formed the dehydration of these polyols.[13]
Cellulose[14] could be directly converted by
combining acidic and hydrogenation cata-
lysts. Isoidide is the sole diastereomer that
is not produced on industrial scale by dou-
ble dehydration of l-iditol barely present
in nature. Conformations of these bicyclic
derivatives have been evaluated by NMR
studies to be a combination of C

S
and C

2
classical forms associated with cyclopen-
tanes.[15]

Beyond the valorization of isohexides
as chiral diols from renewable resources,
most of all in polymer applications,[16] the
corresponding diamino-dideoxy isohex-
ides 4–6 have recently attracted increased
interest (Scheme 1).[17] The importance of
diamines as building blocks in the chemi-
cal industry and a growing aim to increase
the sustainability and biocompatibility of
the large-scale production of intermedi-
ates in the synthesis of polyamides and

polyurethanes are highly motivating this
research.[18] Asymmetric induction is also
another field of interest for valuable valori-
zation of mono- and diamines, largely used
as chiral auxiliaries and ligands.[19] As a
consequence, from the early 2000s, isosor-
bide derivatives have been investigated in
asymmetric catalysis. A few examples of
enantioselective induction in the presence
of nitrogen-containing isohexide deriva-
tives have already been reported and will
be presented in this contribution.[20]

1. Synthesis of Nitrogen-containing
Isohexide Derivatives

1.1 Preparation of Diamines
Starting from dianhydrohexitols 1–3,

primary diamines 4–6 were obtained by a
classical three-step sequence of tosylation,
azoturation (in DMF or in [bmim]BF

4
[21])

and hydrogenolysis (Scheme 1).[22] Re-
placement of sodium azide by benzylamine
and subsequent high-pressure hydrogena-
tion allowed the access to diamines 4 and
5 with 50% and 61% global yield.[23] Un-
fortunately, when reacting isoidide ditosyl-
ate with ammonia[24] or benzylamine,[17b]
a tricyclic adduct 7 was isolated due to
intramolecular nucleophilic substitution.
Despite a poor atom-economy factor, the
displacement by phthalimide,[17a] followed
by acidic hydrolysis, was proposed as a
more efficient scalable strategy to obtain 5
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organic media for reactions with a high
potential of recyclability as an alternative
to classical solvents. Task-specific ionic
liquids were also considered for their dual
combination both as catalyst and solvent.
As an example, chiral ionic liquids special-
ly have shown promising applications in
asymmetric synthesis, chiral chromatog-
raphy or resolution.[32] Concerns about the
feedstock source, the toxicity and the poor
biodegradability have also encouraged the
synthesis of novel ionic liquids from bio-
renewable resources,[33] like isohexides, to
investigate their physico-chemical proper-
ties and applications.[34]

The synthetic sequence to provide ionic
liquids 15 and 16 was generally described
from isomannide ditosylate 13, reacting at
140–160°C in pure benzylamine, followed
by quaternization with methyl iodide and/
or tuning the anion counterpart viametath-
esis. Compound 17 was prepared by direct
substitution of 13 by N-methyl imidazole,
followed by anion metathesis.

idazolium ionic liquids were investigated
for their physical and chemical properties
such as low vapor pressure, high thermal
stability, ionic conductivity, offering new

on a multi-gram scale with high purity for
step-growth polymerization.

To date, the least accessible diamine 6
is synthesized in five steps from isoman-
nide 2 in 43% yield via a diazide interme-
diate[25] which breaks the defined safety
rules.[26] More recently, Beller reported
a ruthenium-catalyzed amination of iso-
sorbide through a borrowing hydrogen
reaction leading to an inseparable diaste-
reomeric mixture of diamines 4–6 in an
excellent 96% yield.[27] As an alternative
to metal-catalyzed amination, biocatalysis
promoted by an enzymatic couple of trans-
aminase/dehydrogenase only afforded
isosorbide monoamine with 7% yield.[28]
These recent proofs of concepts opened
the way to original sustainable and safer
approaches, with, so far, no significant
breakthrough regarding the synergistic ef-
ficiency and diastereoselectivity.

Nucleophilic substitution of ditriflated
isomannide 8 by KCN (2.2 equiv.) in THF
in the presence of crown-ether 18-C-6 (2.2
equiv.) provided dinitrile 9, which under
reduction with an excess of borane, af-
forded homologated diamine 10 (Scheme
2).[29]

Depending on the nature of the nucleo-
philic species, secondary diamines (e.g. 12
and 14) as well as tertiary diamines could
be prepared (Scheme 3). In our hands, ini-
tial substitution by N-methylbenzylamine
of isosorbide ditosylate 11 afforded an in-
termediate, easily isolable, tertiary amine.
Upon treatment with ammonium formate,
in the presence of 1 mass equivalent of
palladium, bis-secondary methyl amine
12 was obtained in 80% yield (Scheme 3).
Nevertheless, direct substitution with low
boiling point amines (methylamine, al-
lylamine, diallylamine) failed resulting in
complete recovery of the starting material.

Subsequent quaternization of second-
ary amine 14 provided biosourced ionic
liquids (bis-ammonium 15, 16[30] or bis-
imidazolium 17[31]). Ammonium and im-
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Scheme 1. Primary diamines arising from isohexides and side product.
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at 130 °C. In the case of triflates 20d and
20e, the substitution took place at room
temperature for 2 days but without any
yield improvement due to significant com-
petitive elimination (30%) as a negative
counterpart.[40a] The introduction of azide
in endo configuration from derivatives 20
proved to be more difficult as an optimized
25% yield was several times reported and
confirmed in our hands even using triflate
as a leaving group.[43] Free amines were ob-
tained after hydrogenation of benzylamino
derivatives or azides.[40b,c] Methylation was
performed either via an Eschweiler-Clark
reaction followed by quaternization[34] or
via a phase-transfer catalyzed reaction in
a biphasic medium with Me

2
SO

4
, to lead to

mono ammonium or imidazolium deriva-
tives.[35a]

1.2.2 Nucleophilic Substitution of
Activated Isohexides

Nitrogen nucleophiles used in Sn
2

reactions on substrates shown in Fig. 2
were nearly identical to the ones used
for double displacement producing di-
amines, with only slight changes in the
reaction conditions. For the displace-
ment of endo-tosylated molecules, com-
pounds 18 or 19 (or their phenylsulfonate
analogue[34a]) were reacted with primary
alkyl amines, including benzylamine.[35a,41]
Sodium azide was handled in different sol-
vents: DMF,[42] [bmim]BF

4
,[21,35c] leading

to azido derivatives with moderate to very
good yields. From derivative 20a, primary
alkyl amines (benzylamine, cyclohexyl-
amine, cyclohexylmethylamine, isopropyl-
amine, tert-butylamine)couldbeintroduced
in endo position with 56–85% yield under
classical heating or microwave irradiation.
Lower yields (45 and 31%) and epimeriza-
tionwereobservedwithanilineandN-ethyl-
aniline.[41]N-Methylimidazole reacted with
phenylsulfonate 20a in 50% yield after 4 h

1.2 Preparation of Mono-amine
Derivatives

1.2.1 Monofunctionalization of
Isohexides

The access to mono-amine derivatives
is a more challenging exercise, relying on
an initial single functionalization of iso-
sorbide (or isomannide) with more or less
success in the selective discrimination of
hydroxyl groups. The di-functionalization
is also a serious limitation to tackle.

An overview of different related sub-
strates (18–20) available for single nucleo-
philic substitution is depicted in Fig. 2.

As an example, after selective mono-
tosylation of isomannide affording 18a in
44–68% yield (side product: bis-tosylate
isolated in 26% yield), the displacement of
tosylate provided the amine in the exo posi-
tion. If necessary, the remaining hydroxyl
group could be protected as an ether 18b
(R = Me, Et, allyl, Bn)[35] or as a tert-butyl
dimethylsilyl ether 18c.[31]

Given the intrinsic difference of re-
activity between endo and exo positions,
isosorbide was the most investigated as a
starting material for monofunctionaliza-
tion selectively directed on the C

3
(com-

pounds 19) or C
6
position (compounds 20).

Initial studies reported direct tosylation in
the early sixties: a solution of isosorbide,
tosyl chloride (1 equiv.) stirred in pyridine
at 5 °C for 46 h provided endo tosylate 19a
(45% yield), its exo regioisomer 20c (12%
yield) and di-tosylate 11 (5% yield).[36]
Direct esterification[37] and alkylation[38]
of isosorbide were also performed with
moderate to excellent regioselectivity. In
particular, the most advanced academic
work concentrated on selective acetylation
or benzylation of isosorbide with mecha-
nistic propositions on the influence of the
base, solvent and interactions with both
hydroxyl groups determining the preferred
position between C

3
and C

6
. A large panel

of experimental conditions was adjusted
to turn either in favor of the exo regioi-
somer or the endo regioisomer (Scheme
4). Acetylation (or benzoylation) in the
endo position can be carried out with PbO
at room temperature in up to 92% yield
to give 21.[37b,39] The exo regioisomer 22
was obtained under relatively harsh condi-
tions with Ac

2
O (or Bz

2
O) at 120 °C in 1 h

followed by selective hydrolysis[37b] or via
DCC activation.[37c] Loupy and Quéguiner
also described, in 1994, the regioselective
mono-benzylation (and to a general extent
mono-alkylation), tuned by the nature of
the solvent and the base (Scheme 4).[38a]
Thereafter, derivatives 21–25 were widely
reported as valuable intermediates allow-
ing the introduction of phenylsulfonate
(20a),[40] p-toluene sulfonate (19b, 19c,
20b),[35a,41] or triflate (20d)[40a] as an acti-
vating group.
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2.2.1 Chiral Ammonium or
Imidazolium Salts[34]

Imidazolium derivative 33 and its am-
monium congener 34 have been prepared
and used in aza Diels-Alder reactions as
chiral ionic liquids (IL). The screening of
various derivatives showed that the pres-
ence of the free hydroxyl group and the
non-substitution of the imidazolium nucle-
us were important for both reactivity and
asymmetric induction (Scheme 8). Best re-
sults were obtained with IL 33 (74% yield
and 68% de).[34a,49]

Mono and bis-ammonium ionic liq-
uids have also been successfully used in
chiral discrimination. The diastereomeric
interaction between the chiral ammonium
IL and the racemic Mosher’s acid silver
salt was investigated (Fig. 3).[30,35b] A sig-
nificant enhancement in the splitting of
the CF

3
signals could be observed with 19F

NMR spectroscopy of the salt in the pres-
ence of an excess of the ionic liquid 16' or
35. The influence of the anion and of the

titative conversion but a lower enantio-
meric excess of 60%.[48] The presence of
the chiral isosorbide part proved to be nec-
essary, a very poor enantioselectivity (ee
<30%) being obtained with (S)-2-amino-
2-phenylethanol or (S)-2-amino-3-methyl-
butan-1ol.[40c]

2.2 Organocatalysis
Organocatalysis relies on two different

types of mechanism: i) covalent catalysis
implying the formation of covalent inter-
mediates between the organocatalyst and
the substrate; ii) non-covalent catalysis re-
lying on non-covalent interaction(s) such
as hydrogen bonding or intermediate ionic
species pairs. So far, only a few articles
describe isohexide organocatalysts, the
asymmetric induction being promoted ei-
ther by chiral ionic liquids (or phase trans-
fer catalysts) or thiourea derivatives, via a
non-covalent mechanism.

2. Application to Asymmetric
Induction

The potential of highly functionalized
isosorbide derivatives in asymmetric catal-
ysis as chiral auxiliaries,[44] or ligands,[45]
has only been investigated in the last 15
years.[46]

To our knowledge, there is only one ex-
ample using nitrogen-containing isohexide
as a chiral auxiliary. In 1993, Quéguiner
reported for the first time the synthesis of
chiral aminoethers 27[41] and their use in
the asymmetric alkylation of phenylacet
amides 28 (Scheme 5). The best diaste-
reomeric ratio was evaluated at 83% when
running the reaction at –100 °C with R

1
=

cyclohexyl.[47]
With the above exception, most of the

disclosed reports over the last 15 years on
the use of nitrogen-based isohexides for
asymmetric synthesis (or chiral resolution)
dealt with their role as chiral ligands or as
precursors of organocatalysts.

2.1 Organometallic Catalysis
Enantioselective organometallic ca-

talysis was studied with nitrogen-based
ligands from isohexides especially with
Diels-Alder and transfer hydrogenation
reactions, which we designate model reac-
tions.

Endo/endo diamine 6, prepared in five
steps (overall yield 45%) from isomannide
2, was then converted into a set of di-im-
ines 30 by reaction with substituted benz-
aldehydes. These di-imines were evaluated
as ligands, in association with copper, zinc
or magnesium in Diels-Alder reactions of
cyclopentadiene and N-crotonyl-oxazolid-
inone (Scheme 6). Best enantioselectivity
(ee 63%) was reached by complexation of
copper (ii) triflate and bidentate ligands is-
sued from coupling with 2,6-dichloroben-
zaldehyde.[25]

In contrast to the Diels-Alder reaction,
asymmetric transfer hydrogenation in the
presence of amino isohexides ligands,
was investigated in more depth, mainly
for the reduction of C=O bonds. The Ru-
catalyzed enantioselective reduction of
acetophenone was reported with different
sets of ligands and then followed by other
aromatic ketones (Scheme 7). The conver-
sion of acetophenone into 1-phenylethanol
proved to be efficient (ee 80%) in the pres-
ence of [RuCl

2
(p-cymene)]

2
(1.25 mol%)

with endo/endo ligand 31a (5 mol%).[40b,c]
Diamine 31b turned out to be active but not
selective (ee <23%) while its N-tosylated
counterpart 31c gave better conversion or
selectivity depending on the Ir or Ru cata-
lyst. In comparison, ligand 32, obtained
from isosorbide after ring opening of one
THF moiety, preserving the 1,2-amino al-
cohol sequence required for complexation
with RuII catalyst, afforded almost a quan-
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concentration in IL resulted in ∆δ varying
from 5 to 23 Hz.

Some of these quaternary salts were
used as phase transfer catalysts (PTC)
leading to intermediate chiral ion pairs.Al-
kylation ofN-(diphenylmethylene) glycine
tert -butyl ester in the presence of benzyl
bromide and PTC 36 afforded a moderate
48% ee in favor of the product with S-con-
figuration (Scheme 9).[35a]

2.2.2 Thiourea Derivatives
Recently, Saluzzo and colleagues fo-

cused on the design of thioureas isohexide-
based compounds, and their evaluation in
the asymmetric Friedel-Crafts alkylation
of indole with nitrostyrene.[50] Mono and
di-thioureas were prepared by tuning the
stoichiometric amount of the appropriate
isocyanate reacting with diamine 5 or 6.
Despite a modest 44% enantiomeric ex-
cess, di-thiourea 37was to date the first ex-
ample of the potential of isohexide deriva-
tives in asymmetric induction mediated by
non-covalent interactions, and, in this case,
via hydrogen bond (Scheme 10).

2.2.3 Amines and Imines
The same group reported the use of im-

ines in the 1,4-addition of acetone on nitro-
styrene. Organocatalyst 38 provided a low
yield of 39% but a promising enantioselec-
tivity of 59% (Scheme 11). A mechanistic
model involving 38 in equilibrium with
the corresponding amines was proposed
involving both covalent and non-covalent
interactions.[51]

Our group is currently involved in re-
search projects exploring synthetic appli-
cations using Michael addition, for exam-
ple in the synthesis of indolizidine alkaloid
167B,[52] or for the addition of activated
methylenes to non-protected nitrovinylin-
dole in mild conditions.[53] Due to recent

contributions on the 4-hydroxycoumarin
nucleus,[54] Warfarin, prepared by Mi-
chael addition of 4-hydroxycoumarin on
benzalacetone, attracted logically our at-
tention. Imidazolidine-catalyzed Michael
addition was the first example reported
for the asymmetric synthesis of Warfa-
rin with an ee better than 80%.[55] Simple
vicinal primary diamines (1,2-diamino-
cyclohexane, diphenyl- or dinaphthyl-
ethylenediamine)[56] or cinchonine deriva-
tives (9-amino-9-deoxyepicinchona)[57] al-
so contributed efficiently to the formation
of an iminium intermediate. Following
this strategy, simple bulky aminoalcohols
derived from phenylglycine represent an
alternative to other chiral diamines.[58] For
a combined mechanism based on covalent/
non-covalent activation, bifunctional cata-
lysts have been developed from previously
described vicinal diamines.[59]
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based access to this skeleton, in accordance
with the twelve fundamental principles of
green chemistry. Less attention has been
paid to its applications as a chiral catalyst,
which probably will be developed in the
next years, considering the recent publica-
tions in this field.
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Adamkiewicz, J. Mlynarski,Green Chem. 2011,
13, 1155; c) Y. Liu, X. Liu, M. Wang, P. He, L.
Lin, X. Feng, J. Org. Chem. 2012, 77, 4136;
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