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Abstract: Computational models in chemistry rely on a number of approximations. The effect of such approxima-
tions on observables derived from them is often unpredictable. Therefore, it is challenging to quantify the uncer-
tainty of a computational result, which, however, is necessary to assess the suitability of a computational model.
Common performance statistics such as the mean absolute error are prone to failure as they do not distinguish
the explainable (systematic) part of the errors from their unexplainable (random) part. In this paper, we discuss
problems and solutions for performance assessment of computational models based on several examples from
the quantum chemistry literature. For this purpose, we elucidate the different sources of uncertainty, the elimi-
nation of systematic errors, and the combination of individual uncertainty components to the uncertainty of a
prediction.
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1. Introduction

Quantum electrodynamics (QED) al-
lows for the description of all electromag-
netic processes occurring between the
elementary particles of chemical systems
(e.g., molecules). It is the fundamental
theory of chemistry (focusing on the domi-
nant electromagnetic interactions and ig-
noring the other fundamental forces). If we
were able to solve its equations for some
chemical system with arbitrary accuracy,

truly predictive results bare of almost all
errors would be obtained.

However, for all but the simplest sys-
tems, calculations based on QED are un-
feasible. Additional approximations have
to be made for the calculation of an ob-
servable of interest to be available in rea-
sonable time and with reasonable effort
leading to deviations from the fundamental
theory of chemistry. Eventually, the num-
ber and types of approximations necessary
for a feasible description of molecular sys-
tems are vast and diverse.

The precise effect of such approxi-
mations (computational models) on ob-
servables derived from them is generally
unknown and difficult to estimate for ar-
bitrary molecules.[1] While the procedure
of uncertainty quantification for physical
measurements is well established,[2] this is
not the case for results of computational
models (virtual measurements[3]). By the
very nature of a deterministic (or fully
converged stochastic) calculation, the rep-
etition of such a calculation does not lead
to an oscillation around the true result, and
therefore, there is no obvious approach of
reliably estimating prediction uncertainty
of the computational model employed.
However, the result of a computational
model is incomplete without an accurate
uncertainty associated with it.[3] Given a
reliable uncertainty measure for a compu-
tational result, one could not only estimate
the effects on observables derived from
that result (through uncertainty propaga-
tion), but also directly assess the quality of
approximations in the model-development
stage. Finally, availability of prediction
uncertainties would help select an appro-
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step results in a reaction rate that is off by a
factor of 105 at room temperature.

Lastly, it should be noted that the un-
certainty within the (experimental and
computational) reference data is generally
not accounted for.[22]

In Fig. 1, we illustrate the system de-
pendency of an arbitrary observable given
an adequate computational model (see
Section 3.2 for a definition of model ad-
equacy). The transferability of statistical
measures such as the MAE would only be
valid in the ideal case of homoscedastic-
ity (Fig. 1, left), where the prediction un-
certainty is independent of the input, here,
chemical space (the space of all chemical
compounds, e.g. molecules, where small
distances indicate high structural simila-
rity).

So far, there exists no strategy to de-
velop approximate quantum chemical
methods with system-invariant uncertain-
ty (homoscedasticity), which is not to be
confused with strategies to develop sys-
tematically improvable methods (such as
the coupled cluster expansion, which still
reveals systematic errors due to the trun-

Perdew[7] andSchultz et al.[15] reportMAEs
of 50.6 and 69.9 kJ/mol, respectively. This
finding is in accordance with many studies
demonstrating that the accuracy of density
functionals varies strongly with the chemi-
cal system,[5,16–21] and therefore, undermin-
ing the transferability of such performance
statistics. In the case of density functional
theory, this lack of transferability is par-
ticularly critical to studies on transition
metals since most of the benchmark data
sets include only small (unsaturated and
therefore atypical) compounds (e.g., tran-
sition metal hydrides such as FeH).

In addition, it can be seen from Table 1
that all MAEs are considerably large (a re-
sult is said to be within chemical accuracy
if the expected error is within ~4.2 kJ/mol).

For the WCCR10 and FP06 data sets
LAEs are reported as well (e.g., 83.4 and
157.3 kJ/mol, respectively, for the B3LYP
functional). MAE and LAE of this size are
unacceptable for studies in which accurate
reaction energies are of high importance.
In the framework of conventional transi-
tion state theory, an error of 30 kJ/mol in
the barrier height of an elementary reaction

priate computational model of sufficient
accuracy for a problem at hand.

2. Uncertainty Quantification in
Computational Chemistry

2.1 Benchmark Studies
It is generally assumed that perfor-

mance statistics based on benchmark sys-
tems are good estimates for the prediction
uncertainty of a quantum chemical meth-
od. Due to the availability of large amounts
of experimental and computational refer-
ence data (for a recent review see ref. [4]),
benchmark studies are carried out to pro-
vide statistical quantities such as the mean
absolute error (MAE),

MAE𝑚𝑚 = 1𝑁𝑁 ∑|𝑒𝑒𝑚𝑚,𝑠𝑠|𝑁𝑁
𝑠𝑠=1 (1)

and the largest absolute error (LAE),

LAE𝑚𝑚 = max{|𝑒𝑒𝑚𝑚,1|, |𝑒𝑒𝑚𝑚,2|,… , |𝑒𝑒𝑚𝑚,𝑁𝑁|}
(2)

with e
m,s

= c
m,s

– o
s
and N being the size of

the data set. Here, the error e
m,s

of mod-
el m with respect to system s (typically
a molecule) is defined as the difference
between the calculated result c

m,s
and the

experimental or computational reference
o
s
. These summarizing statistics are then

applied to estimate the prediction uncer-
tainty of a method of choice for a system
of interest.

However, there is a major caveat as-
sociated with this approach: the assump-
tion that such statistics are transferable to
a system not represented in the reference
data set is generally invalid. In Table 1 the
MAE of common density functionals with
respect to ligand dissociation energies of
transition metal complexes from three pre-
vious studies are compared. TheWCCR10
data set[5] consists of 10 ligand dissociation
energies of large cationic transition metal
complexes. The 3dBE70 database[6] con-
tains average bond energies of 70 transition
metal compounds. The data set by Furche
and Perdew[7] containing 18 dissociation
energies of transition metal compounds
is herein abbreviated as FP06. The com-
parison of the different benchmark stud-
ies shows that the MAEs are strongly data
set dependent. For instance, the spread of
MAEs ranges from 17.6 to 40.6 kJ/mol in
the case of the TPSSh density functional.

Even for small systems such as metal
dimers the reported statistics can vary.
For example, for the dissociation energy
of metal dimers the study by Furche and

Table 1. Mean absolute error (MAE𝑚𝑚 ) of ligand dissociation energies (kJ/mol) calculated with a
selection of common density functionals taken from the literature.

Model m WCCR10[5] 3dBE70[6] FP06[7]

B3LYP[8–10] 39.1 20.9 50.2

PBE[11–13] 31.8 25.5 45.2

TPSSh[14] 32.0 17.6 40.6

Fig. 1. Illustration of homoscedasticity (left) and heteroscedasticity (right) for synthetic data. In the
former case (left), the uncertainty (yellow 95% confidence band) associated with an observable of
interest is independent of the chemical system studied. In the latter case (right), which is the more
general case, the uncertainty associated with the observable of interest is a function of the chemi-
cal space. The distance between two data points along the abscissa is thought to be inversely
proportional to the similarity of the corresponding molecular structures. Hence, if a prediction
method is trained on a small hypervolume of the chemical space, it will not be possible to transfer
the associated uncertainty to a larger hypervolume. Moreover, since the variance function is gen-
erally unknown, also internal predictions (in the same hypervolume where the method has been
trained) are unreliable.
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To obtain information on parameter
uncertainty with bootstrapping, one draws
as many data points as contained in the
reference set, but with replacement. Every
such bootstrap sample will yield different
parameter values compared to the original
(reference) sample, the ensemble of which
allows estimation of parameter uncertainty.

Assuming that systematic errors in the
computational model have been eliminated
(for instance, by a posteriori corrections of
its results[22]), the effect of the reference set
employed on the parameter distributions
(and, as a consequence thereof, parameter
uncertainty) remains to be examined. If the
reference data contain systematic errors,
small changes in its composition (e.g., re-
moval or addition of a few data points) may
have a significant effect on mean, variance,
and higher moments of the parameter dis-
tributions. A well-established method for
the detection of such data inconsistencies
is the jackknife,[41] where changes in the
parameter distributions are identified by
removing individual data points. Given
a reference set comprising N data points,
one obtains N jackknife estimates of the
parameter distributions, each of them in-
ferred from the reference set with the s-th
data point removed (s = 1, …, N).

We combined the jackknife with boot-
strapping to examine systematic data er-
rors in the calibration of a predictionmodel
for the 57FeMössbauer isomer shift.[42]The
corresponding theory[43] postulates a linear
relationwith the electron density at the iron
nucleus, which varies due to the chemical
environment in which it is embedded. We
studied 44 iron complexes featuring high
chemical diversity for which we calculated
the contact electron density on the basis of
12 density functionals across Jacob’s lad-
der (from local density approximations
to meta-hybrid generalized gradient ap-
proximations). We obtained 12 data sets
with pairs of experimental isomer shifts
and calculated contact electron densities,
which only differ in the values of the lat-
ter quantity.We identified an iron complex
as potentially critical if its removal from
the data set has a significant effect on the
bootstrapped parameter distributions and,
therefore, on the uncertainty of isomer
shift predictions. Noteworthy, five (chemi-
cally dissimilar) iron complexes were
identified as potentially critical for nearly
all density functionals applied, which in-
dicates either systematic experimental er-
rors (hard to validate in hindsight) or un-
representative molecular structures. After
removal of the critical data points in our
Mössbauer study, we examined the effect
of both composition and number of data on
the ranking of density functionals, which
is based on reliable prediction-uncertainty
estimations. For this purpose, we created
10,000 synthetic data sets of different size

coupled cluster methods, for instance,
CCSD(T) was found to provide more ac-
curate results than CCSDT in combination
with certain one-electron basis sets.[37] On
the other hand, there are approximations
(e.g., considering the atomic nucleus as
a point charge rather than as an extended
charge distribution, ignoring certain rela-
tivistic effects) that are local (atomic) and
cancel out for reaction energies (or valence
properties).

In recent work,[38] we discussed the
approximations necessary for the calcula-
tion of thermochemical properties in liquid
phase. We concluded that the contribution
of each approximation to the overall error
is difficult to determine but necessary for
meaningful conclusions from subsequent
analyses such as kinetic studies.

3. Uncertainty Classification

In general, one distinguishes between
three main sources of uncertainty: param-
eter uncertainty, numerical uncertainty,
and systematic errors due to inconsistent
data and inadequate model approximations
(here, to the fundamental theory of chemis-
try, QED).[39] Except for stochastic models
(e.g., Monte Carlo simulations), numerical
uncertainty is expected to be negligible and
will not be discussed in the following. The
remaining sources of uncertainty are elab-
orated on and approaches for their remedy
are elucidated.

3.1 Parameter Uncertainty
For the prediction of properties of

chemical systems not included in the train-
ing of a computational model, one needs to
estimate the uncertainty of its parameters
in addition to their ‘best’ values (obtained
from minimizing a cost function such as
the sum of squared residuals). Otherwise,
one would neglect a (potentially essential)
component in determining the prediction
uncertainty of a computational model.
Parameter uncertainty is a result of random
and systematic errors in both the reference
data and the computational model under
consideration (see Section 3.2), in particu-
lar if the number of reference data is small.
Only for a large number of data and a given
domain of application (e.g., a specific vol-
ume of chemical space), parameter uncer-
tainty becomes negligible.

Parameter uncertainty can be estimat-
ed in many ways, for example, through
Bayesian inference[40] or through resam-
pling methods such as bootstrapping.[41] In
the latter case, the reference data set itself
replaces the critical assumption of a para-
metric population distribution underlying
the data (for instance, the normal distribu-
tion is parameterized by mean and vari-
ance).

cation of the degree of excitation – even
if the degree is taken to be rather high).
Consequently, we are generally faced with
approximations yielding heteroscedastic
results (Fig. 1, right), where the prediction
uncertainty somehow depends on the na-
ture of the chemical system.

This dependency is generally unknown
(not as indicated in the right frame of Fig.
1), which also implies that estimation of
prediction uncertainty for data lying in the
same region of the chemical space em-
ployed for model training can be unreli-
able. Noteworthy, the Hohenberg–Kohn
functional would, in principle, yield results
with system-invariant accuracy (for chemi-
cal systems in their electronic ground
states), however, this is not the case in
practice due to the approximations of the
exchange–correlation density functional.

2.2 Reference Methods
Due to the continuous advancement

in accurate and efficient black-box meth-
ods (such as explicitly correlated coupled
cluster theory, for a review see ref. [23])
and the increase of computational power, it
is believed that these gold standard meth-
ods will, eventually, become the standard
method of choice. In this case, uncertainty
estimation will be less important if chemi-
cal accuracy is reached and considered suf-
ficient. For higher accuracy also standard
coupled cluster models will require rigor-
ous error estimation. Although the system
size for which these methods are feasible
increases due to constant method-devel-
opment efforts, less accurate methods are
usually chosen for feasibility reasons when
a large number of calculations must be car-
ried out. This is the case for extensive ex-
plorations of vast reaction networks,[24–28]
screening studies,[29,30] and reactive mo-
lecular dynamics simulations.[31–33]

2.3 Error Assignment
The identification and separation of

sources of uncertainty is difficult, since
multiple approximations of unequal ac-
curacy are made during method develop-
ment. For example, in density functional
theory, the exact density functional is ap-
proximated in a rather involved way. In
standard coupled cluster theory, the wave
function is based on a single reference
(Slater determinant). On the one hand,
these and other sources of uncertainty may
combine in an arbitrary manner and even
lead to counter-intuitive total errors.[34] For
example, coincidental error compensation
can lead to overestimation of prediction ac-
curacy. This is an effect often encountered
in density functional theory. For instance,
the success of the B3LYP[8–10] functional
together with the poor 6-31G* basis set[35]
is often attributed to error cancellation.[36]
Error compensation was also reported for
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smoothness of the corresponding energy–
distance plots (see, for instance, Fig. 2 in
ref. [44]) reveals that random model in-
adequacy plays a negligible role in this
‘simple’ case of two nuclei. However,
the fact that all of these energy–distance
plots reveal a non-constant deviation from
those obtained with accurate multi-config-
urational methods shows high significance
of systematic model inadequacy. While in
this special case, model inadequacy could
be easily eliminated by fitting a reasonable
function linking data from benchmark and
approximate calculations, the situation
will become much more complicated if a
larger fraction of chemical space is con-
sidered. For instance, due to their complex
electronic structure, molecular structures
containing transition metals are challeng-
ing targets for current quantum chemi-
cal methods. Despite containing adjust-
able empirical parameters, many density
functionals fail to achieve a statistically
valid description of these systems.[45] We
showed, for example, that the param-
eters of a standard functional are flexible
enough to be chosen to exactly reproduce
each coordination energies of a data set
containing large organometallic complex-
es.[45] However, due to model inadequacy,
there exists no unique parameter set that is
equally accurate for all coordination ener-
gies in this data set at the same time.

Note that model inadequacy is difficult
to distinguish from data inconsistency. If
the reference data contain systematic er-
rors, even high-accuracy models would not
be able to reproduce the reference data. In
that case, it would be the wrong decision
to tune the computational model (high
overfitting tendency). We showed with
the example of Mössbauer isomer shift
prediction[42] that application of the jack-
knife combined with bootstrapping on a
diverse selection of model approximations
(see Section 3.1) supports unraveling the
two effects (data inconsistency and model
inadequacy).

Given the reference data is corrected
for inconsistencies, there are several tools
at hand to tackle model inadequacy:[39,46]
one can improve the underlying model, re-
duce the domain of application, or correct
predictions through a statistical calibration
approach.

3.2.1 Model Improvement
If the computational model at hand

is systematically improvable (as, for in-
stance, in the case of a coupled cluster
expansion) reduction of model inadequacy
is, in principle, straightforward. However,
such methods are currently limited to rela-
tively small system sizes and a few struc-
tures to be considered.

In density functional theory, model im-
provement is often referred to as climbing

where the computational model is too flex-
ible (features too many parameters) such
that it does not only fit the explainable part
of the reference data (the underlying phys-
ics), but also its unexplainable part (noise).
By contrast, underfitting is caused bymod-
els which are too rigid (possess too few
parameters) to fit the explainable part of
the reference data, leading to overestima-
tion of prediction uncertainty. Moreover,
model inadequacy can be divided into an
explainable (systematic) and an unexplain-
able (random) part, which is illustrated in
Fig. 2.

For instance, most quantum chemical
methods (with the exception of multi-con-
figurational methods) struggle to correctly
describe two hydrogen atoms at large dis-
tance. In fact, all density functionals fail
to describe stretched H2+ and H

2
.[44] The

(from 5 to 1,000 data points) with the boot-
strap approach. We found that the density
functional ranking is very sensitive to the
specific data set when it comprises only 5
data points, still quite sensitive for 40 data
points, and converges only for a large num-
ber of data points (1,000). Our study[42]
showed that conclusions about prediction
uncertainty and rankings of computational
models based on a single data set are sen-
sitive to errors, and that bootstrapping is a
simple and fast method to avoid them.

3.2 Model Inadequacy
An inadequate computational model is

not able to reproduce reference data within
their uncertainty range,[22,39] i.e., the model
under- or overestimates the uncertainty of
the reference data. Underestimating pre-
diction uncertainty is a result of overfitting,

Fig. 2. Illustration of systematic and random model inadequacy for synthetic data. For an ad-
equate approximate method, the data would scatter around the line through the origin (dashed
line). Here, however, the results of the approximate method reveal a non-constant deviation from
the benchmark results (obtained from measurements or very accurate calculations), which is an
indication of systematic model inadequacy. An a posteriori correction of the approximate method
can be realized by fitting a linear calibration function to the data (solid line). The scatter of data
around the calibration line appears to be random, but the residuals are on average significantly
larger than the uncertainty in the benchmark results (indicated by error bars representing two
standard deviations). This effect is referred to as random model inadequacy[22] and implies that the
uncertainty of the approximate method (represented by the yellow 95% prediction band) exceeds
the uncertainty of the benchmark. Here, the error bars are obviously narrower than the prediction
band.
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up Jacob’s ladder.[47] Higher rungs incor-
porate increasingly complex ingredients
constructed from the density or the Kohn–
Sham orbitals (e.g., gradient and Laplacian
of the electron density, kinetic energy den-
sity). The original proposition of a ladder
is that each rung satisfies certain exact
constraints (there are 17 of them, see the
Supplementary Material of ref. [48]) and
the next higher rung should be based on
the previous rungs.[44] Since the exact den-
sity functional is not known and the num-
ber of known exact constraints is severely
limited, systematic model improvement is
not trivial.

In fact, a very recent study has shown
that current developments steer away from
systematic model improvement and to-
wards functionals of empirical nature lack-
ing physical rigor.[49] Most density func-
tional development is focused on energies,
implicitly assuming that functionals pro-
ducing better energies become better ap-
proximations of the exact functional. The
exact functional will produce the correct
energy only if the input electron density
is exact as well. By contrast, Peverati and
Truhlar[4] argued that exact constraints can
be neglected for the sake of greater flex-
ibility in the energy fitting. However, such
flexibility comes at the cost of reduced
transferability (due to overfitting, cf. in-
troduction to Section 3.2) to both other
observables and chemical systems not in-
cluded in the training of the computational
model. To avoid loss of model transfer-
ability, Mardirossian and Head-Gordon
suggest a validation approach where the
performance of a certain density functional
is assessed for a data set not involved in
the training of that density functional.[50,51]
This way, one can successively increase
model flexibility until the validation indi-
cates a decrease of transferability (due to
an increase in the performance statistics
chosen).

Compositemethods such asGaussian-n
(G-n)[52–55], Weizmann (W-n)[56–58], and
HEAT[59] aim for high accuracy by com-
bining the results of several calculations.
They build a hierarchy of computational
thermochemistry methods which allows
the calculation of molecular properties
such as total atomization energies and heats
of formation to a high accuracy. The W-4
method calculated atomization energies
of a set of small molecules with an MAE
below 1 kJ/mol.[58] Similarly, the HEAT
protocol predicted enthalpies of forma-
tion with an accuracy below 1 kJ/mol for
31 atoms and small molecules.[59] These
protocols rely on computationally expen-
sive coupled cluster calculations including
high excitations. The HEAT method ap-
plies additional calculations (e.g., the di-
agonal Born–Oppenheimer correction) to
be able to reproduce experimental results

to higher accuracy. While the results from
such methods are promising, the compu-
tational cost is far too high for large-scale
applications mentioned above.

Errors in estimating prediction uncer-
tainty due to model inadequacy can be
eliminated not only by internal correction
of a computational model (see the exam-
ples above), but also through external cor-
rection of the results produced with a com-
putational model.[22] The simplest external
corrections are linear functions, which are
applied in the prediction of, for example,
vibrational frequencies[60–62] or Mössbauer
isomer shifts.[42,63–67] In such cases, param-
eter inference (calibration) can be much
more efficient than internal calibration of
the result-generating model.A drawback is
the loss of transferability to other observ-
ables since the external calibration model
corrects an expectation value of a certain
observable and not its underlying wave
function, which is the unique common
physical ground of all observables.

3.2.2 Reduction of Domain of
Application

Another way of reducing model inade-
quacy is by training a computational model
on a smaller domain of chemical space,[68]
i.e. a small set of similar molecules such
as sugars or amino acids. For example, due
to the strong approximations made during
method development (to gain efficiency),
semi-empirical methods exhibit model in-
adequacy, which they attempt to remedy
by introducing parameters which are then
fitted to a specific data set (for a recent
review see ref. [69]). This data set com-
prises a selection of molecules for which
the resulting method is tailored. In fact,
semi-empirical methods have been repa-
rameterized to improve their description
of a single molecule.[70] Similarly, density
functionals were developed for specific ap-
plications, e.g., for kinetic studies.[38,71] In
Fig. 3, the effect of the domain of applica-
tion on model inadequacy is illustrated by
a toy model.

We applied the domain-reduction ap-
proach for the development of a system-
specific density functional that was derived
on a sound physical basis.[72]We reparame-
terized a range-separated hybrid functional
to reproduce (computational) energy dif-
ferences between isomers of a transition-
metal catalyst, which refers to a small vol-
ume of chemical space (cf. Fig. 3). While
the resulting functional turned out to be
more accurate than any popular density
functional and the error estimates were in
reasonable accordance with the residuals,
the effect of model inadequacy prevailed to
a certain degree. The functional is unable
to describe the complex electronic struc-
ture of the transition metal complexes in
selected cases.

3.2.3 Increase of Parameter
Uncertainty

One can attempt to compensate model
inadequacy by a controlled increase in
parameter uncertainty. This way, one can
build a statistical method with prediction
uncertainty representative of the model re-
siduals (deviation of benchmark data from
model predictions).

In 2005, Nørskov, Sethna, Jacobsen,
and co-workers implemented this ap-
proach for error estimation of results
from density functionals[73] (see also refs.
[74–76]). Instead of considering only the
best-fit parameters of a density functional,
they assigned a conditional probability
distribution to them so that a mean and a
variance can be assigned to each compu-
tational result. While promising general-
purpose non-hybrid density functionals
were designed within this framework
(e.g., BEEF-vdW[77] and mBEEF[78,79]),
the accuracy of uncertainty predictions re-
mains unsatisfying.[39] This limitation can
be attributed to model inadequacy and the
heteroscedasticity of the large domain of
chemical space to which they applied the
functionals.

Compared to improving the computa-
tional model itself, increasing parameter
uncertainty is straightforward as it only
requires modification of the unknown part
(parameter distributions) of an otherwise
known model. Compared to external cali-
bration (a posteriori correction of results
obtained from a computational model),
increasing parameter uncertainty in the
corresponding prediction model preserves
its transferability to other observables than
the reference observable (for which model
inadequacy has been corrected). While
increased parameter uncertainty seems to
be clearly favorable over model improve-
ment when it comes to reliably estimating
prediction uncertainty for any observable
obtained on the basis of a given computa-
tional model, it does not resolve the issue
of model inadequacy per se. For instance,
in multiscale modeling where the target
observable is built on a hierarchy of other
observables with decreasing time and/or
length scales, all uncertainties inferred at
low levels (small time/length scales) will
propagate to the final prediction uncer-
tainty (see Section 3.3). Consequently,
increasing parameter uncertainty at low
levels can lead to a prediction uncertainty
so large that no sensible conclusions can be
drawn from it.

Recently, we demonstrated the sen-
sitivity of final prediction uncertainty in
multiscale modeling for the inference of
kinetic reaction networks based on quan-
tum-chemical methods.[38] Uncertainty
in the electronic energy propagates to all
energy contributions based on nuclear
motion, to any kind of free energy, to rate
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by building a calibration model ƒ(c
m,s
, w

m
)

around the computed results (Eqn. (4)),

= 𝑓𝑓 𝑐𝑐,, 𝐰𝐰 + 𝑒𝑒, (4)

wherew
m
is the vector of parameters of the

external calibration model.
To determine the uncertainty of a vir-

tual measurement (prediction), u(c
m,s
), on

the basis of the computed result c
m,s

for a
physical measurement not included in the
training data set, we need to propagate the
uncertainty of w

m
to that of ƒ(c

m,s
, w

m
). The

simplest way to do so is linear uncertainty
propagation,[2] where the uncertainty of
the external calibration model is approxi-
mated by its first partial derivative with re-
spect to its parameters (Eqn. (5)),

𝑢𝑢(𝑐𝑐𝑚𝑚,𝑠𝑠)2 =∑𝜕𝜕𝜕𝜕(𝑐𝑐𝑚𝑚,𝑠𝑠, 𝐰𝐰𝑚𝑚)𝜕𝜕𝜕𝜕𝑖𝑖,𝑚𝑚
𝑀𝑀
𝑖𝑖,𝑗𝑗𝜕𝜕𝜕𝜕(𝑐𝑐𝑚𝑚,𝑠𝑠, 𝐰𝐰𝑚𝑚)𝜕𝜕𝜕𝜕𝑗𝑗,𝑚𝑚 𝕍𝕍[𝜕𝜕𝑖𝑖,𝑚𝑚 , 𝜕𝜕𝑗𝑗,𝑚𝑚]

×

(5)

where i,j = 1,…,M index theM parameters
contained in w

m
, and V[w

i,m
, w

j,m
] is the

ij-th element of the covariance matrix of
the parameters. When changing the ƒ(c

m,s
,

w
m
) terms in Eqn. (5) to c

m,s
, we obtain an

expression for linear uncertainty propa-
gation in the case of internal calibration,
where w

m
now represents the parameters

of the computational model.
If the calibration model is linear in the

parameters, linear uncertainty propaga-
tion is an exact procedure. For calibration
models being nonlinear in the parameters,
higher derivatives of the calibration model
may become necessary, the calculation of
which is often unfeasible. In those cases,
stochastic methods such as Monte Carlo
uncertainty propagation are applied.[80]

4. Conclusions

We argued that a procedure for quan-
tifying the uncertainty associated with
computational models, in particular with
quantum chemical calculations, is manda-
tory despite their first-principles charac-
ter. Otherwise, it may be difficult to draw
meaningful conclusions. Unfortunately,
this procedure is neither well established
nor straightforward. The abundance of
benchmark studies reporting (potentially
misleading) statistical measures such as
the MAE and LAE, the hope for accurate
post-Hartree–Fock methods to become
routinely and universally applicable, and
the difficulty of identifying the sources of
error, largely prevented the development of

method-inherent parameters such as those
of a density functional) and external cali-
bration of the results produced with a com-
putational model.[22] If further calibration
is not necessary (in the ideal case when
systematic errors are absent), the observa-
tion (reference value) o

s
of a system s in-

cluding known uncertainty u
s
is completely

determined by the essentially variance-free
result c

m,s
of a computational model m plus

random error e
m,s

(drawn from a zero-mean
distribution with variance 𝑢𝑢𝑠𝑠2),𝑜𝑜 = 𝑐𝑐, + 𝑒𝑒, (3)

In internal calibration, the method-in-
herent parameters need to be adjusted such
that Eqn. (3) is fulfilled, which requires a
functional form with sufficient flexibility.
In external calibration, we expand the ex-
pression on the right-hand side of Eqn. (3)

constants, and to concentration fluxes of
chemical species (an incomplete but lucid
list). The dependencies between these ob-
servables are partially exponential, which
requires the minimization of systematic er-
rors in the low-level observables (instead
of hiding them in increased parameter un-
certainty). In such cases, the only possible
way to obtain reasonably small prediction
uncertainties is the systematic improve-
ment of methods on the different length
and time scales.

3.3 Uncertainty Propagation
Uncertainty propagation describes the

process of transferring the uncertainty
of model parameters to the uncertainty
of model predictions. Prediction uncer-
tainty can be assessed through calibra-
tion against reference data. There are two
types of calibration: internal calibration
of a computational model (adjustment of

Fig. 3. Illustration of model inadequacy for synthetic data. The black solid curve (cosine) is set to
be the correct model (no under- or overfitting) to the entire domain of chemical space shown. The
distance between two data points along the abscissa is thought to be inversely proportional to
the similarity of the corresponding molecular structures. We assume that our approximate model
is a quadratic function. If our reference data (dots) are spread across the entire domain of chemi-
cal space shown, we will observe a systematic deviation of the observable from our approximate
model (dashed line). However, if we choose a specific domain of application (red shaded area),
our approximate model (red curve) will be a good approximation to the correct model. To avoid
model inadequacy in this case, we can either improve our model by increasing its complexity
(here, to a cosine) or reduce the domain of application (to the red region).
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novel approaches for reliable error estima-
tion.

We illustrated the different sources of
error and how to tackle them.We stress that
a clear differentiation between the differ-
ent sources of error is critical for the effec-
tive application of countermeasures.While
numerical errors can often be controlled,
model inadequacy and parameter uncer-
tainty remain a major issue in quantum
chemistry. Reducing model inadequacy
through model improvement is a popular
approach, although not straightforward
for most methods. In these cases, statisti-
cal methods need to be applied in a rig-
orous way. While in most cases this does
not improve accuracy, it allows for reliable
uncertainty predictions which are criti-
cal, especially if the error is propagated to
subsequent investigations such as kinetic
studies.
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