
SCS LaureateS and awardS & FaLL Meeting 2021 CHIMIA 2021, 75, No. 7/8 605

doi:10.2533/chimia.2021.605  Chimia 75 (2021) 605–613 ©  A. Schuster et al. 
 

*Correspondence: Dr. A. Schuster, E-mail: andreas.schuster.as2@roche.com,  
a Department of Process Chemistry & Catalysis, Pharma Synthetic Molecules Technical Development,  
F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland, 

b Dottikon Exclusive Synthesis AG, Hembrunnstrasse 17, CH-5605 Dottikon, Switzerland

Development of the Commercial 
Manufacturing Process for Ipatasertib

Stephan Bachmann§a, Hans Iding§a, Christian Lautz§a, Isabelle Thomé-Pfeiffer§a, Caroline 
Maierhofer§a, Régis Mondière§a, Philipp Schmidta, Christoph Strasser§b, Thomas Bärb, André Aebib, 
and Andreas Schuster§a*

§Sandmeyer Award 2020

Dedicated to the memory of our colleague Beat Wirz (*30.1.1953 – †31.12.2020)

Abstract: Ipatasertib is a potent small molecule Akt kinase inhibitor currently being tested in Phase III clinical trials 
for the treatment of metastatic castration-resistant prostate cancer and triple negative metastatic breast cancer. 
In this paper an overview of the development achievements towards the commercial manufacturing process is 
given. The convergent synthesis consists of ten steps with eight isolated intermediates and utilizes a wide range 
of chemical techniques and technologies to build-up this complex drug. All three stereocenters are introduced 
using enzyme or metal catalysis.
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1. Introduction
Ipatasertib (1) is a potent small molecule Akt kinase inhibi-

tor[1,2] currently being tested in Phase III clinical trials for the 
treatment of metastatic castration-resistant prostate cancer and 
triple negative metastatic breast cancer. Manufacturing of the 
process performance qualification (PPQ) batches has been com-
pleted.

Ipatasertib is a complex molecule with three stereo centers, 
built up in a ten-step convergent synthesis with eight isolated in-
termediates (two steps telescoped), using four starting materials, 
acid 3, rac-6, formamidine acetate, and N-Boc-piperazine (Fig. 
1). One of the key steps is the coupling of the two main building 
blocks from the two branches of the synthesis, bicyclic pyrimidine 
4 and chiral α-aryl-β-amino acid 2.

Furthermore, the stereo centers are introduced by highly se-
lective metal and enzyme catalysis (Fig. 2). Ruthenium-catalyzed 
hydrogenation introduces the stereo center of the β-amino acid 
moiety, whereas the stereo centers at the cyclopentyl moiety are 
both formed by enzyme catalysis: a kinetic resolution using a ni-
trilase and a stereoselsective reduction applying a ketoreductase. 

Herein, a summary of the development activities with focus on 
the scale-up work towards the commercial manufacturing process 
is given, with improved process efficiency and robustness. Details 
on the route selection can be found in previous publications.[3–5] 
Key achievements from the late stage process development are a 
reduction of the mass intensity (MI in kg per kg API) by factor 5 
and an increase of the overall yield by factor 3 over the last three 
manufacturing campaigns (Fig. 8). Furthermore, the usage of eco-
friendly process solvents, solvent regeneration, development of 
a direct bromination to yield intermediate 5, upscale of the very 
sensitive Grignard reaction to intermediate 9, and a more efficient 
coupling of the main building blocks 2 and 4 are reported.

2. Synthesis Steps

2.1 Enzymatic Kinetic Resolution of rac-6
The bicyclic piperazine 9 is manufactured in a four-step syn-

thesis (Scheme 1 – Scheme 4). In the first step, R-nitrile 6 is ob-
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of side-product A. Intermediate 6 was successfully manufactured 
on commercial scale producing ~11 tons of material with 40.4% 
yield, 97.5% w/w assay, 99.5 area% purity, and >98.0% ee (by 
GC analysis).

2.2 Formation of the Pyrimidine
The pyrimidine ring of the Ipatasertib core structure is 

formed by condensation of 6 with formamidine acetate (Scheme 
2). Even though the reaction worked well throughout the clinical 
phases, process knowledge about the conversion kinetics with 
regard to scale-up requirements was limited since no standard 
analytical method (GC, HPLC) was able to measure both start-
ing materials and product together. Additionally, quantification 
of the starting materials in the reaction mixture by GC gave 
very unreliable results. The process characterization studies to 
determine the proven acceptable ranges (PAR) were performed 
in a multivariate setup and conversion of 6 was followed by IR. 
It could be demonstrated that the reaction did not take more than 
12 h for completion (7 h at set-point conditions, Fig. 3), which 
is the safe timeframe for routine manufacturing with regard to 
conversion, side-product formation and yield, without the need 

tained from rac-6 by kinetic resolution with a tailor-made engi-
neered nitrilase (Scheme 1). Key achievements on this step were 
the depletion and control of residual enzyme, and identification 
of process conditions to limit the formation of side-product A.

The reaction is run in an aqueous buffer (pH 8.7 to 9.4) and 
the product is obtained by extraction with MTBE and concen-
tration by distillation. Compared to our previous publication,[3] 
the stability and enantioselectivity of the enzyme was further im-
proved by targeted enzyme engineering. Depletion of the enzyme 
was achieved by acidification and filtration of the precipitated 
denatured enzyme. However, hydrolysis of the product 6 under 
these acidic conditions and clogging of the filter complicated the 
enzyme removal. During development, we found that hydrolysis 
could be limited by tight control of the pH between 1.6 and 2.2. 
The filtration behavior of the denatured enzyme was improved by 
addition of MTBE (used for the extraction of the product) before 
filtration. Most likely, the added MTBE reduces the viscosity of 
the mixture by extraction and dilution of the product and by sepa-
rating the oily product from the protein flakes, which tend to form 
a compact filter cake. Any remaining protein is then removed by 
a second filtration of the partially concentrated product solution. 
Protein content is controlled in the product 6 by the Bradford test. 
Another challenge was the formation of impurities upon concen-
tration of the MTBE solution by distillation. Elucidation of the 
structure of the main side-product revealed that it was formed 
by hydrolysis followed by cyclization. Therefore, the distillation 
temperature was decreased to 60 °C to minimize the formation 

Fig. 1. Structure and 
Retrosynthesis of Ipatasertib (1).

Scheme 1. Enzymatic kinetic resolution of rac-6 with nitrilase to obtain 
6. Compound A is the main side-product formed in the process.

Fig. 2. Introduction of stereochemistry.
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termediate 7 with POCl
3
 to the dichlorinated pyrimidine and sub-

sequent halogen exchange by either TMSBr or NaI. To avoid this 
laborious and resource intensive transformation, a direct bromi-
nation was investigated. While several brominating reagents (e.g. 
PBr

3
, HBr/Ac

2
O, PPh

3
/CBr

4
, SOBr

2
) delivered only small traces 

of 5, finally a combination of POBr
3
 and NPr

3
 led to more promis-

ing results. However, the reaction mixture tended to become very 
viscous and crust formation was also an issue. Breakthrough was 
achieved by addition of TMSBr as an activation reagent for the 
hydroxyl groups of 7, which also solved the viscosity and crust 
issue. Over-bromination leads to the formation of two impurities 
(B and C), which are increased at higher reaction temperature. 
Additionally, the reaction solvent toluene and the base NPr

3
 are 

partially brominated to benzyl bromide and 1-propylbromide. As 
all brominated compounds formed in this reaction are potentially 
genotoxic, a more efficient control strategy was followed, con-
trolling them with a limit test for bromine (max. 4 ppm by X-ray 
fluorescence) in intermediate 11.

To further increase the process efficiency, we telescoped 5, 
from the quenched reaction mixture, directly to a S

N
Ar reaction 

with N-Boc-piperazine to form intermediate 8 (Scheme 3). The 
auxiliary base NPr

3
 remaining in the mixture containing 5 is suf-

ficient to facilitate the S
N
Ar reaction. Double addition of N-Boc-

piperazine to side-product D is controlled by stoichiometry (1.05 
to 1.15 equiv. N-Boc-piperazine). Dimer E, formed by piperazine 
in N-Boc piperazine, showed unsatisfactory depletion and had 
to be controlled by limiting the amount of piperazine in N-Boc-
piperazine to 0.20 area%. Intermediate 8 was successfully manu-
factured on commercial scale producing ~15 tons of 8 with 81% 
yield (over two steps), 99.0%w/w assay, and 99.3 area% purity 
(by HPLC analysis).

2.4 Formation of the Cyclopentyl Ring via Grignard 
Reaction

One of the key steps in the synthesis of Ipatasertib is the 
Grignard-induced cyclization of intermediate 8 to the bicyclic 
pyrimidine 9 (Scheme 4). For the development of this step, reac-
tion conditions had to be optimized with respect to conversion 
rate, side-product formation, stability of the reaction mixture and 
color of the product. An intensive screening of various Grignard 
reagents (i-PrMgCl in THF and Et

2
O, i-PrMgCl*LiCl in THF, s-

BuMgCl*LiCl in THF, t-BuMgCl in THF) and reaction solvent 
(toluene, heptane, TBME, anisole, CPME, 2-MeTHF) combi-
nations were tested. It was found that a certain amount of THF 

for a routine in process control. Intermediate 7 was successfully 
manufactured on commercial scale producing ~8 tons of mate-
rial with 78% yield, 99.95%w/w assay, and 99.9 area% purity 
(by HPLC analysis).

2.3 Bromination of 7 and Coupling  
with N-Boc-Piperazine

As reported in our previous publications,[3–5] the di-brominat-
ed or iodinated intermediate 5 was produced by chlorination of in-

Scheme 2. Formation of the pyrimidine ring by condensation of 6 with 
formamidine acetate.

Fig. 3. Overlay of IR traces from multivariate experiments to follow the 
conversion of 6.

Scheme 3. Telescoped bromi-
nation of 7 to 5 and subsequent 
SNAr with N-Boc-piperazine to 8.
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seemed to be necessary to facilitate the reaction, since i-PrMg-
Cl in Et

2
O with toluene as reaction solvent showed significant 

amounts of residual starting material 8 (34%), after addition of 
the reagent, and more side-products were formed as well. On the 
other hand, with THF as reaction solvent mainly degradation was 
observed. For the reaction solvents, only toluene and anisole gave 
complete conversion and were similar with respect to impurity 
profile. In 2-MeTHF the conversion was slightly inferior and 
more side-products were observed. Toluene was then chosen as 
reaction solvent because it is removed more easily by distillation 
during the work-up than anisole.

As a compromise regarding all these aspects of product qual-
ity, we found the reaction fitting best in a combination of 3 L/kg 
(8) toluene as a reaction solvent, i-PrMgCl as Grignard reagent, 
and 7.5 °C reaction temperature. Under these conditions, the reac-
tion is fast and controlled by the addition rate of i-PrMgCl, which 
first undergoes a bromide magnesium exchange with 8, followed 
by fast intramolecular cyclization with the nitrile group to a cyclic 
imine. In a subsequent aqueous quench 9 is formed. 

Furthermore, this step is a critical step for the color of the API. 
Although, there are three isolated intermediates between interme-
diate 9 and the API, colored impurities formed in this step have an 
impact on the color of the API. Therefore, the control of the color 
of intermediate 9 is of great importance.

The main side products in the reaction are F, G, and H (Fig. 4). 
F is formed continuously during the Grignard addition, whereas 
G seems to be formed from F with excess of Grignard reagent 
towards the end of the addition. H is mainly formed in the reac-
tion mixture after complete Grignard addition. Besides the right 
choice of the Grignard reagent/reaction solvent combination, the 
concentration of the reaction contributed mainly to a clean con-
version by decreasing the formation of impurities. In contrast to 
chemical intuition, the formation of dimeric side-products was 
suppressed by a more concentrated reaction mixture, most likely 
because at the start of the Grignard addition the majority of the 
starting material 8 is not yet dissolved. Therefore, the amount of 
reaction solvent was decreased.

Another challenge of this reaction was the work-up. Due to 
the limited stability of the reaction mixture, it has to be quenched 
immediately after completed addition of the Grignard reagent to 
avoid the formation of side-products and colored impurities. The 
quench is done by simultaneous addition of the reaction mixture 
and aqueous NaHSO

4
 onto a mixture of 2-MeTHF and water. 

Scheme 4. Grignard-induced cyclization of intermediate 8 to  
intermediate 9.

In the early phase development, a pH range of 3.5 to 5.0 was 
deemed optimal to prevent cleavage of the boc-protecting group 
and to hydrolyze the cyclic imine. However, it was difficult to keep 
the pH in that range with a simultaneous addition and NaHSO

4
 

as proton source. An experiment using a citric acid buffer to keep 
the pH at ~4 led to the unexpected formation of ~20% of side-
product I. After such an unexpected result within the established 
pH range, the addition of the reaction mixture on 40%w/w aque-
ous NaHSO

4
 was also tested. To our surprise, the product was 

quite stable at that low pH (< 1) at 0 °C. Based on this result, we 
optimized the quench to a parallel addition of the reaction mixture 
and 40%w/w NaHSO

4
 on water at pH 1.5 to 2.5 and subsequent 

pH adjustment with 2M NaOH to 4.0 to 5.5 to keep the product 
in the organic phase. By using a mixture of water and 2-MeTHF 
the immediate removal of the product from the acidic aqueous 
phase improved the product quality. As an important side effect, 
ether type solvents (like 2-MeTHF) helped to remove color from 
the product. Therefore, and to avoid crust formation, a mixture of 
n-heptane and MTBE was used to crystallize the product. The ob-
tained crude 9 was then slurried in 2-MeTHF and precipitated by 
n-heptane/MTBE for further purification and removal of colored 
impurities. With that process, intermediate 9 was successfully 
manufactured on commercial scale producing ~5.5 tons material 
with 61% yield, and 99.1 area% purity (by HPLC).

2.5 Second Enzyme Catalysis – Introduction of the 
Second Stereo Center

The second stereo center was introduced by absolute diaste-
reoselective reduction of the keto function in intermediate 9 with 
an engineered ketoreductase and i-PrOH as hydrogen source and 
NAD as co-factor (Scheme 5).

The reaction is performed in water with 3.5 equiv. of i-PrOH, 
so only a small amount of starting material and product are dis-
solved, allowing a rather concentrated reaction. The reaction op-
erates well in a range of 4 to 12 L of water per kg of intermediate 
9. In the latest optimizations of this step, an evolved enzyme was 
introduced, reducing the reaction time with the same enzyme load 
from ~60 h to ~20 h (conversion >99.0%). The crude product is 
then filtered off, washed with water, dissolved in toluene, and 
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Scheme 5. Stereoselective reduction of intermediate 9 by an optimized 
ketoreductase.

dried by azeotropic distillation in order to remove the remaining 
enzyme by filtration. Finally, intermediate 4 is crystallized by n-
heptane addition. Residual protein is controlled again by Bradford 
test of the isolated intermediate 4.

With the initial crystallization protocol (addition of n-heptane 
at 25 °C, seeding, and then cooling to –10 °C), oiling was ob-
served which resulted in crust formation. Additionally, analysis 
of our manufacturing data revealed that the crystallization was 
influenced by the content of residual water in the toluene solution. 
With that, an improved process was developed, where 1 equiv. of 
water is added and the order of the process steps was changed 
(cooling to –10°C, seeding, then addition of n-heptane). The effect 
of the water was nicely demonstrated in one experiment where the 
stirring speed was set to a too low rate and frozen water droplets 
accumulated below the stirrer. The crystal growth did mainly take 
place at these droplets. With that process, intermediate 4 was suc-
cessfully manufactured on commercial scale producing ~5 tons of 
material with 85.4% yield, 99.4%w/w assay, 99.8 area% purity, 
and >99.9%de (by HPLC analysis).

2.6 Formation of the Third Stereo Center by 
Ruthenium Catalyzed Hydrogenation

The last stereo center is introduced by stereo selective hydro-
genation of starting material 3 with a highly active and selec-
tive ruthenium catalyst (Scheme 6). The chosen catalyst for the 
asymmetric hydrogenation of 3 entails several advantages. The 
synthesis of the catalyst was developed at Roche in the late 1980s 
and published in 1991.[6] However, no supply chain for large-scale 
production was available when we started our work. Therefore, 
we revised and optimized the catalyst synthesis to enable kg 
amount supply by a contract manufacturing organization (CMO). 
This ensured high catalyst quality and a smooth transfer of the 
process to commercial manufacturing scale.

The catalyst can be applied at a high s/c (substrate/catalyst) 
ratio of up to 10000 (mol/mol) and is activated with NaBr.[3] As a 

consequence of the very low catalyst loading the reaction is sensi-
tive towards temperature, hydrogen pressure and dilution. In the 
multivariate experiments to determine the PAR, it was observed 
that the conversion becomes incomplete with a combination of 
low catalyst loading (s/c = 5000, tested range s/c = 4000 to 5000), 
low hydrogen pressure (10 bar, tested range 10 to 20 bar), and 
high dilution 11.82 g/g (3) ethanol, tested range for ethanol 7.88 
to 11.82 g/g (3)). Therefore, the catalyst loading for the routine 
manufacturing process was set to s/c 4000. The product 2 is then 
isolated as a sodium salt by addition of MTBE and NaOEt. The 
small amounts of residual ruthenium are efficiently removed by 
the crystallization (<3 ppm). 

Due to the relatively large manufacturing amounts, the low 
bulk density of ~0.1 kg/L was limiting the throughput of the dryer. 
Therefore, an adapted crystallization procedure was developed in-
creasing the bulk density by more than factor 3 to 0.35 kg/L. In 
the improved process, seed crystals are generated by the addition 
of 0.20 equiv. NaOEt (just enough to start the nucleation) and 
aged for 2 h, followed by another 1 equiv. NaOEt to complete the 
crystallization. With that process, intermediate 2 was successfully 
manufactured on commercial scale producing ~5.5 tons of mate-
rial with 93.1% yield, >99.9%w/w assay, 100 area% purity (by 
HPLC analysis), and >99.9%ee (by chiral HPLC analysis).

2.7 Coupling of Intermediates 2 and 4
Both key building blocks 2 and 4 are then coupled in the next 

step to yield Boc-protected API 11 (Scheme 7). 4 is first deprot-
ected with HCl in n-propanol to yield 10, followed by free-basing 
with Et

3
N. In a second reaction 2 is activated with pivaloyl chlo-

ride, which is then coupled with 10 to form intermediate 11. 
The initially applied process using propylphosphonic an-

hydride (T3P) as coupling reagent and N-methylmorpholine as 
base, suffered from incomplete conversion, leaving about 5–7% 
of the valuable intermediate 4 unreacted in a very viscous reaction 
mixture resulting in only 75% yield. Additionally, aqueous waste 

OH
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O
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O
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O

Cl
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O
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3

1) [Ru(tfa)2[(S)-Binap], NaBr,
H2, EtOH
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3) Cryst. by NaOEt addition

2

Step 7
93.1% yield
>99.9%w/w

Scheme 6. Stereoselective hydrogenation of starting material 3 with  
ruthenium catalyst.

Scheme 7. Deprotection of 4 followed by coupling with activated 2 to yield Boc-protected API.
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streams, with a too high phosphorous content for the wastewater 
treatment plant needed to be incinerated. An intensive screening 
of coupling reagents for the activation of 2 (CDI, FDPP, PivCl, 
EDC, NSC, Ph

2
POCl, thionyl chloride, oxalyl chloride, isobu-

tylchloroformate, sec-butylchloroformate) revealed that pivaloyl 
chloride in toluene as reaction solvent gave the most promising 
initial results. However, several scale-up experiments showed that 
with these process conditions no reproducible results could be ob-
tained. Classical HPLC or GC analytics to monitor the activation 
of 2 failed to show reliable results. Thus, by utilizing an online IR 
probe, it was possible to monitor the pivaloyl chloride conversion 
and formation of activated 2. Monitoring the activation of 2 in 
toluene by IR confirmed the large difference in activation per-
formance. Eventually, THF was tried as reaction solvent leading 
to a relatively fast and reproducible activation. IR trends of one 
activation experiment are shown in Fig. 5.

In order to evaluate the robustness of this newly developed 
process a number of selected process parameters were assessed 
in a screening DoE (Plackett Burman 12 design). A four factor in-
teraction of substoichiometric amounts of pivaloyl chloride with 
respect to 2, a high concentration of the reaction (4 g/g (2) THF) 
and an increased reaction temperature of 30 °C, was found to lead 
to about 50% epimerization at the stereo center of 2. This example 
shows how important multivariate experimentation at an early de-
velopment point can be. Without that, we would have never been 
able to detect that critical parameter interaction, bearing the risk 
of a failed batch in manufacturing. Therefore, the parameter rang-
es of pivaloyl chloride and 2 were set to 1.10 to 1.15 equiv. and 
1.025 to 1.075 equiv. respectively, which ensures excess of piv-
aloyl chloride with respect to 2. The reaction solvent amount was 
also set slightly higher, allowing 5.0 to 7.0 kg/kg (4) for THF. The 
reaction temperature was lowered to –10 to 10 °C, because also 
at this lower temperature the reaction time with maximum 17 h 
was still acceptable. Following the IR trends for 2 in manufactur-
ing showed very consistent reaction performance (Figs 6 and 7).

Work-up of the reaction mixture is done by concentration by 
distillation, followed by acidic, basic, and neutral aqueous extrac-
tions to deplete unreacted pivaloyl chloride, residual 2, and the 
main side-product J formed in the process. Side-product J is ob-
served in the reaction mixture with approximately 5 area% but is 
completely depleted in the work-up. With this improved process, 
intermediate 11 was successfully manufactured at commercial 
scale producing ~7 tons of material with 86.4% yield, 92.8%w/w 
assay, and 99.8 area% purity (by HPLC analysis).

2.8 Deprotection to Ipatasertib (1) and Spray Drying
In the final chemical transformation, intermediate 11 is de-

protected by HCl in n-propanol (Scheme 8). The mono-HCl 
form of Ipatasertib is obtained by titration to pH 5 to 6 (the 
equivalence point) with aqueous NaOH. Water is removed from 
the reaction mixture by distillation to allow the complete remov-
al of NaCl by filtration. Furthermore, the product is precipitated 
by removal of n-propanol by distillation and addition of ethyl 

Fig. 5. IR trends for the activation of intermediate 2 with pivaloyl chlo-
ride.

Fig. 6. IR trend for pivaloyl chloride of 16 manufacturing batches used in 
the activation of intermediate 2.

Fig. 7. IR trend for activated-2 of 16 Manufacturing Batches used in the 
Activation of Intermediate 2.

acetate. Ipatasertib (1) is obtained after drying as partially amor-
phous material with 5 to 8% ethyl acetate content. This step was 
successfully manufactured on commercial scale producing ~5.5 
tons of material with 93.9% yield, 94.0%w/w assay (by HPLC; 
6.4% ethyl acetate). To obtain the selected amorphous form of 
the API and to adjust the particle size distribution for galenical 
manufacturing 1 is spray dried as aqueous solution with a typi-
cal yield of 95%.Scheme 8. Deprotection of intermediate 11 to yield Ipatasertib (1).
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3. Summary
In the course of our late stage development, the imple-

mented process improvements led to a decrease of the mass 
intensity factor (kg / kg API) over the last three campaigns 
from 1393, over 462, to 269 for the commercial process. This 
is a reduction by factor 5 and a rather low MI for such a sophis-
ticated and long reaction sequence (Fig. 8). The overall yield 
was improved by factor 3 from 2.9%, over 9.3%, to 9.7% (24% 
if excluding the kinetic resolution in step 1).

The process uses mainly ecofriendly solvents such as water, 
ethanol, and ethyl acetate (Fig. 9). Solvents of concern, such 

as DMF, DMA, DCM, or NMP were substituted during pro-
cess development. Additionally, most solvent waste streams 
are recycled to further minimize the ecological footprint of the 
manufacturing process.

Overall, the commercial manufacturing process for 
Ipatasertib is highly efficient and sustainable. Furthermore, 
the process performance and robustness has been successfully 
proven at commercial scale over all ten chemical steps and the 
final spray-drying step (Scheme 9). For the manufacturing of 
this complex compound, a wide range of chemical reaction 
types and techniques such as on-line IR monitoring, spray dry-
ing, bio and metal catalysis, and various reaction classes like 
condensation (with formamidine), bromination, Grignard reac-
tion, and amide formation are used.
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Scheme 9. Overview of the Ipatasertib (1) synthesis.

Fig. 8. Mass intensity and yield improvements over the last three manu-
facturing campaigns
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