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Abstract
The ascomycete Hymenoscyphus fraxineus has spread across most of the host range of European ash with a high level of 
mortality, causing important economic, cultural and environmental effects. We present a novel method combining a Monte-
Carlo approach with a generalised additive model that confirms the importance of meteorology to the magnitude and timing 
of H. fraxineus spore emissions. The variability in model selection and the relative degree to which our models are over- or 
under-fitting the data has been quantified. We find that both the daily magnitude and timing of spore emissions are affected 
by meteorology during and prior to the spore emission diurnal peak. We found the daily emission magnitude has the strongest 
associations to weekly average net radiation and leaf moisture before the emission, soil temperature during the day before 
emission and net radiation during the spore emission. The timing of the daily peak in spore emissions has the strongest 
associations to net radiation both during spore emission and in the day preceding the emission. The seasonal peak in spore 
emissions has a near-exponential increase/decrease, and the mean daily emission peak is approximately Gaussian.
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Introduction

Fungal pathogens are a natural part of the biosphere and 
need to be properly understood and managed to ensure that 
agriculture and forestry are both efficient and sustainable 
(e.g. Dean et al. 2012). The present study focuses on the fun-
gal pathogen Hymenoscyphus fraxineus (the causative agent 
of ash dieback, Baral et al. 2014; CABI 2019), which, like 

many other fungal pathogens, spreads to new host regions by 
dispersal of spores through the atmosphere. In particular, we 
focus on the diurnal timing and total quantity of H. fraxineus 
spore release.

Fruit bodies of H. fraxineus form during summer on 
leaf litter of overwintered ash petioles and rachises that 
have been infected in the previous year (Gross et al. 2014). 
The wind-dispersed ascospores are released from the fruit 
bodies and infect ash leaves during the vegetation period 
(Timmermann et al. 2011; Hietala et al. 2013; Chandelier 
et al. 2014), causing necroses and wilting of the leaves. 
Before leaf fall, the fungal mycelium grows through rachises 
and petioles into the shoots and branches and finally, during 
the dormancy period in winter, into the stem of the tree 
(Kirisits & Cech, 2009). Necroses in the tree tissue block 
water transport and lead to wilting and dieback of branches 
and may be fatal, often in combination with other factors 
such as root rot (e.g. Armillaria) or drought. Furthermore, 
the fungal spores can attack the root collar directly through 
lenticels in the stem (Nemesio-Gorriz et al. 2019), causing 
collar lesions and necroses in the stem, blocking water 
transport and thereby likely weakening the root system so 
that other, secondary pathogens, such as Armillaria, can 
infect the root system (Husson et al. 2012; Chandelier et al. 
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2016). A third infection pathway may be water-dispersed 
conidia (asexual spores) that enter the root system of ash 
trees through the soil (Fones et al. 2016).

The ascomycete H. fraxineus has now spread across 
most of the host range of European ash (Fraxinus 
excelsior) with a high level of mortality, causing important 
economic, cultural and environmental effects (European 
Commission 2013). In Norway, the annual mean distance 
of spread of the pathogen along the Norwegian west coast 
has been shown to be 51 km (Solheim and Hietala 2017). 
By 2018, H. fraxineus had spread through the entire 
natural distribution range of European ash in Norway 
(Timmermann et al. 2019; A. Hietala and H. Solheim, 
pers. comm.), only 12 years after its estimated introduction 
into the country.

The spores of H. fraxineus are similar to those of many 
other fungal pathogens such as wheat rust (Puccinia 
graminis f. sp. tritici). Race Ug99 of wheat rust threatens 
90% of wheat production globally and so is recognised 
as a major threat to world food security (Dean et  al. 
2012). Consideration should be given to the possibility of 
pathogens changing (or jumping) hosts, increasing the threat 
posed by species such as H. fraxineus. This pathogen was 
likely introduced to Europe with ornamental trees from Asia, 
where it is regarded as a more or less harmless endophytic 
or only slightly parasitic fungus in leaves of its original 
host, Manchurian ash (F. mandshurica) (Cleary et al. 2016; 
Drenkhan et al. 2017). It first became a lethal pathogen 
when changing to a new host, European ash, a close 
relative of Manchurian ash but with a different distribution 
range. Increasing demand for supply and an increasingly 
variable climate demand an ever more efficient and resilient 
industry, which is reflected in the aims of the European 
Commission (European Commission 2013). In order to 
effectively manage fungal pathogens, it is important that we 
fully understand them and are able to predict their probable 
movements and impacts.

Like any airborne pathogen, the spread of H. fraxineus 
spores to new host areas can be divided into three steps: 
details of spore emission, the ability of spores to survive 
Earth’s atmosphere and on-host infection processes (e.g. 
Gross et al. 2014). Much is still unknown about the biol-
ogy of H. fraxineus (e.g. Sansford 2013), which includes 
the pathogen’s ability to reproduce. The CABI datasheet 
provides a good overview of what’s known about the 
ecology/biology of the pathogen (CABI 2019). This work 
focuses on improving understanding of the emission of 
spores by H. fraxineus. Previous research provides impor-
tant insights into H. fraxineus spore emission processes. 
Timmermann et al. (2011) noted that the observed early 
morning peak in spore emissions suggests that H. frax-
ineus actively emits (or ejects) its spores. This is in con-
trast to fungi with more passive spore emission, such as 

Blumeria graminis and Puccinia striiformis, that have a 
peak emission around mid-afternoon when wind currents 
and gusts are generally most intense (West et al. 2008). 
Most ascomycetes that actively emit their spores use a 
‘water-cannon’ mechanism, which relies on the avail-
ability of moisture (Ingold, 1999). However, unknowns 
include the exact moisture requirement, the timescale 
required to accumulate enough water and the exact method 
of water absorption.

Spore maturation most likely occurs during the day pre-
ceding the morning peak emission period (Timmermann 
et al., 2011). If this is the case then environmental condi-
tions (e.g. moisture and temperature) during the day prior 
to emission are likely to have some effect on the spore 
emission. Morning dew and moisture may protect the 
ascospores from desiccation during the subsequent infec-
tion process and may stimulate their germination (Tim-
mermann et al. 2011). Sub-zero ground temperatures may 
turn dewfall into frost, which can be expected to hinder 
fungal spore emissions. In all cases, the details remain 
unclear, for example, what moisture and temperature levels 
are required? What types of moisture (ground, leaf, water 
vapour, rainfall) are most important? Is spore maturation 
(and fungal activity) affected by longer-term moisture and 
temperature trends?

The effects of meteorology on spore emission 
processes remain to be investigated (Timmermann 
et al. 2011). High winds and turbulence act to ventilate 
Earth’s atmospheric boundary layer (ABL), mixing aero-
sols (including fungal spores) to greater heights and so 
reducing near-ground aerosol concentrations (e.g. Dacre 
et al. 2007). On the other hand, winds may aid spore sus-
pension, especially in sheltered forest locations. In still 
air spores will fall out of suspension at their ‘settling 
velocities’ (e.g. Di-Giovanni et al. 1995). Rainfall will 
‘wash-out’ spores from the atmosphere (e.g. Aylor 2003) 
reducing spore air concentrations. However, the net effect 
of rainfall on spore emissions is unclear given that rain-
fall may act as a water source for the active emission 
mechanism and possibly aid spore maturation and ger-
mination. Preceding rainfall before peak emission may 
act to encourage spore emissions, whereas rainfall during 
peak emission may suppress spore air concentrations. Net 
radiation at the ground surface is known to represent the 
energy limit available to organic (as well as inorganic) 
systems (Oke 1987). Solar radiation is the driving force 
behind meteorological processes in the ABL, which in 
turn influence spore emissions. Net radiation is generally 
well correlated with net solar radiation during daylight 
hours (Oke 1987).

The main objective of our work is to infer the relationship 
of fungal spore emissions as a function of meteorological 
variables.
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Materials and methods

Processing and analysis of fungal spore emissions

We analysed data, provided by Timmermann et al. (2011) 
and Hietala et  al. (2013), of H. fraxineus spore counts 
recorded at 30-min intervals throughout the months of July 
to September for the years 2009 to 2011 (Fig. 1a). These 
data are derived from near-ground measurements of H. frax-
ineus atmospheric spore concentrations in a diseased ash 
stand near Ås, 30-km south of Oslo, Norway (59° 40′ 44′′ 
N, 10° 46′ 31′′ E).

We removed days with missing or corrupted data within 
the peak diurnal emission period (see Appendix A in Sup-
plementary Material).

By maximum likelihood estimation (and a number of 
simplifications), it is possible to construct a simple analyti-
cal Gaussian model for the average diurnal variation of spore 
emissions which vary through the season:

where S�

(d) is the analytical model for the total daily emis-
sions occurring on day-of-year d (see Fig. 1a for a graphical 
representation of S’), I is a constant and h is the hour of the 
day. The model parameters μ and σ are the average time of 
the peak spore emission and the average standard variation 
of μ, with values of 5.1 h and 0.33 h (Fig. 1b), respectively. 
See Appendix B and C in Supplementary Material for full 
details of (1), the model parameters and summary statistics. 

(1)S
�

h(d, h) =
S

�

(d)

I
e−(h−�)

2∕(2�2)

The simple analytical model (1) could be used as a basic 
(and numerically inexpensive) representation of spore emis-
sions in an atmospheric dispersion model. However, it does 
not account for the variation about the mean changes and 
cannot adapt to changing environmental conditions.

A large amount of variability is apparent in the spore 
data of Hietala et al. (2013) (see Fig. 1a, Appendix B in 
Supplementary Material, or Fig. 3). Some of this variabil-
ity is due to variability in the magnitude and timing of the 
daily emissions. Changing the timing of the spore emission 
peak by several hours has the potential to significantly alter 
the area of the resulting spore deposition (e.g. Savage et al. 
2010). Spore emission timing was estimated by finding the 
time of maximum observed emission, denoted tpeak, in each 
daily cycle and the spore emission magnitude was estimated 
by calculating the observed total daily spore emissions (S).

Careful analysis of the raw spore data revealed 7 days of 
ill-defined emission peaks (see Appendix A in Supplemen-
tary Material), which is relevant when considering the time 
of maximum emission. These days generally correspond to 
the start/end of the emission period, when total spore emis-
sions are low. When considering tpeak, these 7 days were 
removed from the analysis.

Meteorological data

We downloaded publicly available, hourly meteorological 
data, provided by the Norwegian Institute of Bioeconomy 
Research (NIBIO 2019) in collaboration with the Norwe-
gian Meteorological Institute (Table 1). The meteorologi-
cal data are from two sites: Åsbakken (59º 40′ 7′′ N, 10° 

Fig. 1   H. fraxineus near-ground atmospheric spore counts from 
Hietala et  al. (2013) for (a) the growing season denoted S (number 
of spores day−1) for the years 2009 to 2011 and (b) the diurnal vari-
ations (number of spores h−1) averaged across all days and years, 
denoted by ⟨Sh⟩, marked with black dots. Before averaging, we tem-
porally shifted each diurnal dataset so that each daily maximum 
emission coincided with the average maximum emission time. The 
increase and decrease of ln(S) were fitted to linear models (solid 

black and green lines, respectively, in (a)). A Gaussian model was fit-
ted to ⟨Sh⟩, marked by the grey line in (b). Temporally shifting the 
data prior to averaging allowed the Gaussian to reveal the average 
shape of the emission peak. See Appendix B and C in Supplementary 
Material for further model details, parameter values and summary 
statistics. The observations made in 2009 only captured the decrease 
in the seasonal spore emissions, whilst in 2011 the measurements 
only captured the increase in the seasonal emissions
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46′ 8′′ E) and Ås (59° 39′ 38′′ N, 10° 46′ 55′′ E). The 
Åsbakken data was used whenever possible, since this site 
was closest to the spore observation site (approximately 
400 m) and also in an orchard. The Ås site, located in an 
open field less than 2 km from the spore observation site, 
was used for all variables that were not available from 
Åsbakken (Table 1). Meteorological variables that were 
measured from both stations show a high correlation (e.g. 
the Spearman rank correlation coefficients for U, Ta and 
R are 0.96, 0.99 and 0.81, respectively). Accurate soil 
moisture data was missing for 2011 and part of 2010. We 
therefore removed soil moisture from our analysis in order 
to maximise the number of observations. The final number 
of observations used to model both tpeak and S was 61 (15 
from 2009, 27 from 2010 and 19 from 2011).

From a physical understanding of the system (see Oke 
1987, Chapters 1 and 4), three pairs of variables (Ts and 
Rn, Ts and Ta, Ms and U) are expected to be highly corre-
lated. We therefore excluded Ts, Ta and U from our analy-
sis a priori (Table 1). Our a priori expectation was sup-
ported by observed strong correlations in the hourly data 
between: Ts and Rn (Spearman rank coefficient 0.77), Ts 

and Ta (Spearman rank coefficient 0.91) and Ms and U 
(Spearman rank coefficient 0.72).

The six remaining meteorological variables were aver-
aged across three time windows: 2 h either side of tpeak 
(window 1), 2–24 h before tpeak (window 2) and less than 
5 days before tpeak (window 3). These three windows cap-
ture immediate (window 1), near-term (window 2) and 
longer-term (window 3) meteorological conditions (see 
Introduction). Window 1 was chosen to encompass the 
mean emission peak (guided by σ in the Processing and 
analysis of fungal spore emissions section). We excluded 
the 5-day average wind speed (window 3) a priori since 
it is unlikely to impact spore emissions. Outside of the 
winter months, frost typically occurs during the early 
morning hours before sunrise given enough moisture and 
a freezing surface. However frost may also occur earlier 
in the night (Oke, 1987). The window 1 frost average was 
dropped due to the rarity of frost occurrence. A window 
3 average of frost is likely hard to interpret and so was 
removed from the analysis. A further six averaged vari-
ables were also excluded due to collinearity (see Table 1 
and the “Statistical analysis” section). This gave a final set 

Table 1   The 10 meteorological variables, their three averaging 
windows and their use in the models for tpeak and log10(S). Squares 
marked - are variables that were excluded a priori based on the phys-
ics of the system. Variables used in the model for time of maximum 

spore emission are indicated with a tpeak. Variables used in the model 
for total daily spore emissions are indicated with log10(S). Squares 
marked X indicate variables that were excluded due to collinearity

Notes: Acronyms within ‘Measurement details’ are the NIBIO variable names. Locations of observations are specified using the numbers in 
brackets, where 1 = Åsbakken and 2 = Ås, and equipment error estimates are provided. We derived an additional variable for the presence of frost 
when surface temperature is less than 0 °C and leaf moisture is non-zero. Leaf moisture was observed using a leaf wetness sensor, which gives 
the time in minutes the leaf is wet within each hour (see Campbell Scientific 2020 for more information)

Averaging window length

Variable name & symbol Units Measurement details window 1 (± 2 h) window 2 (1 day) window 3
(5 days)

Rainfall, R mm h−1 RR, (1),
 ± 0.1 mm/h

tpeak, log10(S) X
log10(S)

tpeak
X

Soil moisture, � 1 VAN1, (2), first 10 cm,
Volumetric, ± 0.02

- - -

Leaf moisture, Ms min/h BTff, (1), ∼ 2-m a.g.l., accuracy unknown tpeak, log10(S) tpeak
X

X
log10(S)

Relative humidity, U 1 UMf, (1), hourly mean, ± 2% (0 to 90%) - - -
Soil temperature, Tg

oC TJM1, (2), 1-cm deep, hourly mean, ± 0.2 K X tpeak, log10(S) X
Surface temperature, Ts

oC TS, (2), hourly mean, ± 0.2 K - - -
Air temperature, Ta

oC TMf, (1), 2-m a.g.l.,
hourly mean,
 ± 0.2 K

- - -

Net radiation, Rn W m − 2 RN, (2), surface flux, hourly mean, < 10% of 
each days integrated radiation

tpeak, log10(S) tpeak, log10(S) tpeak, log10(S)

Wind speed, |u| m s−1 FM2, (2), 2-m a.g.l.,
hourly mean,
horizontal speed,
1% ± 0.1 m/s

tpeak, log10(S) tpeak, log10(S) -

Frost, F Presence/absence - tpeak, log10(S) -
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of 10 continuous meteorological variables and one binary 
variable (frost, window 2).

Statistical analysis

We constructed two generalised additive models (GAMs, 
see Wood 2017): one had the time at maximum H. fraxineus 
spore release, tpeak, as a response variable, and the other 
had the log-transformed daily spore emission, log10(S), as a 
response variable. All models had the factor frost (window 
2) as a parametric term and 10 smoothed meteorological 
variables. Variables for these smoothed terms were selected 
by taking the variable with the greatest Spearman rank cor-
relation with the response variable, removing all other col-
linear variables (defined here as having a Spearman rank 
correlation greater than 0.6) and then repeating until all 14 
variables had been used. The final selection of variables for 
the two models is given in Table 1.

All the smoothed terms used a thin plate spline basis 
with a basis dimension of three. Variable selection was per-
formed by imposing an additional penalty on functions in the 
smoothing penalty null-space (Marra and Wood 2011). No 
interactions were included because the data were too sparse 
and data exploration showed no pattern of interactions.

We fitted models to a random 80% of the data from years 
2010 and 2011 (a total of 22 and 16 observations from 2010 
and 2011, respectively) and validated the model using the 
remaining 20% of the 2010 and 2011 data. Data from 2009 
was used as independent validation data (see below). We 
performed model fitting and validation on 1000 different 
randomised 80%:20% data partitions; therefore we have 
combined a Monte-Carlo approach with GAMs. Models 
were fitted using generalised cross validation in the mgcv 
package in R, version 3.5.2 (R Core Team 2018; Wood 
2011). A model’s effective degrees of freedom were mul-
tiplied by 1.4 to increase the amount of smoothing and to 
avoid overfitting (Wood 2017). Residuals were assumed to 
follow a normal distribution and to have no temporal auto-
correlation. The model assumptions were tested and con-
firmed for 10 of the 1000 fitted models.

We quantified the importance of each smoothed term 
in a model by calculating the number of times (from the 
1000 randomised fits) a term had been retained in a model 
(i.e. had an effective degrees of freedom greater than 10−4). 
Smoothed terms that were retained in more than 70% of 
all selected models were highlighted. We also reported the 
fitted relationship for the most commonly selected model 
(the terms in the most commonly selected model may not 
be the same as terms that were retained in more than 70% 
of all models). Model fit was estimated from the R2 of both 
fitted and validation models. We visualised the fitted rela-
tionships for a variable using a contour plot of the relative 
density of predictions across all 1000 randomised fits. We 

calculated the predicted relationship from each randomised 
fit by varying the variable across its observed range whilst 
setting all other variables to their observed median value. 
We also averaged the fitted coefficients across all 1000 mod-
els by calculating the median coefficient (and standard error) 
for each smooth term.

Further model validation was performed by predict-
ing log10(S) and tpeak for 2009. All 1000 models for each 
response were used to make predictions for 2009. These 
models were then averaged by taking the median point 
prediction and 95% confidence interval. The Pearson cor-
relation coefficient between predictions and observations of 
log10(S) and tpeak was used as a measure of model predictive 
performance.

The effect of omitting soil moisture was investigated by 
repeating our analysis using the dataset where soil moisture 
was available (2009 and part of 2010). The results of this are 
presented in Appendix F (Supplementary Materials).

Finally, we repeat our analysis using a random forest 
approach (Liaw and Wiener 2002), allowing comparison 
with our GAM method. The application of the random forest 
mirrors the original GAM approach in using 1000 regres-
sion trees to build the random forest, using the same size 
for the out-of-bag sample and keeping data from 2009 as an 
independent validation dataset. The random forest analysis 
is presented in Appendix G in Supplementary Materials and 
summarised below.

Results

Model fit and predictive performance

The model fit and predictive ability (i.e. validation R2) of 
our models for total daily spore emissions, log10(S), and 
the timing of peak spore emission, tpeak, depended upon 
how the data were partitioned into fitting and validation 
datasets (Figure D1, Appendix D in Supplementary Mate-
rial). Half of the 1000 models for both log10(S) and tpeak 
had a validation R2 greater than 42% and 61%, respectively 
(Figure D1). There is a negative correlation between R2 
from the fitting data and the R2 from the validation data 
(i.e. predictive ability) due to the bias-variance trade off 
(i.e. high fitted R2 tend to correspond with model over-
fitting). After model selection, the complexity of the mod-
els for both log10(S) and tpeak ranged from three to nine 
smoothed terms, but most models had five to seven terms 
(Table 2). On average, models for log10(S) with intermedi-
ate complexity (six to seven terms) had the greatest pre-
dictive power, whereas models for tpeak with the greatest 
complexity (nine terms) had the greatest predictive power 
(Table 2). Including soil moisture in the analysis did not 
increase the predictive power of the models (Table F2, 
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Appendix F) but did result in selected models with fewer 
terms and a clear decline in predictive performance for 
selected models with a large number of terms (more than 
five terms).

Total daily emission of spores

Across all 1000 models, 112 unique combinations of smooth 
terms were selected. The most common combination of 
smooth terms (selected for 184 of the 1000 models) con-
tained the weekly average net radiation and leaf moisture 
(window 3), daily average soil temperature and rainfall 
(window 2) and immediate net radiation and leaf moisture 
(window 1). Across all 1000 models, the same terms that 
appeared in the common model (net radiation, rainfall, leaf 
moisture and soil temperature) were selected in over 70% of 
all models (Table 3). Longer-term (window 3) variables are 
important predictors. Both window 3 variables (net radiation 
and leaf moisture) were present in at least 89% of all models. 
However, near-term (window 2) and immediate (window 1) 
variables are also important. Net radiation (window 1) and 
soil temperature (window 2) were present in 95% and 96% 
of all models.

The marginal model predictions from this common model 
show that daily spore emissions peak at intermediate val-
ues of weekly average net radiation (window 3) and daily 
average soil temperature (window 2) and increase linearly 

Table 2   The frequency (across 
1000 fitted models to random 
data partitions) with which 
different model complexities 
(i.e. number of terms) were 
selected and their median R2 for 
the validation data

Number of smooth terms 3 4 5 6 7 8 9

log10(S) model
Frequency 2 13 84 344 408 131 18
Median validation R2 0.16 0.32 0.37 0.46 0.43 0.42 0.40
tpeak model
Frequency 17 143 372 303 121 41 3
Median validation R2 0.49 0.57 0.58 0.65 0.76 0.85 0.85

Table 3   The variables and timescale for the 10 smooth terms in the 
GAM model for log10(S) (Table  1) and the proportion of the 1000 
randomisations for which each term was selected in the final model. 
Terms selected in more than 70% of models are highlighted in bold

Variable Timescale Selection 
proportion

Net radiation Window 3 1.00
Soil temperature Window 2 0.96
Net radiation Window 1 0.95
Leaf moisture Window 1 0.92
Leaf moisture Window 3 0.89
Rainfall Window 2 0.76
Net radiation Window 2 0.49
Wind speed Window 1 0.36
Rainfall Window 1 0.18
Wind speed Window 2 0.11

Fig. 2   The marginal predictions 
(black line) and 95% confi-
dence intervals (grey region) 
from the most common model 
for total daily spore emissions 
(six smoothed terms). Residu-
als are shown by solid circles. 
Predictions are calculated at the 
median values for the remaining 
three variables
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with weekly average leaf moisture (window 3) and decrease 
linearly with immediate net radiation (window 1, Fig. 2). 
The relationship with rainfall (window 2) and immediate 
leaf moisture (window 1) appears weak. These relation-
ships appear relatively robust. The relative density of model 
predictions, averaged over all 1000 models, gives similar 
qualitative relationships to the predictions of the commonest 
model (Table 4, Figure E1, Appendix E in Supplementary 
Material).

The model prediction using the most common model for 
the total daily spore counts is compared against the observa-
tions in Fig. 3A. The model is shown to generally capture 
the trends in the observations well and most observations 
fall within the 95% confidence intervals for the prediction.

Data for 2009 can be used as an independent test of the 
fitted models. The median prediction from the 1000 models 
of log10(S) for 2009 tends to underpredict (Fig. 4). How-
ever, the predictions do capture the relative changes in spore 
counts (R2 = 58%), suggesting that the commonly selected 
variables have some predictive ability for changes in daily 
spore counts.

Including soil moisture as a possible term in the model 
reduced the importance of soil temperature, net radiation 
(window 1) and leaf moisture (window 1), but the impor-
tance of net radiation (window 3), leaf moisture (window 

3) and to a lesser extent rainfall (window 2) were main-
tained (see Table F3 and Figure F1, Appendix F). Soil 
moisture did not emerge as an important variable and was 
selected in only 11% of models.

Timing of daily peak emissions

Model term selection gave 143 unique combinations of 
smoothed terms from the 1000 models for the timing of 
the daily peak in spore emission. The most common model 
had five smooth terms (net radiation windows 1, 2 and 
3, leaf moisture window 1 and rainfall window 1). This 
common model occurred 88 times out of 1000 (Fig. 5), 
with the second most common model occurring 67 times. 
Across all 1000 models four variables (net radiation for 
windows 1, 2 and 3, and rainfall for window 1) were 
selected in over 70% of all models (Table 5). Immediate 
net radiation (window 1) clearly has the strongest associa-
tion with the timing of peak spore counts. However, near 
term and longer-term net radiation (windows 2 and 3) are 
also associated with the timing of the peak.

Across all 1000 models, the strongest consistent rela-
tionship is for net radiation across all time-scales, but with 
net radiation near the time of peak emission (window 1) 
having the strongest effect. Increased immediate net radia-
tion (window 1) is associated with a delay in the timing 
of the daily peak in spore emissions (Table 6, Figure E2, 
Appendix E in Supplementary Material). The relationship 
with rainfall (window 1) is included in over 70% of mod-
els, but the effect size is weak (Fig. 5). Similarly leaf mois-
ture (window 1) is included in the most commonly selected 
model but with an effect size that is small compared to the 
uncertainty (Table 6, Fig. 5).

The model prediction using the most common model for 
the hour of peak emission is compared against the observa-
tions in Fig. 3B. The model is shown (Fig. 3B) to generally 
capture the trends in the observations with most observa-
tions falling within the 95% confidence intervals for the 
prediction (Fig. 4).

Validation using data from 2009 shows a tendency to 
underpredict the timing of the peak spore count (Fig. 6). 
However, there is some predictive skill in the rela-
tive changes in the timing of the peak from day to day 
(R2 = 37%, Fig. 6B).

Including soil moisture as a possible term in the model 
showed that soil moisture may be associated with the tim-
ing of the daily peak in spore emissions (Table F4, Appen-
dix F). A soil moisture (window 1) term and a net radiation 
(window 1) term were selected in all 1000 models. These 
models predict that increasing soil moisture and increas-
ing net radiation delay the time of peak spore emissions.

Table 4   The fitted coefficients and their standard errors for total daily 
spore emissions, log10(S). Values are the medians across all 1000 fit-
ted models. Terms in bold are selected in over 70% of all models

Smooth term Coefficient Median estimate Median standard 
error

Intercept - 5.4 0.17
Net radiation Coefficient 1 1.4 0.36
(Window 3) Coefficient 2  − 2.7 × 10–7 2.8 × 10−4

Net radiation Coefficient 1 2.2 × 10−7 6.7 × 10−4

(Window 1) Coefficient 2  − 0.24 0.096
Leaf moisture Coefficient 1 9.3 × 10−7 9.2 × 10−4

(Window 3) Coefficient 2 0.28 0.097
Soil temp Coefficient 1 0.83 0.37
(Window 2) Coefficient 2 2.8 × 10−8 1.7 × 10−4

Leaf moisture Coefficient 1 0.55 0.33
(Window 1) Coefficient 2  − 1.3 × 10−7 1.7 × 10−4

Rainfall Coefficient 1  − 0.36 0.41
(Window 2) Coefficient 2  − 2.8 × 10−7 2.1 × 10−4

Rainfall Coefficient 1 3.5 × 10−7 1.4 × 10−3

(Window 1) Coefficient 2 3.3 × 10−7 2.1 × 10−4

Net Radiation Coefficient 1 3.0 × 10−7 6.3 × 10−4

(Window 2) Coefficient 2 9.0 × 10−7 3.2 × 10−4

Wind speed Coefficient 1  − 2.2 × 10−6 9.5 × 10−4

(Window 1) Coefficient 2  − 7.5 × 10−9 1.4 × 10−4

Wind speed Coefficient 1  − 9.5 × 10−8 6.1 × 10−4

(Window 2) Coefficient 2  − 7.1 × 10−8 1.6 × 10−4
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Random forest approach

We repeated our analysis using a random forest approach and 
found that the random forest gives poor overall predictive per-
formance but does select broadly similar variables to the GAM 
method (see Appendix G in Supplementary Materials).

Discussion

We have shown that the quantity of H. fraxineus spores 
emitted per day and the daily timing of the peak in spores 
can be associated with weather conditions both at the time 
of spore emission and over the hours and days preceding 
the emission of spores.

Several factors make it likely that our models are miss-
ing key phenological variables, indicating that further 
work is required before the models can be used opera-
tionally. The results that support this are (1) the general 
under-prediction of total daily spore counts and peak emis-
sion timing when predicting spore emissions in a different 
year to that used to fit the model, (2) the near-exponential 
seasonal increase and decrease of average total daily spore 
counts and (3) the consistent association of total daily 
emissions with 5-day average net radiation.

In the “Processing and analysis of fungal spore emis-
sions” section, the increase and decrease of seasonal spore 
emissions were found to be nearly exponential, indicating a 
population growth that is not limited by resources. The mod-
els assessed by Eikemo et al. (2010) for estimation of sea-
sonal ascospore increase of the ascomycete Venturia pyrina 

Fig. 3   The observed daily spore 
emission (A, circles) and hour 
of peak emission (B, circles) for 
2010 (green) and 2011 (blue). 
The vertical lines show the pre-
dicted 95% confidence intervals 
from the most common model
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Table 5   The variables and timescale for the 10 smooth terms in the 
GAM model for tpeak (Table 1) and the proportion of the 1000 ran-
domisations for which each term was selected in the final model. 
Terms selected in more than 70% of models are highlighted in bold

Variable Timescale Selection 
proportion

Net radiation Window 1 1.00
Rainfall Window 1 0.88
Net radiation Window 2 0.86
Net radiation Window 3 0.72
Leaf moisture Window 1 0.60
Soil temperature Window 2 0.47
Net radiation Window 3 0.46
Leaf moisture Window 2 0.44
Wind speed Window 2 0.34
Rainfall Window 3 0.16
Wind speed Window 1 0.03

Table 6   The fitted coefficients and their standard errors for the tim-
ing of peak daily spore emissions, tpeak. Values are the medians across 
all 1000 fitted models. Terms in bold are selected in over 70% of all 
models

Smooth term Coefficient Median estimate Median standard 
error

Net radiation Coefficient 1 1.9 0.75
(Window 1) Coefficient 2 2.1 0.19
Net radiation Coefficient 1 1.0 1.5 × 10−3

(Window 2) Coefficient 2 0.37 0.16
Rainfall Coefficient 1 1.4 × 10−5 5.9 × 10−3

(Window 1) Coefficient 2 0.13 0.11
Net radiation Coefficient 1  − 2.3 × 10−6 0.097
(Window 3) Coefficient 2 6.8 × 10−9 7.5 × 10−4

Leaf moisture Coefficient 1 3.3 1.4 × 10−3

(Window 2) Coefficient 2  − 5.4 × 10−6 1.2 × 10−3

Leaf moisture Coefficient 1  − 0.13 0.26
(Window 1) Coefficient 2  − 3.7 × 10−7 3.7 × 10−4

Wind speed Coefficient 1  − 8.7 × 10−7 1.6 × 10−3

(Window 2) Coefficient 2  − 1.7 × 10−6 6.4 × 10−4

Rainfall Coefficient 1  − 2.3 × 10−6 2.0 × 10−3

(Window 3) Coefficient 2 6.8 × 10−9 2.9 × 10−4

Soil temp Coefficient 1  − 3.3 × 10−5 5.1 × 10−3

(Window 2) Coefficient 2  − 1.9 × 10−7 3.2 × 10−4

Wind speed Coefficient 1  − 8.0 × 10−8 1.4 × 10−3

(Window 2) Coefficient 2  − 1.0 × 10−7 3.0 × 10−4

also have an essentially exponential form. However, there is 
clear day-to-day variation in the observed spore emissions 
of H. fraxineus ascospores, which must be accounted for in 
order to accurately predict spore dispersion and infection 
(e.g. Savage et al. 2010).

It is possible that our 5-day average net radiation is partly 
acting as a proxy for the main seasonal peak of spore emis-
sions (and other possibly more fundamental phenological 
factors). Net radiation averaged over 5 days preceding spore 
release (i.e. the longer-term timescale) shows a particularly 
consistent association with the total daily emissions of H. 
fraxineus spores (Fig. 2). This longer-timescale average of 
net radiation reveals the generally diminishing solar insola-
tion from late summer to autumn (not shown). Average net 
radiation is the primary variable where the relationship with 
spore emissions peaks at intermediate values (5-day aver-
age net radiation of 80 to 120 W m−2). This peak reflects 
the seasonal trend in spore emissions because 5-day average 
net radiation decreases roughly linearly from July through 
September (not shown), whilst generally there is a peak in 
the spore emissions close to half-way through this observa-
tion window (Fig. 1a). It appears that our 5-day average net 
radiation is accounting for some of the near-weekly changes 
as well as the seasonal change.

Other important phenological factors might include 
weather conditions during the winter and spring pre-
ceding the annual peak in spore emissions. The study of 
Hietala et al. (2018) analysed H. fraxineus spore emis-
sions observed near Bergen from 2011 to 2017 and found 
a significant correlation between annual maximum spore 
levels and cumulative ‘degree days’. In other words, it 
appears that the fungus is more able to reproduce dur-
ing generally warmer years. Average net radiation can be 
linked to a ‘degree day’ diagnostic, which is essentially 

an integral over time of surface temperature, and surface 
temperature may be written as a function of surface radia-
tion variables (Oke, 1987). Hietala et al. (2013) found a 
rapid increase in the spore emissions (of H. fraxineus) in 
mid-July when the cumulative growing degree days had 
reached 600. The models assessed by Eikemo et al. (2010), 
and the model used by Stensvand et al. (2005) used degree 
days to model the smooth mean seasonal changes neglect-
ing shorter timescale natural variations. However, Hietala 
et al. (2018) also found an inter-annual exponential growth 
in the maximum seasonal spore number between 2012 and 
2015. This was attributed to the fungus moving to its new 
environment near Bergen and initially having unrestricted 
access to resources. Therefore, although it does seem 
likely that accounting for weather conditions prior to the 
annual emission peak will improve the inter-annual predic-
tive skill of our models, it is also possible that further fac-
tors (e.g. availability of host resources) would be required.

Differences in annual weather conditions across Europe 
(i.e. climatic variations) may also be an important factor 
in the variation of the onset of the annual peak emission 
across Europe. The onset of fruit body formation and hence 
sporulation of H. fraxineus differs on the order of several 
months across Europe (Hietala et al. 2013, 2018; Kirisits & 
Cech 2009; Grosdidier et al. 2018; Chandelier et al. 2014; 
Dvorak et al. 2016). The performance of our model over 



	 International Journal of Biometeorology

1 3

an inter-annual basis and when applied to other European 
locations should be the topic of future work, because our 
current results are based upon data from only three years 
of spore observations, from one location. Furthermore, our 
methods could be applied to other airborne fungal patho-
gens with similar dispersal mechanisms to test the model’s 
performance.

Despite the drawbacks noted above, our models retain 
predictive skill both when predicting emissions in years used 
for the model fit, as well as for the independent 2009 dataset.

Our results showed that increased net radiation during 
the peak emission period (i.e. window 1) causes a reduction 
in the total daily spore emissions, modulating the effects of 
longer-term trends in net radiation.

We found that the quantity of H. fraxineus spores emit-
ted per day is affected more by leaf (surface) moisture than 
rainfall. We found that spore emissions increase with 5-day 
average leaf moisture (see Fig. 2), which corresponds well 
with the theory that humid air aids spore maturation and 
germination, as discussed by Timmermann et al. (2011) and 
Hietala et al. (2013). Moisture is also known to be important 
for H. fraxineus’ active emission mechanism (Ingold, 1999). 
Interestingly, the seasonal change of longer-term leaf mois-
ture (window 3) generally follows the seasonal change in 
daily spore emissions (not shown). We have confirmed the 
importance of moisture for the quantity of spore emissions 
and isolated the types of moisture and ranges of moisture 
values that the fungus is most sensitive to for our dataset. 

Fig. 4   A The observed daily spore counts for 2009 (squares) as 
a function of time and the model predictions (circles). B Observed 
daily spore counts for 2009 versus predictions (R2 = 58%). Dashed 
diagonal line represents observed equal to predicted. Bars represent 
95% confidence intervals. Predictions and confidence intervals are 
medians across all 1000 fitted models

Fig. 5   The marginal predictions 
(black line) and 95% confidence 
intervals (grey region) from the 
most common model of timing 
of peak spore emissions (five 
smoothed terms). Residuals 
are shown by solid circles. 
Predictions are calculated at the 
median values for the remaining 
five variables
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Moisture is also key for ascospore production of other asco-
mycetes, such as Venturia inaequalis (Stensvand et al. 2005, 
2009).

The strongest effect sizes associated with the timing 
of spore release are for net radiation close to the time of 
release, with increased net radiation delaying the time of the 
peak emission. The observed time of peak spore emissions 
varies by several hours, which is likely to cause strong vari-
ation in the atmospheric dispersion and deposition of spores 
(e.g. Savage et al. 2010).

It was surprising that both the daily quantity and tim-
ing of spore release were not particularly sensitive to wind 
speed or rainfall, since both are well known to strongly affect 
aerosols (Di-Giovanni et al. 1995; Aylor 2003). However, 
it should be noted that the meteorological observations 
were not optimised for correlating weather variables with 
spore emissions and the weather observing stations were 
at least 400 m away from the spore observation site. In par-
ticular, it is likely that wind conditions varied between the 
weather observing stations, located on open ground and in 
an orchard, to the conditions within the woodland ash stand. 
However, for the variables other than wind speed, we found 
good correlation between the two weather stations, despite 
their separation of about 1 km. Soil moisture observations 
were also limiting, forcing us to remove this variable from 
the main analysis. However, there is a suggestion that soil 
moisture is potentially an important variable for the timing 
of the daily peak in spore emissions. Future work should 
consider more bespoke observation campaigns combining 
weather and spore observations.

In the study of Hietala et al. (2018) relationships were 
analysed (using Spearman rank correlation coefficients) 
between spore emissions summed from midnight to noon 
and daily averages of temperature, precipitation, relative 
humidity and wind speed. With a few exceptions, no sig-
nificant correlations were found. However, it should be 
noted that the weather station was located approximately 
7 km away from the spore observation site. This may well 
indicate that H. fraxineus is most sensitive to its immedi-
ate environment rather than mesoscale meteorology. This 
comparison also suggests that it is likely the combination of 
different weather factors that influence H. fraxineus spore 
emissions rather than any one single variable.

With only approximately 60 data points underlying the 
statistical analysis, we have been careful to remove meteoro-
logical variables with a priori reasons not to be associated 
with H. fraxineus spore release. We have also limited the 
complexity of the statistical model by not including interac-
tion terms and keeping the smoothing relatively strong so 
that we only capture broad non-linearity in the associations. 
Despite our relatively small dataset, we have still randomly 
held out 20% of the data from the years used for the model 
fitting (2010 and 2011) as well as keeping the 2009 data as 

an independent validation dataset. Although this reduces the 
information available to the model fitting, it does allow us to 
apply three methods for validating the fitted models. Firstly 
we can estimate the predictive performance of a fitted model 
on the 20% of the data held out from the fitting process, 
showing reasonable predictive ability (R2 ~ 0.5). Secondly, 
we can use predictions for 2009 as a second measure of 
predictive performance. This shows an inter-annual predic-
tive ability (R2 ~ 0.5) comparable to the intra-annual predic-
tions. Thirdly, by repeatedly fitting our model to different 
randomised data, we assess the variability in model selection 
and the relative degree to which our models are over- or 
under-fitting the data. This can be seen in the negative asso-
ciation between R2 from the fitted dataset and R2 from the 
validation dataset (Figure D1 in Supplementary Material).

Our findings provide a methodology for estimating the 
magnitude and timing of spore emissions based on mete-
orological observations. Using a generalised additive model, 
framework allows the model flexibility to capture non-linear 
relationships but also the ability to control the smoothness 

Fig. 6   A The observed timing (hours since 00:00  h) of peak spore 
counts for 2009 (squares) as a function of time and the predictions 
(circles). B Observed timing of peak spore counts for 2009 versus 
predictions (R2 = 37%). Dashed diagonal line represents observed 
equal to predicted. Bars represent 95% confidence intervals. Predic-
tions and confidence intervals are medians across all 1000 fitted mod-
els
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of a relationship. In this GAM framework, a model for either 
response variable will have the general form:

where g
(

ui
)

 is some function of the response variable 
(simply the response variable itself for the timing of the peak 
spore emissions and the logarithm of the daily spore emis-
sions). Note that the above equation neglects any parametric 
variables (the binary frost variable in our case) since we did 
not find it to be significant. The terms on the right side of 
the equation are smooth functions ( f  ) of our covariates ( x ) 
and an error term (ε) that is assumed to follow a normal dis-
tribution. The GAM framework also gives the ability to per-
form model selection of terms. For this we used a smoothing 
penalty in the null-space (Marra & Wood, 2011), but other 
approaches to model selection in GAMs exist (Wood 2017).

Conclusions

Our results indicate that the magnitude and timing of H. 
fraxineus spore emissions are strongly affected by the mete-
orological and associated land-surface conditions in the 
close vicinity of the pathogen. A novel method combining a 
Monte-Carlo approach with GAMs has quantified the uncer-
tainty in the structure of the model and the relative degree 
to which our models are over- or under-fitting the data. We 
find that the magnitude of spore emissions is associated with 
trends in weather variables during the emissions (net radia-
tion) as well as in the preceding day (soil temperature) and 
week (net radiation and leaf moisture) prior to the emissions. 
Average net radiation and soil temperature are the only vari-
ables where the number of spores peak at intermediate val-
ues. Increases in 5-day average leaf moisture are associated 
with increased daily spore emissions, and the immediate net 
radiation modulates the effect of the longer-timescale 5-day 
average net radiation. Increases in immediate timescale 
net radiation were found to delay the hour of peak spore 
emission. In line with previous work, we have confirmed 
the importance of moisture for the quantity of spore emis-
sions. We found that the seasonal peak in spore emissions 
has a near-exponential increase and decrease, and the mean 
daily emission peak is approximately Gaussian, allowing 
the construction of a simple analytical model for the mean 
changes (neglecting model residuals). Our GAM framework 
and standard meteorological variables provide a more accu-
rate method for estimating H. fraxineus spore emissions, 
accounting for variations about the means and adapting to 
changing environmental conditions.

g
(

ui
)

= f1
(

x1i
)

+ f2
(

x2i
)

+ f3
(

x3i
)

+⋯ + �i

Future work should consider a more be-spoke observation 
campaign with observations of fungal spores, meteorology 
and surface conditions at the same location. More work is 
needed to determine the generality of our results, in par-
ticular, inter-annual model performance, whether or not the 
models can be applied in other locations across Europe and 
beyond, and whether they are useful for similar fungal patho-
gens. Work is needed to develop a more mechanistic under-
standing of how environmental conditions (atmospheric, 
land surface, availability of host resources etc.) affect H. 
fraxineus spore emissions.
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