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The effect of climate 
variability in the efficacy 
of the entomopathogenic 
fungus Metarhizium acridum 
against the desert locust 
Schistocerca gregaria
Samuel F. Kamga1,2, Frank T. Ndjomatchoua3, Ritter A. Guimapi4*, Ingeborg Klingen4, 
Clément Tchawoua1, Anne‑Grete Roer Hjelkrem5, Karl H. Thunes4,6 & Francois M. Kakmeni2

Despite substantial efforts to control locusts they remain periodically a major burden in Africa, causing 
severe yield loss and hence loss of food and income. Distribution maps indicating the value of the basic 
reproduction number R0 was used to identify areas where an insect pest can be controlled by a natural 
enemy. A dynamic process-based mathematical model integrating essential features of a natural 
enemy and its interaction with the pest is used to generate R0 risk maps for insect pest outbreaks, 
using desert locust and the entomopathogenic fungus Metarhizium acridum (Synn. Metarhizium 
anisoliae var. acridum) as a case study. This approach provides a tool for evaluating the impact of 
climatic variables such as temperature and relative humidity and mapping spatial variability on the 
efficacy of M. acridum as a biocontrol agent against desert locust invasion in Africa. Applications of 
M. acridum against desert locust in a few selected African countries including Morocco, Kenya, Mali, 
and Mauritania through monthly spatial projection of R0 maps for the prevailing climatic condition 
are illustrated. By combining mathematical modeling with a geographic information system in a 
spatiotemporal projection as we do in this study, the field implementation of microbial control against 
locust in an integrated pest management system may be improved. Finally, the practical utility of this 
model provides insights that may improve the timing of pesticide application in a selected area where 
efficacy is highly expected.

For centuries, humans have attempted to control pest insect populations that cause agricultural productions 
losses, and often, chemical insecticides are used to control these insect pests1. Unfortunately, extensive use of 
chemical pesticides contributes to a plethora of issues such as farmers’ health risks, food safety issues, reduced 
biodiversity, reduction or loss of natural enemies, pollinators, and other non-target organisms, and emergence 
of pesticide resistance2. Historically, the use of chemical pesticides to control pests made it possible to increase 
yields3 and chemical pesticides will probably continue to be a vital tool that can maintain and improve yields in 
future sustainable plant production systems4 but only in combination with new technologies and non-chemical 
alternatives2. Driven by the desire to develop alternative methods, a number of studies have explored the use of 
a natural enemies to control insect pests5,6. Different biological control methods, as defined by7, is considered as 
an important component of integrated pest management (IPM) in many countries and is mentioned as principle 
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four (non-chemical methods to be preferred) out of the eight principles of IPM in the European Union’s Direc-
tive on Sustainable Use of Pesticides (2009/128/EC SUD). Biological control can be defined as the usage of living 
organisms (predators, parasitoids and entomopathogens) to reduce the density of pest insects7. Insect pathogenic 
fungi are now widely used as biocontrol agents of pests insect in many countries8–12.

Microbial control can be viewed as applied epizootiology with the goal of inducing an epizootic incidence, i.e. 
an outbreak of a disease in which there is an unusually large number of cases in the targeted insect population, 
through manipulation13. Processed-based models development is an ideal tool toward mimicking and predicting 
the success of a biological process and have been developed to answer biological questions about: (i) predicting 
the outbreak and success of a specific introduction of a pathogen, (ii) predicting the impact of an introduced 
pathogen on ecosystems and non-target species, (iii) predicting optimum release and management strategies, 
(iv) assistance in the selection of the most appropriate agent(s) and, (v) model development that allows a good 
understanding of the processes involved and the reasons for success or failure14. Biocontrol success or failure can 
be modeled by a set of differential equations with the aim to understand or predict the underlying mechanisms 
of interaction14,15. Challenges of modeling the epizootiological development of an entomopathogenic fungus in 
an insect population resides on all four primary areas that are known to influence epizootiology: (i) the pathogen 
population, (ii) the host population, (iii) transmission and, (iv) the environment (biotic and abiotic)16,17. Both 
virulence and pathogenicity are important expressions when modelling and discussing the epizootiological 
development of an entomopathogenic fungus. We will therfore use the definitions by Lacey18 when using these 
expressions. They go as follows: “Virulence is the speed by which a microorganism penetrates hosts defenses” 
and “Pathogenicity is the intrinsic capability of a microorganism to penetrate the host defenses”.

M. anisopliae var. acridum have shown considerable potential when applied as a biocontrol agent of locusts20–21 
and is also effective against locusts that have developed resistance to chemical insecticides22. M. anisopliae biope-
sticide is reported to kill 70%–90% of treated locusts within 14–20 days in field condition19. Green Muscle is a 
biopesticide developed and commercialized since 2001 by LUBILOSA (Lutte Biologique ,contre les Locustes et 
Sauteriaux) that kill locust and grasshoppers and pose a low risk to the environment23 It was successfully used 
to contain the locust infestation in the Iku-Katavi National Park in Tanzania in 2009; where around 10 000 hec-
tares were treated to protect and ensure the safety of animals (elephants, giraffes and hippopotamuses) within 
the area24. The product was also used during the recent locust outbreak in 2019/2020 to treat more than 230 000 
thousand of hectares in the horn of Africa, therefore helping about 20 million people in Kenya, Uganda, South 
Sudan, Somalia, Ethiopia and Tanzania to fight food insecurity25. Although M. anisopliae may infect insects 
living in a wide array of habitats, its performance as a biocontrol agent is highly variable depending on the 
environmental conditions to which it is exposed22,26. Temperature and relative humidity is known to affect the 
performance of M anisopliae significantly28–30 and can substantially impact the success of biological control31. 
For instance, it has been demonstrated that temperature significantly affects the fungal germination rate33–34, 
the fungal growth rate within the host32–34, sporulation and virulence of this entomopathogenic fungus35. The 
optimal temperature for M. anisopliae is concidered to range from 25 to 35 °C36.

However, the optimal temperature may vary depending on the geographic, and hence, climatic origin of the 
isolate and to be able to build good descriptive models for a pest natural enemy system, it is imperative to include 
information about the temperature in the region where the isolate comes from37. Non-optimal temperatures may 
affect the rate of locust pest mortality by inhibiting spore germination if the temperature is higher than 35 °C or 
lower than 20 °C, which in turn affects penetration through the insect’s cuticle34. Relative humidity also affects 
fungal control agents27,38 since it is essential for fungal germination and sporulation on insect cadavers19,39,40. 
The optimal relative humidity levels are suggested to be more similar for isolates of all geographical origins37, 
and most entomopathogenic fungi require about 95% relative humidity at the host surface (microclimate) to 
germinate41. The relative humidity at the host surface where the entomopathogenic fungal conidia germinate may 
be higher than the ambient relative humidity37. Further, tomato greenhouse studies with fungi in the Hypocreales 
support that a higher humidity is found in the leaf boundary layer (microclimate) and that this benefit microbial 
control of small arthropod pests living in that stratum42,43. Therefore, the effect of microclimatic relative humidity 
on host surface or in leaf boundary layer should be taken into consideration when using ambient relative humid-
ity from weather stations in modelling, forecasting and decision support systems for when to successfully apply 
a fungal based biocontrol agent44,45. Despite advancing new insights into the importance of climatic variables on 
the efficiency of entomopathogenic fungi as biocontrol agents44,45, few studies have used both temperature and 
relative humidity as paramount climatic factors to model and predict the ideal conditions for successful use and 
application of entomopathogenic fungi in the Hypocreales47–48.

A key to use entomopathogenic fungi efficiently as a biocontrol agent is to predict how it will perform 
across space and time. A model used to study the density dependence and spatial structure in the dynamics of 
an entomopathogenic fungus is presented in49 and a description of the behavior of infected and non-infected 
hosts and the prediction of the relevant spatial scale during the spread of entomopathogenic fungus is presented 
in50. The analysis of the spread of a contagious disease caused by an entomopathogenic fungus in an insect pest 
population at different host densities is reported in51. The understanding of the effect of conidial dispersal of 
an entomopathogenic fungus on survival of its host is clarified in52. The outcomes of these models often give 
potential geographical areas where an entomopathogenic fungus may perform well but without integrating 
climatic factors such as temperature and relative humidity. In previous studies, meteorological station data in a 
Geographical Information System (GIS) were used to investigate the most environmentally suitable condition 
for a good performance of entomopathogenic fungi over a wide spatial and temporal scale31. In53 the authors 
explored climate-driven (moisture, radiation, precipitation and temperature) geographic distribution of the 
desert locusts during the locust recession period in Africa.

The basic reproduction number, R0, is a key epidemiological metric for understanding pest risks54 by deter-
mining the threshold values at which, the model exhibit changes in its stability. For our entomopathogenic fungus 
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system, R0 is defined as the expected number of new infected individuals (locusts) that a single fungal infected 
locust may generate in a population of entirely susceptible locusts. Typically, when R0 is greater than one, the 
introduced fungus can proliferate among the locust pest population and presumably infect and kill more hosts 
with time, whereas when R0 is smaller than one, the locust outbreak effects cannot be attenuated if the fungus 
is introduced, and the fungus will certainly die out with time. Therefore, the basic reproduction number also 
indicates the amount of control needed to eradicate locusts during an outbreak. In previous studies, R0 was used 
to investigate how the timing and intensity of a virulent entomopathogenic fungus affect insect reproduction 
and mortality56–57. It can provide an approximation of the level of the efficacy of the entomopathogenic fungus 
towards the pest insect and therefore it offers a good measure for the biocontrol potential of the entomopatho-
genic fungus towards locusts58.

Our research hypothesizes that combining mechanistic model development and experimental biocontrol 
results using entomopathogenic fungus may improve the strategy and guidelines for effective insect pest control. 
As a complement to experimental studies which focused on the growth and development of entomopathogenic 
fungi20,22,29,31,59,60, the current study proposes a generic modelling approach to map the dynamics of interactions of 
the entomopathogenic fungus Metarhizium acridium (Synn. Metarhizium ansiopliae var. acridum) (Hypocreales) 
against the desert locusts Schistocerca gregaria; considering the effects of climatic factors (temperature and rela-
tive humidity) and spatial variability (land cover) when estimating R0. The spatial variation of the pathogenicity 
is herein explored.

Results
Sensitivity analysis.  Table 1 displays the Partial Rank Correlation Coefficient (PRCC) for each parameter 
included in the sensitivity analysis. Four parameters (e, ω, α, γ) will be key contributors to the uncertainty of the 
efficacy and successful application of the entomopathogenic fungus Metarhizium acridium against the desert 
locust Schistocerca gregaria. R0 was highly sensitive to the fungal growth rate and to the proportion of resources 
allocated (host insect body) towards the colony-forming unit (CFU) production (absolute PRCC > 0.7). This 
means the efficacy of the biocontrol strategy would be highly influenced by the CFU (mycelia or conidia) con-
centration in the host insect population. Furthermore, R0 was moderately sensitive to the conversion rate of 
resources into CFU and to the mycelium death rate (absolute PRCC > 0.5). Finally, R0 was less sensitive to the 
insect carrying capacity (maximum density of pest insect the habitat can support) and the Half-saturation con-
stant (density host insect body at which half of the maximum intake is reached) (absolute PRCC < 0.5).

Behavior of the basic reproduction number (R0) with changes on climate variables.  Figure 1a 
displays the results of the numerical simulation of the dependence of R0 on temperature with relative humidity 
fixed at 85, 90 and 95%. The dependence of R0 on both temperature and relative humidity is plotted in Fig. 1b. 
Figure 1 suggests that relative humidity only affects the magnitude of R0 and has no effect on the optimal tem-
perature for efficacy of the entomopathogenic fungus (M. acridum). Using the parameters estimated for desert 
locust (Tables 2, 3), the simulations indicate that the maximum value of R0 is 1.2 and it is obtained for tempera-
ture within the range 24–33 °C at relative humidity above 95%.

The areas where R0 was close to 1.2 correspond to the area where the M. acridum can provide optimal control. 
In areas where R0 < 1, desert locust outbreak cannot be attenuated using the entomopathogenic fungus only, 
whereas the areas were R0 > 1 M. acridum can spread widely and hence be used against an outbreak. Tempera-
tures higher than 35 °C reduce the efficacy of M. acridum, the entomopathogenic fungal species in question. 
Temperature within the range 15–33 °C, R0 > 1 (Fig. 1a), is suitable for M. acridum but is optimal within the 
range 24–33. The maximum R0 value of is reached at 28 °C and 95% or higher relative humidity (Fig. 1a,b), which 
also corresponds to the value in which the fungal development rate and the proportion of resource allocated for 
spore production are optimal.

Spatiotemporal projection in distribution the basic reproduction number (R0).  The spatial pro-
jection and the mapping of the variation in R0 reflecting the efficiency of the entomopathogenic fungus M. 
acridum as a biocontrol agent across selected African countries are shown in the maps representing distribution 
inferred by the degree of magnitude of R0 that indicates higher values in most areas where locusts outbreak can 
be attenuated after introduction of M. acridum (R0 > 1).

Table 1.   PRCC (partial rank correlation coefficient) values and p values for each parameter in the R0 
sensitivity analysis. It summarizes the results and statistical significance in terms of PRCC and p value when 
changing model parameter values. The sign of PRCC represents the positive (+) or negative (−) response of R0 
to the changed parameter values. (*) denotes PRCCs that are highly different from 0 (− 0.5 ≥ PRCC​ ≥ 0.5).

Parameter description PRCC​ p value

Proportion of resources (host insect body) allocated towards spore production (e) (*) + 0.774 0.4715

Fungal growth rate (ω) (*) + 0.764 0.4032

CFU cell background death rate (α) (*) + 0.648 (**) 0.001

Conversion rate of resources (host insect body) into CFU (γ) (*) − 0.634 0.8260

Insect carrying capacity (K)  − 0.383 0.8777

Half-saturation constant (β)  + 0.197 0.9345
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Figures 2, 3, 4 and 5 display the monthly variation of R0 across, Morocco, Kenya, Mali and Mauritania respec-
tively. The locations in red colors (values of R0 > 1) represent the areas that may be suggested for application of 
M. acridum against desert locust outbreaks that month. Suggested locations vary from one month to another 
following climate variability within the respective countries and correspond to areas where M. acridum spore 

Figure 1.   Combined effect of Temperature (T) and Relative Humidity (RH) on basic reproduction number (R0) 
expression. (a) Dependence of R0 on temperature at constant RH and (b) 3D plot of R0 as a function of both RH 
and temperature.

Figure 2.   Morocco: Monthly spatial projection of the variation in R0 as a function of temperature and relative 
humidity reflecting the potential efficiency of the entomopathogenic fungus Metarhizium acridum as a 
biocontrol agent against desert locust. The area in red in each month are areas where R0 > 1 correspond to zones 
with potential higher efficiency and hence successful fungal biocontrol agent application against locusts while 
the area in orange (R0 ≈ 1) can also be targeted but with less potential efficacy. Application in areas in yellow 
and blue (R0 < 1) will probably not be efficient. The dots correspond to the reported point incidence of locusts in 
Morocco.
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production would multiply exponentially and be transmitted for the period the environmental conditions are 
favorable.

Discussion
Developing mathematical models for understanding the long term dynamic of climatic variables affecting the 
efficacy and successful application of an entomopathogenic fungus as a control agent of desert locust is a task 
that necessitates a robust conceptual framework, capable of exploring population dynamics both temporally 
and spatially. The present study proposed a modelling framework to help in exploring the spatial variability in 
performance of M. acridum applied as a biocontrol agent of desert locusts and apply it in selected African coun-
tries where locust outbreaks are common. Our model study confirmed that relative humidity and temperature 
are key factors impacting the biocontrol potential for the entomopathogenic fungus M. acridum to infect and 
kill the desert locust.

Processed-based modeling has been used to describe the mechanisms responsible for the dynamics of factors 
affecting the epidemiology of a entomopathogenic fungus14,61. The effect of time on fungal-pest interactions has 
been modeled by various forms of differential equations considering discrete time maps62, metapopulations63, 
networks and spatial data14. Developing reliable modeling frameworks which account for the prediction of 
large-scale climatic variables such as temperature and relative humidity on the performance of entomopatho-
genic fungi can be useful to schedule guidelines for smallholder farmer in the implementation of suitable pest 
management strategies.

In previous studies, a simulation model that captures the effects of temperature and host-mediated behavior 
was presented31, the effect of relative humidity on the performance of fungus for controlling locusts and grasshop-
pers using linear Eqs. 38 was explored. Through these models, the authors showed that high temperature (above 
35 °C) is a limiting factor for the performance of the entomopathogenic fungal isolates they tested; Klass et al.31 

Figure 3.   Kenya: Monthly spatial projection of the variation in R0 as a function of temperature and relative 
humidity reflecting the potential efficiency of the entomopathogenic fungus Metarhizium acridum as a 
biocontrol agent against locusts. The area in red in each month are areas where R0 > 1 correspond to zones with 
potential higher efficiency and hence fungal biocontrol agent application against desert locusts while area in 
orange (R0 ≈ 1) can also be targeted but with less potential efficacy. Application in areas in yellow and blue 
(R0 < 1) will probably not be efficient. The dots correspond to the reported point incidence of locusts in Kenya.
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on M. anisopliae (Hypocreales) and Hajek et al.38 Entomophaga maimaga (Entomophthoromycota), but that 
high relative humidity was required for the isolates to perform well. These models are based on the association 
between environmental factors (temperature) and the spatial arrangement of the fungus, aiming to identify the 
conditions most suitable for the species (M. anisopliae or? E. maimaga) to control locusts. The favorable condi-
tions identified by these models were projected into geographical space to infer spatial assumptions (based on 
temperature) about the possible distribution of the entomopathogenic fungi, to generate maps that shows the 
variation of the lethal time towards the host (locusts) over wider spatial and temporal scales36. The derivation 
and the mapping of an efficient pathogenicity index from a population model unifying essential features of the 
locust-natural enemy interactions mechanism and integrating jointly the relative humidity and temperature 
require more investigation.

Controlling locust invasions associated with climate variability will be critical in alleviating the potential 
threats to global food security that may lead to long-term nutritional emergencies and food crisis64. Previous 
studies reported that the optimum temperature for the efficient growth of most entomopathogenic fungi in 
the Hypocreales was around 30 °C19,22,31,36,65,66, and others found out that most entomopathogenic fungi in the 
Hypocreales require at least 95% relative humidity at the surface of the insect to germinate41. Our numerical 
results suggested that R0 is at maximum for temperatures in the range of 24–33 °C at relative humidity above 
95%, which agree to a certain level with the experimental results obtained in e.g.19,22,36,41,65,66. The accuracy of 
the model lies in the ability to reproduce almost all the areas where the entomopathogenic fungus can spread 
and then successfully control locust pest.

The main goal of locust control is to successfully implement a preventive and proactive strategy that can dis-
rupt their breeding cycle19. Furthermore, according to the locust expert at FAO, Keith Cressman, desert locusts 
can multiply 20-fold with a new generation every three months. Therefore, it is crucial to develop67 an effective 
tool that can help farmers and governments in their field monitoring activities, by building models that may 
contribute to future decision support systems (DSS) for when and where to apply M. acridum to control locusts. 
Although field validation of the model was not conducted, we aim to achieve this in future collaborations with 

Figure 4.   Mali: Monthly spatial projection of the variation in R0 as a function of temperature and relative 
humidity reflecting the potential efficiency of the entomopathogenic fungus Metarhizium acridum as a 
biocontrol agent against locusts. The area in red in each month are areas where R0 > 1 correspond to zones with 
potential higher efficiency and hence fungal biocontrol agent application against locusts while the area in brown 
(R0 ≈ 1) can also been targeted but with less potential efficacy. Application in areas in yellow and blue (R0 < 1) 
will probably not be efficient. The dots correspond to the reported point incidence of locusts in Mali.
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governments and organizations such as FAO through the team in charge of predicting the migratory pattern 
of desert locusts across Africa through an early warning system. Once a future locust invasion is forecast in an 
uninvaded country, an early or preventive application of the biopesticide can be scheduled in a timely manner 
for areas predicted by this model to be more suitable for surivival of the fungus. To obtain validation data for our 
model, this should be accompanied with recording field data on locust mortality caused by M. acridum and the 
actual environmental factors before, during and after M. acridum application.This should be compared with data 
from areas without application of M. acridum to rule out the effect of naturally occurring M. acridum infections 
of locusts. A preliminary validation can also be performed before investing a lot of resources into real field trials 
by using the current model to generate the map of Somalia and compare predicted potential efficiency of the 
area that fits with the 236 000 hectares treated by FAO during the recent locust outbreak67.

In Kimathi et al.68, the developed ecological niche model spatially projected to Kenya identified five classes 
(very low, low, moderate, high, very high) of suitability for the locust breeding site classified as [0–0.2] (very low) 
to [0.8–1.0] (very high). Analyzing the map of efficacy obtained for Kenya in this study and comparing the areas 
predicted by our model with potential higher efficiency for fungal application against locusts, we realize that 
there is a match between these areas and the ones with very high suitability for locust breeding68. This includes 
counties such as Garissa, Wajir, Marsabit and Mandera where locust invasions were recently reported. The present 
study therefore complements the work of Kimathi et al.68 by using the variability of the R0 value to guide where 
and when it might be advisable to plan the application of the microbial control agent M. acridum against desert 
locust at a large spatial scale. The decrease of R0 that spatially characterizes the areas with lower efficacy (R0 < 1) 
also matches with locations predicted by the ecological niche model as with low or very low suitability for locust 
breeding and should not be given priority. However, considering the fact that the current spatial projections 
use climate data collected and interpolated from weather stations, the areas predicted to have moderate efficacy 
(R0 ≈ 1) by our model might provide microclimatic conditions adequate for the efficacy of the fungal pathogen 
against desert locust as suggested by previous studies37,42.

Figure 5.   Mauritania: Monthly spatial projection of the variation in R0 as a function of temperature and 
relative humidity reflecting the potential efficiency of the entomopathogenic fungus Metarhizium acridum 
as a biocontrol agent against desert locusts. The area in red in each month are areas where R0 > 1 correspond 
to zones with potential higher efficiency and hence fungal biocontrol agent application against locusts while 
area in orange (R0 ≈ 1) can also be targeted but with less potential efficacy. Application in areas in yellow and 
blue (R0 < 1) will probably not be efficient. The dots correspond to the reported point incidence of locusts in 
Mauritania.
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In previous studies, several authors have used different approaches to tackle pest insects problems similar 
to the current study64,70–78. For instance, Moukam Kakmeni et al.72 used the same method as in this work to 
derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. 
However, their context required R0 < 1 for efficient control of the vector-borne diseases which is the opposite 
to this study where the target is R0 > 1. In Klass et al.31, the spatial variation of pathogen pathogenicity and the 
implications for biocontrol of locusts and grasshoppers was explored. Although the outcome is realistic, their 
method did not include the dynamics of fungus-pest insect interactions and neither considered the effect of rela-
tive humidity nor the efficacy of the entomopathogenic fungus. Our study is innovative by its way of using the 
basic reproduction number R0 derived from a dynamical mathematical model depending on both temperature 
and relative humidity to study the efficacy of an entomopathogenic fungus against pest locusts. The study in56–57 
used a similar approach but the limitation of their studies are that they did not consider the effects of climatic 
variables, limiting their predictive accuracy.

Our results underline that, realistic models need to include a broad spectrum of spatial and temporal fac-
tors to predict the efficacy of a fungal based biocontrol agent with high accuracy. A key challenge is to choose 
the most appropriate scale for modeling. This is influenced not only by the resolution of available climate data, 
but also by the biological knowledge that modeling process may translate into something globally observable at 
varying scale. Note that the greatest effect of climate change on the efficacy of a fungal based biocontrol agent is 
likely to be observed at the extremes of the optimal range of temperatures and RH at which the maximal fungal 
growth and germination occurs, which in our system is set at 28 °C and RH above 95%.

By applying the basic reproduction number R0, maps that illustrate the possibility of a successful application 
of the fungal based biocontrol agent M. acridum for the control of desert locust were obtained. The outcome 
of this study could constitute a realistic basis for understanding the interactions and complexities between the 
entomopathogenic fungus and desert locust. By developing models that may increase the efficacy of fungal 
based biocontrol agents, this may provide farmers with a better IPM tool and hence reduce the use of chemical 
insecticides as well as concerns connected to their side effects on health and environment.

There are increasing commercialization and farmer adoption of Low Risk Plant Protection Product (Annex II, 
point 5 of Regulation (EC) 1107/2009) to control locust outbreaks in Africa67. The fungal based product Green 
Muscle (with the active ingredient (a.i.) M. acridum) is the most widely used79 and reported to be very effective 
in killing adults within one to two weeks depending on the environmental conditions67. Large-scale applications 
in targeted countries are usually done with planes using oil-based formulation of the product which offer better 
chance of contact with the locust and makes it less vulnerable to low relative humidity. Since the timing of the 
spraying of these products is a key for better efficacy, the maps projecting the potential area of efficacy like those 
presented as output of this model can be useful resources when planning for such activities. This might also help 
optimizing the allocated resources and focus on specific areas in a specific month where high efficacy is expected.

Looking forward, an improvement from the current state of this work would consider the effect of another 
environmental factor such as ultraviolet radiation and, also extend similar model development exercises using 
other entomopathogenic fungi. Moreover, downscaling the spatial extent of the predictions combined with 
adopting hourly and daily temporal variation would also help improve the accuracy and help agricultural officers 
to provide reliable advises to farmers.

Materials and methods
Study area and datasets used.  The areas chosen for the study include Morocco, Mauritania, Kenya 
and Mali where both past and recent desert locusts outbreaks occurred and were documented with high levels 
of crop damage and represented as reported point coordinates of desert locust incidences53,68,80,81. The data-
sets used include the average monthly temperatures, the average monthly relative humidity, and the reported 
point coordinates of desert locust incidence in the respective countries of interest. Temperature data were taken 
from the Climatologies at High resolution for the Earth Land Surface Areas (CHELSA) climate data (Version 
1.2)82; corresponding to the monthly average mean for the time period 1979–2013. Relative humidity data were 
obtained from the NASA Surface meteorology and Solar Energy (SSE) (http://​eosweb.​larc.​nasa.​gov/​sse/) and 
corresponded to 22 years mean average. Temperature and relative humidity data used are in raster format.

Assumptions. 

	 (i)	 Temperature and macroclimatic relative humidity were considered as the key factors affecting the efficacy 
of the entomopathogenic fungus M. acridium against desert locust.

	 (ii)	 Application of the entomopathogenic fungus is successful in the target desert locus infested area and 
fungal spores are in contact with the desert locust cuticula.

	 (iii)	 Application of the entomopathogenic fungus is done at large spatial scale with mixture of different type 
of land coverage

Mathematical model.  Equations for modeling the epizootiological development of an insect pathogen in 
an insect pest population often adopt deterministic or stochastic transmission formulation embedded within 
static or fluctuating environments14. The model presented in Gilchrist et al.62 is used as root of our new model 
formulation. Their model originally assumes that the density of the pest within a patch is fixed and the interac-
tion between fungus and the host insect population (desert locust in this context) varies with the time. They 
characterized the model by three coupled equations describing the host insect population density within a patch, 
colony forming unit (CFU) being mycelium or conidial concentration in the host insect population (Table 2). In 
our proposed model the following assumptions are made: (i) the density of host insect pest within a patch is not 

http://eosweb.larc.nasa.gov/sse/
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limited; (ii) the fungus-insect pest interaction depends on the climate variables relative humidity and tempera-
ture which influences the epizootiology development within-patch.

The interaction between pest insect density (r) within a patch and the concentration of CFUs (m) (Fig. 6) is 
described at a daily time resolution (t) by the following coupled differential equations:

where c0, β, K, α and γ are fixed model parameters (see Table 2) while ω and ε are estimated based on equations 
presented in Table 3.

Moreover, the spore production rate of the fungus s(t), is proportional to the amount of growth media (pest 
insect body) available for spore production by the fungus (see Fig. 6)62. Thus,

See Table 2 for a list of parameters of this within-patch model.

Equilibrium points and stability analysis.  The equilibrium points are found by solving the equations 
dr/dt = dm/dt = 0 of the within-patch models Eqs. (1) and (2). The equation has three steady state points: (i) 
the trivial steady state, (ii) the pathogen-free equilibrium point and (iii) the basic reproduction number R0. To 
support the local stability of the steady states, we examine the linearized form of Eq. (1) at the equilibrium points.

The trivial steady state.  The trivial steady state of the within-patch models Eqs. (1) and (2) is given by 
E0 = (r,m) = (0, 0) . E0 is a saddle point, and at this point, there is no insect pest or entomopathogenic fungus. 
The Jacobian matrix of the within-patch model Eqs. (1) and (2) at the point is given by:

(1)
dr

dt
= c0r

(

1−
r

K

)

− (1− ω)
r

β + r
m

(2)
dm

dt
= m

(

γ (1− ε)(1− ω)
r

β + r
− α

)

(3)s(t) = c1ε(1− ω)
r

β + r
m.

(4)JE0 =

(

c0 0

0 −α

)

Table 2.   List and definition of model parameters.

Parameter Symbol Value Source

CFU death rate of entomopathogenic fungus α 0.66 62

Half-saturation constant of the density of host insect β 0.32 57

Conversion rate of host insect into mycelium of entomopathogenic fungus γ 1.0 62

Conversion rate of host insect into conidia of entomopathogenic fungus c1 1.0 62

Entomopathogenic fungal growth rate ω Estimated 31

Proportion of resources allocated for conidia production e Estimated 60

Insect carrying capacity K 1.0 57

Intrinsic growth rate of insect c0 1.0 57

Figure 6.   Model diagram of the within-patch system describing the interactions between the 
entomopathogenic fungus and host insect inside a patch model. Yellow color on the diagram denotes the 
entomopathogenic fungus M. acridium, green color denotes host insect population (desert locust), blue circle 
denotes interactions between the entomopathogenic fungus and the host insect, red arrow denotes death. See 
Table 2 for detailed model explanation and parameters definitions (adapted from62).
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with the characteristic equation:

where the eigenvalues (λ) are given by �1 = −α , �2 = c0.

The pathogen‑free equilibrium point.  The pathogen-free equilibrium point is given by E1 = (r,m) = (K , 0) . At 
this point, there are no fungal infected pest insects. The Jacobian matrix of the within-patch models Eqs. (1) and 
(2) at this point is given by:

The characteristic equation corresponding to the pathogen-free equilibrium point E1 is given by

The Routh–Hurwitz criterion ensures that all roots of the polynomial given by Eq. (7) have negative real 
parts83. Using Routh–Hurwitz, the pathogen free-equilibrium point E1 is stable if the following conditions are 
satisfied:

Figure 7a displays the stability diagram of the pathogen free-equilibrium point E1 given by Eqs. (8) and (9). 
For the simulations we chose parameters values given in Table 2. The diagram presents a blue region in the 
parameters space of (ω, ε) for, which all roots of the polynomial given by Eq. (7) have negative real parts and 
therefore corresponding to the stability zone of the pathogen free-equilibrium points.

Basic reproduction number R0.  An important metric of interacting and dynamic epizootiology systems is the 
basic reproduction number R0. It is applied in this context to quantify how frequently the entomopathogenic 
fungus transmission occurs and what it will result in (e.g. mortality of insect, reduced reproduction potential).

The basic reproduction number R0 is further assumed to describe the propensity of the entomopathogenic 
fungus to survive and to be propagated or go extinct. R0 is calculated for the proposed model by examining the 
stability of the pathogen-free equilibrium point (E1 = (r,m) = (K , 0)) . The next generation operator approach 
described in Hartemink et al.58 is employed to evaluate R0. The formulation of the basic reproduction number 
R0 is given by the following expression:

It is shown in Eqs. (8) and (9) that, if R0 < 1, then the pathogen-free equilibrium is stable and hence the 
entomopathogenic fungus goes extinct, while if R0 > 1 then the equilibrium is unstable and hence the entomopath-
ogenic fungus continues to transmit the disease. Estimation of R0 helps to determine whether locust outbreak 
effects can be attenuated if the entomopathogenic fungi is introduced (R0 > 1).

The endemic equilibrium point.  At this point, both pest insect and entomopathogenic fungus exist. The endemic 
equilibrium point (E2) for the within-patch model Eqs. (1) and (2) is given by:

The Jacobian matrix of the within-patch model Eqs. (1) and (2) at the endemic equilibrium point E2 is given 
by:

where

(5)�
2
+ (α − c0)�− αc0 = 0

(6)JE1 =

(

−c0
(ω−1)K
β+K

0
γK(1−ε)(1−ω)

β+K − α

)

.

(7)�
2
−
(Kγ (1− ω)(1− ε)− (K + β)(α + c0))

β + K
�−

(Kγ − Kγω − Kγ ε + Kγ εω − Kα − αβ)

β + K
c0 = 0.

(8)0 < −
Kγ − Kγω − Kγ ε + Kγ εω − Kα − αβ − c0β − c0K

β + K

(9)0 < −
(Kγ − Kγω − Kγ ε + Kγ εω − Kα − αβ)c0

β + K
.

(10)R0 =
α(β + K)

γK(1− ω)(1− ε)
.

(11)E2 =

(

αβ

γ (1− ω)(1− ε)− α
,
(1− ε)(Kγ (1− ω)(1− ε)− α(K − β))γ c0β

K(γ (1− ω)(1− ε)− α)2
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.

(12)JE2 =

(

j11 j12
j21 0

)

(13)j11 =
c0α(γ (1− ω)(1− ε)(β − K)− α(K + β))

γK(ω − 1)(ε − 1)(γ (1− ω)(1− ε)− α)

(14)j12 =
α
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The characteristic equation corresponding to the endemic equilibrium point E2 is expressed as:

where

Using the Routh–Hurwitz criterion, the endemic equilibrium point E2 is stable if the following conditions 
are satisfied:

Figure 7b illustrates the stability diagram of the endemic equilibrium point E2 given by Eqs. (19) and (20) 
through simulations with parameters values given in Table 2. The blue region in parameter space of (ω, ε) cor-
responds to the stability zone of the endemic equilibrium point.

Expression of R0 as function of climatic variables.  Some parameters in the R0 expression (Eq. 10) are 
assumed to be constant while other parameters are considered to be temperature and relative humidity sensitive 
over space and time. The actual expression of R0 (Eq. 10) is obtained with the following assumptions: (i) fungal 
lethal time is temperature sensitive; (ii) the proportion of fungal growth media (pest insects) allocated towards 
CFUs (mycelium/ conidia) is temperature and relative humidity sensitive; (iii) the parameters α, β, K and γ 
are constants. Temperature sensitive relation of fungal growth rate is described in31. Data obtained in60 were 
employed to estimate the parameters linking temperature, relative humidity and the proportion of resources 
(insects) available for spore production. Table 3 contains the summary of the parameters ε and ω.

Mapping R0 under climate (relative humidity and temperature) variability.  To map R0, its expres-
sion as function of climatic (relative humidity and temperature) variables was used. A matrix of geographical 
coordinates was built within the extent of the area of interest, afterward for each point coordinate of the matrix; 
we extracted the monthly average value of the temperatures and relative humidity from the respective raster 
layer and estimated the value of R0 using its mathematical expression (Eq. 10). The resulting matrix of R0 is 
converted into American Standard Code for Information Interchange (ASCII) files through spatial interpola-
tion which was uploaded into Quantum-Geographical Information System (Q-GIS version 3.10)84 for visuali-
zation and mapping. Subsequently, the potential areas where locusts outbreak effects can be attenuated if the 
entomopathogenic fungus is introduced as a biocontrol agent are visualized. Overall, the approach exploits the 

(15)j21 =
(Kγ (ω − 1)(ε − 1)− α(K + β))c0

(ω − 1)K
.

(16)�
2
− P1�+ P2 = 0

(17)P1 =
c0α(γ (1− ω)(ε − 1)(β − K)− α(K + β))

γK(ω − 1)(ε − 1)(γ (1− ω)(1− ε)− α)

(18)P2 =
(Kγ (1− ε)(1− ω)− α(K + β))c0α

γK(−1+ ω)(−1+ ε)
.

(19)0 <
(−Kγ εω + Kγ ε + αβ − Kγ + Kγω + Kα)c0α

(1− ω)(1− ε)Kγ

(20)0 <
c0α(−βγ εω + Kγ εω + βγ ε − Kγ ε + βγω − Kγω − γβ + Kγ − Kα − αβ)

γK(1− ω)(1− ε)(γ − γω − γ ε + γ εω − α)

Figure 7.   Illustration of the stability diagram of (ω, ε) for within patch model using parameters values in 
Table 2. (a) Stability diagram of the pathogen free equilibrium point and, (b) stability diagram of the endemic 
equilibrium point.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7535  | https://doi.org/10.1038/s41598-022-11424-0

www.nature.com/scientificreports/

spatial variation of temperature and relative humidity to provide predictions of the entomopathogenic fungus 
efficiency at large scale. The process was implemented in R (V.3.6.3)85 using several R-packages that include.

Sensitivity analysis (SA), model evaluation and validation.  A sensitivity analysis was performed 
to determine how sensitive the model output R0 (Eq. 10) is to changes in the model parameters, which further 
allows to determine which climate variable (relative humidity, temperature) that have most influence on the 
stability/instability of the equilibrium points and on R0. Sensitivity analysis provides a way to measure how 
changes in the parameters translate into variations in R0. It also assesses the relative importance of different 
factors responsible for the efficacy of the entomopathogenic fungus as a biocontrol agent against locusts and to 
better determine how to improve it. Sensitivity analysis was performed by the Partial Rank Correlation Coef-
ficient (PRCC) algorithm86, where large PRCC values (> 0.5 or < − 0.5) indicate that the parameter has a high 
influence (positive/negative) on the model outcome. A positive PRCC value indicates the increase of the efficacy 
with the increase of the parameter and a negative value indicates the decrease of the efficacy with an increase of 
the parameter.

A recent study in some East African countries predicted the breeding area for desert locust under climate 
change scenario using temperature, rainfall and, sand and soil moisture content as key bioclimatic factors68. The 
maps obtained in68, that predicted the current and future area of suitability in Kenya was used to compare if, 
the locations predicted to be highly suitable for the long-term establishment of desert locust, fits with the areas 
predicted by the current model to be deemed adequate for applying the entomopathogenic fungus as a biocontrol 
agent, against locust at a specific month. Furthermore, to evaluate the ability of the spatial projection of R0 as 
a tool to predict the suitable month for applying the entomopathogenic fungus as a biocontrol agent at a given 
location, the point coordinates of the locust incidences in the respective countries were uploaded to the maps of 
R0 to compare and check how these points fit with the areas having R0 greater than one (R0 > 1).

Data availability
All data generated or analysed during this study are included in this published article.
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