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Abstract. It is shown that the obvious generalization of the Pettis integral of a multifunction ob-
tained by replacing the Lebesgue integrability of the support functions by the Kurzweil–Henstock
integrability, produces an integral which can be described – in case of multifunctions with (weakly)
compact convex values – in terms of the Pettis set-valued integral.
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1. Introduction

There is abundant literature dealing with Bochner and Pettis integration of Banach
space-valued multifunctions (see El Amri and Hess [5] for further references) of
several types. In particular, quite recently Ziat [17, 18] and El Amri and Hess [5]
presented a nice characterization of Pettis integrable multifunctions having as their
values convex weakly compact subsets of a Banach space.

The definitions of such integrals involve in some way the Lebesgue integrability
of the support functions. The theory of integration introduced by Lebesgue at the
beginning of the twentieth century is a powerful tool which, perhaps because of
its abstract character, does not have the intuitive appeal of the Riemann integral.
Besides, as Lebesgue himself observed in his thesis [15], his integral does not
integrate all unbounded derivatives and so it does not provide a solution for the
problem of primitives, i.e. for the problem of recovering a function from its deriv-
ative. Moreover the Lebesgue theory does not cover nonabsolutely convergent
integrals. In 1957 Kurzweil [14] and, independently, in 1963 Henstock [9], by a
simple modification of Riemann’s method, gave a new definition of integral, which
is more general than that of Lebesgue. The Kurzweil–Henstock integral retains the
intuitive appeal of the Riemann definition, and, at the same time, has the power of
Lebesgue’s one. Moreover it integrates all derivatives. In the last thirty years the
theory of nonabsolute integrals has gone on considerably and the researches in this
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field are still active and far to be complete (for a survey on the subject, we refer
to [1]).

This is the motivation to consider, also in case of multifunctions, the Kurzweil–
Henstock integral for real valued functions. In this paper, in particular, we study the
obvious generalization of the Pettis integral of a multifunction obtained by replac-
ing the Lebesgue integrability of the support functions by the Kurzweil–Henstock
integrability (we call such an integral Kurzweil–Henstock–Pettis). In Theorem 1
we prove a surprising and unexpected characterization of the new integral in terms
of the Pettis integral: the Kurzweil–Henstock–Pettis integral is in some way a
translation of the Pettis integral.

In case of measurable multifunctions with convex weakly compact values, the
Pettis integrability of the selections is a necessary and sufficient condition for
the Pettis integrability of the multifunction. We show that a similar character-
ization holds true also in case of the Kurzweil–Henstock–Pettis integrability of
multifunctions.

2. Basic Facts

Let [0, 1] be the unit interval of the real line equipped with the usual topology
and the Lebesgue measure. L denotes the family of all Lebesgue measurable sub-
sets of [0, 1] and if E ∈ L, then |E| denotes its Lebesgue measure. A parti-
tion P in [a, b] ⊂ [0, 1] is a collection {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip

are nonoverlapping subintervals of [a, b] and ti is a point of Ii , i = 1, . . . , p. If⋃p

i=1 Ii = [a, b], we say that P is a partition of [a, b]. A gauge on [a, b] is a
positive function on [a, b]. For a given gauge δ on [a, b], we say that a partition
{(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i = 1, . . . , p.

DEFINITION 1 ([3, 6]). Let X be any Banach space. A function f : [0, 1] → X

is said to be Henstock integrable on [a, b] ⊂ [0, 1] if there exists w ∈ X with the
following property: for every ε > 0 there exists a gauge δ on [a, b] such that

∥
∥
∥
∥
∥

p∑

i=1

f (ti)|Ii | − w

∥
∥
∥
∥
∥

< ε,

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [a, b]. We set w =: (H)
∫ b

a
f dt .

We denote the set of all Henstock integrable functions on [0, 1], taking their
values in X, by H([0, 1], X). In case when X is the real line, f is called Kurzweil–
Henstock integrable, or simply KH-integrable and the space of all KH-integrable
functions is denoted by KH [0, 1].

It is useful to recall some basic results in the theory of real valued KH-integrable
functions. The proofs can be found, for example, in [8].

PROPOSITION 1. Let f : [0, 1] → R be a function.



SET-VALUED KURZWEIL–HENSTOCK–PETTIS INTEGRAL 169

(a) If f is Lebesgue integrable on [0, 1], then it is also KH-integrable.
(b) If f is KH-integrable on [0, 1], then f is measurable.
(c) If f is KH-integrable on [0, 1], then f is KH-integrable on every subinterval

of [0, 1].
(d) f is Lebesgue integrable on [0, 1] if and only if both f and |f | are KH-

integrable.
(e) If f = F ′ is a derivative, then f is KH-integrable and (KH)

∫ s

0 f (t) dt =
F(s) − F(0), for each s ∈ [0, 1].

Throughout this paper X is a separable Banach space with dual X∗. The closed
unit ball of X∗ is denoted by B(X∗). c(X) denotes the collection of all nonempty
closed convex subsets of X. cwk(X) (resp. cwk(X∗∗)) denotes the family of all non-
empty convex weakly compact subsets of X (resp. of the bidual X∗∗ of X), ck(X)

(resp. ck(X∗∗)) the family of all nonempty convex compact subsets of X (resp.
of X∗∗) and cb(X) (resp. cb(X∗∗)) the family of all nonempty closed bounded
convex subsets of X (resp. of X∗∗).

For every C ∈ c(X) the support function of C is denoted by s(·, C) and defined
on X∗ by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗. If C = ∅, s(·, C) is
identically −∞. Otherwise s(·, C) does not take the value −∞.

Any map Γ : [0, 1] → c(X) is called a multifunction.
A multifunction Γ is said to be measurable if for each open subset O of X,

the set {t ∈ [0, 1] : Γ (t) ∩ O �= ∅} is a measurable set. Γ is said to be scalarly
measurable if for every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measurable. It is known
that in case of cwk(X)-valued multifunctions the scalar measurability yields the
measurability (cf. [10], Proposition 2.39). The reverse implication always holds
true (cf. [10], Proposition 2.3.2). Γ : [0, 1] → c(X) is said to be graph mea-
surable if the set {(t, x) ∈ [0, 1] × X : x ∈ Γ (t)} is a member of the product
σ -algebra generated by L and the Borel subsets of X in the norm topology. In case
of considering of a complete probability space and a Banach space the graph mea-
surability of a c(X)-valued multifunction coincides with its measurability (cf. [10],
Theorem 2.1.35).

Γ is said to be scalarly integrable (resp. scalarly Kurzweil–Henstock integrable)
if, for every x∗ ∈ X∗, the function s(x∗, Γ (·)) is integrable (resp. Kurzweil–
Henstock integrable). A function f : [0, 1] → X is called a selection of Γ if,
for every t ∈ [0, 1], one has f (t) ∈ Γ (t). A selection f is said to be measurable
if the function f is strongly measurable (i.e. f is a limit of an almost everywhere
convergent sequence of measurable simple functions).

DEFINITION 2. A measurable multifunction Γ : [0, 1] → cb(X) is Dunford (re-
spectively Kurzweil–Henstock–Dunford) integrable or simply D-integrable (resp.
KHD-integrable), if it is scalarly integrable (resp. scalarly Kurzweil–Henstock in-
tegrable) and for each nonempty set A ∈ L (resp. subinterval [a, b] ⊆ [0, 1]), there
exists a nonempty set WA ∈ cb(X∗∗) (resp. W[a,b] ∈ cb(X∗∗)) such that
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s(x∗, WA) = (L)

∫

A

s(x∗, Γ (t)) dt, (1)

(

resp. s(x∗, W[a,b]) = (KH)

∫ b

a

s(x∗, Γ (t)) dt

)

(2)

for all x∗ ∈ X∗ (L stands for the Lebesgue integral).
If WA ∈ C (resp. W[a,b] ∈ C), for each A ∈ L (resp. [a, b] ⊆ [0, 1]),

and C is a subspace of cb(X), then Γ is said to be Pettis integrable, or simply
P -integrable (resp. Kurzweil–Henstock–Pettis integrable or simply KHP-integra-
ble) in C. We call WA (resp. W[a,b]) the Pettis (resp. Kurzweil–Henstock–Pettis) in-
tegral of Γ over A (resp. [a, b]) and we set WA =: (P )

∫
A

Γ (t) dt (resp. W[a,b] =:
(KHP)

∫ b

a
Γ (t) dt).

We note that when a multifunction is a function f : [0, 1] → X, then the sets
WA and W[a,b] are reduced to vectors in X, the equalities (1) and (2) turn into

〈x∗, WA〉 = (L)

∫

A

x∗f (t) dt,

(

resp. 〈x∗, W[a,b]〉 = (KH)

∫ b

a

x∗f (t) dt

)

and we say in that case that the function f is Pettis (resp. Kurzweil–Henstock–
Pettis) integrable. It is perhaps worth to recall in this place that Gamez and Men-
doza [7] proved that a function f : [0, 1] → X is KHD-integrable if and only if f

is scalarly KH-integrable.
An extensive study of Banach valued Pettis integral can be found in [16].
Given a multifunction Γ : [0, 1] → cb(X) by the symbols SKHP(Γ ) and SP (Γ )

we denote the families of all measurable selections of Γ that are respectively
Kurzweil–Henstock–Pettis integrable and Pettis-integrable. It is a consequence of
[13] that if X is separable, then for each measurable multifunction Γ : [0, 1] →
cb(X) the family of measurable selections of Γ is not empty.

DEFINITION 3. A measurable multifunction Γ : [0, 1] → cwk(X) is said to be
Aumann–Kurzweil–Henstock–Pettis integrable if SKHP(Γ ) �= ∅. Then we define

(AKHP)

∫ 1

0
Γ (t) dt :=

{

(KHP)

∫ 1

0
f (t) dt : f ∈ SKHP(Γ )

}

.

It is clear that each Henstock integrable function is also KHP-integrable. The re-
verse implication is not so obvious. In [7] there is an example of a KHP-integrable
function f : [0, 1] → c0 (the authors say there on the Denjoy–Pettis integral) which
is not Pettis integrable. We are going to show that same function is not Henstock
integrable. It will follow from this that the collection of KHP-integrable functions
is larger than that of Henstock integrable ones.
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EXAMPLE 1. Consider a sequence of intervals An = [an, bn] ⊆ [0, 1] such that
a1 = 0, bn < an+1 for all n ∈ N and limn→∞ bn = 1 and define f : [0, 1] → c0 by

f (t) =
(

1

2|A2n−1|χA2n−1(t) − 1

2|A2n|χA2n
(t)

)∞

n=1

.

The function f is Dunford integrable, (D)
∫
[0,1] f = 0 and (D)

∫
J

f belongs to
c0 for each subinterval J ⊂ [0, 1] (see [7]). Consequently, f is KHP-integrable in
[0, 1] and (KHP)

∫
[0,1] f = 0.

Let us consider now any gauge δ on [0, 1]. Set I 0 = [c, 1], where c > 1 − δ(1)

and b2n0−1 < c < a2n0 , for a suitable natural number n0. Then, for i = 1, . . . ,

2n0 − 1, let Pi = {(I i
s , y

i
s) : s = 1, . . . , pi} be a δ-fine partition of [ai, bi] and

let P̂i = {(J i
s , z

i
s) : s = 1, . . . , qi} be a δ-fine partition of [bi, ai+1], for i =

1, . . . , 2n0 − 2, and of [b2n0−1, c] for i = 2n0 − 1. Moreover assume that if zi
s = bi

or, respectively, zi
s = ai+1for some indices i and s then the corresponding interval

J i
s satisfies the additional condition |J i

s | < 1
4(2n0−1)

|Ai | or, respectively, |J i
s | <

1
4(2n0−1)

|Ai+1|. By the construction the family P = {(I 0, 1)} ∪ (
⋃

i Pi) ∪ (
⋃

i P̂i)}
is a δ-fine partition of [0, 1]. We have

∥
∥
∥
∥

∑

(I,t)∈P

f (t)|I |
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
f (1)|I 0| +

2n0−1∑

i=1

pi∑

s=1

f (yi
s)|I i

s | +
∑

{i:zi
s=bi }

f (zi
s)|J i

s |+

+
∑

{i:zi
s=ai+1}

f (zi
s)|J i

s |
∥
∥
∥
∥
∥

�
∥
∥
∥
∥
∥

2n0−1∑

i=1

pi∑

s=1

f (yi
s)|I i

s |
∥
∥
∥
∥
∥

−
∥
∥
∥
∥

∑

{i:zi
s=bi }

f (zi
s)|J i

s |
∥
∥
∥
∥ −

∥
∥
∥
∥

∑

{i:zi
s=ai+1}

f (zi
s)|J i

s |
∥
∥
∥
∥

� 1

2
−

∑

{i:zi
s=bi }

|J i
s |

2|Ai | −
∑

{i:zi
s=ai+1}

|J i
s |

2|Ai+1|

� 1

2
− (2n0 − 1)

1

8(2n0 − 1)
− (2n0 − 1)

1

8(2n0 − 1)
= 1

4
.

So taking into account that (D)
∫
[0,1] f = 0, the inequalities show that f cannot be

H -integrable. �
It seems to be a good place to put here a remark concerning the problem of

primitives for Banach space valued functions.

PROPOSITION 2. If f : [0, 1] → X is weakly differentiable, then its weak
derivative f ′ is KHP-integrable and (KHP)

∫ s

0 f ′(t) dt = f (s) − f (0) for each
s ∈ [0, 1].
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Proof. The existence of the weak derivative at a point t means that there is a
point f ′(t) ∈ X such that

lim
�t→0

x∗f (t + �t) − x∗f (t)

�t
= x∗f ′(t)

for each x∗ ∈ X∗. This in particular means that each x∗f is differentiable and so by
(e) of Proposition 1, x∗f (s) − x∗f (0) = (KH)

∫ s

0 (x∗f )′(t) dt for every s ∈ [0, 1].
But by the assumption, we have (x∗f )′ = x∗f ′ what yields

x∗f (s) − x∗f (0) = (KH)

∫ s

0
x∗f ′(t) dt

and means exactly that f (s) − f (0) = (KHP)
∫ s

0 f ′(t) dt . �
In the above proof one may assume the weak continuity of f everywhere and

the weak differentiability of f nearly everywhere, i.e. except for a countable set
(cf. [8]).

3. A Characterization of KHP-Integrable Multifunctions

We begin with an easy fact (it is true in a more general case of c(X) instead of
cb(X), but we do not want to enter into details concerning the definition of the
Pettis integral in such a case, see [5]).

LEMMA 1. Let G: [0, 1] → cb(X) be Pettis integrable in cb(X). If the null
function is a selection of G, then for every measurable sets A and B such that
A ⊆ B we have WA ⊆ WB .

Proof. Suppose that x0 ∈ WA \ WB . Then, due to the Hahn–Banach theorem,
there is x∗

0 such that x∗
0 (x0) > supx∈WB

x∗
0 (x). Consequently,

(L)

∫

A

s(x∗
0 , G(t)) dt = s(x∗

0 , WA) � x∗
0 (x0) > sup

x∈WB

x∗
0 (x)

= s(x∗
0 , WB) = (L)

∫

B

s(x∗
0 , G(t)) dt

what contradicts the nonnegativity of the support functions of G. Thus
WA ⊆ WB . �
LEMMA 2. If Γ : [0, 1] → cwk(X) is KHP-integrable, then each measurable
selection of Γ is KHP-integrable.

Proof. If f is a measurable selection of Γ , then for each x∗ ∈ X∗ and t ∈ [0, 1]
we have the inequality

−s(−x∗, Γ (t)) � x∗f (t) � s(x∗, Γ (t)). (3)
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So, if f is measurable, then the Kurzweil–Henstock integrability of the function
x∗f follows immediately by the Kurzweil–Henstock integrability of s(x∗, Γ (t)),
for each x∗ ∈ X∗. Indeed, we get from (3) the inequalities,

0 � x∗f (t) + s(−x∗, Γ (t)) � s(x∗, Γ (t)) + s(−x∗, Γ (t)).

The function s(x∗, Γ (·)) + s(−x∗, Γ (·)) is nonnegative and KH-integrable, hence
it is Lebesgue integrable (see (d) of Proposition 1). Consequently also x∗f (·) +
s(−x∗, Γ (·)) is Lebesgue integrable. Finally x∗f (t) = [x∗f (t)+ s(−x∗, Γ (t))]−
s(−x∗, Γ (t)) and so x∗f ∈ KH [0, 1]. Hence for each [a, b] ⊆ [0, 1] we have

−s(−x∗, W[a,b]) � (KH)

∫ b

a

x∗f (t) dt � s(x∗, W[a,b]).

Since W[a,b] is convex weakly compact, the function x∗ → s(x∗, W[a,b]) is
τ(X∗, X)-continuous, where τ(X∗, X) is the Mackey topology of X∗. Consequent-
ly the functional x∗ → (KH)

∫ b

a
x∗f (t) dt is also τ(X∗, X)-continuous.

It follows that there is x[a,b] ∈ X such that

(KH)

∫ b

a

x∗f (t) dt = 〈x∗, x[a,b]〉. �
LEMMA 3. If all measurable selections of a measurable multifunction Γ : [0, 1]
→ cwk(X) are KHP-integrable, then for every x∗ ∈ X∗ and every [a, b] ⊆ [0, 1],
we have

s

(

x∗, (AKHP)

∫ b

a

Γ (t) dt

)

= (KH)

∫ b

a

s(x∗, Γ (t)) dt.

Proof. It is enough to prove the assertion for the unit interval. If f ∈ SKHP(Γ ),
then x∗f (t) � s(x∗, Γ (t)) and so we get immediately the inequality

s

(

x∗, (AKHP)

∫ 1

0
Γ (t) dt

)

� (KH)

∫ 1

0
s(x∗, Γ (t)) dt.

To prove the reverse inequality let us fix x∗ and ε > 0. Then set

Γε(t) := Γ (t) ∩ {x ∈ X : x∗(x) � s(x∗, Γ (t)) − ε}.
One can easily see that Γε is graph measurable and so it is measurable (cf. [10],
Theorem 2.1.35). If f is a measurable selection of Γε, then clearly x∗f (t) �
s(x∗, Γ (t)) − ε and further

(KH)

∫ 1

0
x∗f (t) dt � (KH)

∫ 1

0
s(x∗, Γ (t)) dt − ε.

This completes the proof. �
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LEMMA 4. If all measurable selections of a scalarly KH-integrable multifunction
Γ : [0, 1] → cwk(X) are KHP-integrable, then (AKHP)

∫ 1
0 Γ (t) dt is a convex

weakly compact set.
Proof. Notice first that the scalar KH-integrability of Γ yields the scalar mea-

surability of Γ and hence its measurability (because we consider cwk(X)-valued
multifunctions).

Let us fix a measurable selection f of Γ and let G(t) := Γ (t) − f (t). By the
assumption f is KHP-integrable and so G is also AKHP-integrable. Let I[0,1] :=
(AKHP)

∫ 1
0 G(t) dt and let D be a countable weak∗-dense subset of B(X∗). It is

enough to prove the convexity and weak compactness of I[0,1]. As the convexity is
obvious we will try to prove the weak compactness of I[0,1]. To do it take a sequence
of points xn ∈ I[0,1]. Then there exist gn ∈ SKHP(G) with

xn = (KHP)

∫ 1

0
gn(t) dt.

We have for each n ∈ N, each t ∈ [0, 1] and each x∗ the inequalities

−s(−x∗, G(t)) � x∗gn(t) � s(x∗, G(t)) (4)

and the support functions s(x∗, G(t)) are Lebesgue integrable (because they are
nonnegative and KH-integrable). Consequently also each x∗gn is Lebesgue inte-
grable and

(L)

∫ 1

0
|x∗gn(t)| dt � (L)

∫ 1

0
s(x∗, G(t)) dt + (L)

∫ 1

0
s(−x∗, G(t)) dt.

Due to the countability of D and L1-boundedness of each sequence 〈x∗gn〉 we
can apply Bukhvalov–Lozanovskij’s theorem [2] to find hn ∈ conv{gn, gn+1, . . .}
such that for each x∗ ∈ D the sequence 〈x∗hn〉 is a.e. convergent to a measurable
function hx∗ . (We could apply also Komlos’ theorem [11] instead, but the proof of
the result of Bukhvalov–Lozanovskij is much more elementary.)

As for each t and n we have hn(t) ∈ G(t) and G(t) is weakly compact there
is a weak cluster point h(t) ∈ G(t) of 〈hn(t)〉. It follows that there is a set N of
Lebesgue measure zero such that for each x∗ ∈ D and each t /∈ N we have

x∗h(t) = lim
n

x∗hn(t) = hx∗(t).

But as D separates points of X and 〈hn(t)〉 is weakly relatively compact it follows
that for each t /∈ N the sequence 〈hn(t)〉 is weakly convergent to h(t). The weak
measurability of h is immediate and as X is separable the Pettis theorem yields
its strong measurability. Moreover, as a consequence of the KHP integrability of
all measurable selections of Γ and of the KHP-integrability of f , we have h ∈
SKHP(G).
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Taking into account (4) and the Lebesgue dominated convergence theorem we
get for each x∗ ∈ X∗ the relation

lim
n

〈

x∗, (KHP)

∫ 1

0
hn(t) dt

〉

= lim
n

(L)

∫ 1

0
x∗hn(t) dt

= (L)

∫ 1

0
x∗h(t) dt

=
〈

x∗, (KHP)

∫ 1

0
h(t) dt

〉

. (5)

Put now yn = (KHP)
∫ 1

0 hn(t) dt . Then yn ∈ I[0,1], yn ∈ conv{xn, xn+1, . . .} and

the sequence 〈yn〉 is weakly convergent to x = (KHP)
∫ 1

0 h(t) dt . Thus, given an
arbitrary sequence of elements xn ∈ I[0,1] there is a convex combination of points
yn ∈ conv{xn, xn+1, . . .} and x ∈ I[0,1] such that yn → x weakly. Consequently,
the set I[0,1] is weakly compact (cf. [12], §24). �
THEOREM 1. Let Γ : [0, 1] → cwk(X) be a scalarly Kurzweil–Henstock inte-
grable multifunction. Then the following conditions are equivalent:

(i) Γ is KHP-integrable in cwk(X);
(ii) SKHP(Γ ) �= ∅ and for every f ∈ SKHP(Γ ) there exists a multifunction G:

[0, 1] → cwk(X) such that Γ (t) = G(t) + f (t) and G is Pettis integrable in
cwk(X);

(iii) there exists f ∈ SKHP(Γ ) and a multifunction G: [0, 1] → cwk(X) such that
Γ (t) = G(t) + f (t) and G is Pettis integrable in cwk(X);

(iv) SKHP(Γ ) �= ∅ and for every f, h ∈ SKHP(Γ ), h − f is Pettis integrable;
(v) for all [a, b] ⊆ [0, 1], (AKHP)

∫ b

a
Γ (t) dt belongs to cwk(X) and

s

(

x∗, (AKHP)

∫ b

a

Γ (t) dt

)

= (KH)

∫ b

a

s(x∗, Γ (t)) dt

for all x∗ ∈ X∗;
(vi) each measurable selection of Γ is KHP-integrable.

Proof. (i) ⇒ (ii) Let f ∈ SKHP(Γ ) be quite arbitrary (existing by Lemma 2).
Define G: [0, 1] → cwk(X) by setting G(t) := Γ (t)−f (t). Then s(x∗, G(t)) � 0
for all x∗ and t ∈ [0, 1]. Moreover,

s(x∗, Γ (t)) = s(x∗, G(t)) + x∗f (t), (6)

and so KH-integrability of s(x∗, Γ (·)) and of x∗f yields the Lebesgue integrability
of s(x∗, G(·)). Thus, we have for each x∗ ∈ X∗

(L)

∫ 1

0
s(x∗, G(t)) dt = (KH)

∫ 1

0
s(x∗, Γ (t)) dt − (KH)

∫ 1

0
x∗f (t) dt
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= s(x∗, W[0,1]) − (KH)

∫ 1

0
x∗f (t) dt

= s

(

x∗, W[0,1] − (KHP)

∫ 1

0
f (t) dt

)

.

And since W[0,1] belongs to cwk(X), also the set W[0,1] − (KHP)
∫ 1

0 f (t) dt belongs
to cwk(X).

Since the zero function is a Pettis integrable selection of G and s(x∗, G(·)) is
Lebesgue integrable, it follows from Theorem 3.7 of [5] that for every E ∈ L there
is a closed convex set CE ⊂ X such that

(L)

∫

E

s(x∗, G(t)) dt = s(x∗, CE).

But as the set W[0,1]−(KHP)
∫ 1

0 f (t) dt is weakly compact, we may apply Lemma 1
to get Pettis integrability of G in cwk(X).

(ii) ⇒ (iv) Let f ∈ SKHP(Γ ) and set G(t) := Γ (t) − f (t). Now if h is a
measurable selection of Γ then g = h − f is a measurable selection of G and we
have the inequality

−s(−x∗, G(t)) � x∗g(t) � s(x∗, G(t)). (7)

Hence, for each E ∈ L there is WE ∈ cwk(X) such that

−s(−x∗, WE) = −(L)

∫

E

s(−x∗, G(t)) dt

� (L)

∫

E

x∗g(t) dt

� (L)

∫

E

s(x∗, G(t)) dt = s(x∗, WE).

Since WE is weakly compact its support function is τ(X∗, X)-continuous. It fol-
lows that x∗ → (L)

∫
E

x∗g(t) dt is τ(X∗, X)-continuous. This implies the Pettis
integrability of g.

(iv) ⇒ (ii) Take an f ∈ SKHP(Γ ). Then, by the assumption, each measurable
selection g of G = Γ − f is Pettis integrable and so, by Theorem 5.4 of [5], G is
Pettis integrable in cwk(X).

(ii) ⇒ (v) Let f ∈ SKHP(Γ ) be such that the multifunction G(t) = Γ (t) −
f (t) is Pettis integrable in cwk(X). According to Theorem 5.4 of [5] we have
(P )

∫ 1
0 G(t) dt = {(P )

∫ 1
0 f (t) dt : f ∈ SP (G)}. Since (P )

∫ 1
0 G(t) dt is a convex

weakly compact set and

(AKHP)

∫ 1

0
Γ (t) dt = (P )

∫ 1

0
G(t) dt + (KHP)

∫ 1

0
f (t) dt,

also the set (AKHP)
∫ 1

0 Γ (t) dt is convex weakly compact.
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Now we prove the second part of the assertion. Its proof is similar to the proof
of Lemma 3.

We take [a, b] = [0, 1] for simplicity and fix x∗ ∈ X∗. Since s(x∗, Γ (t)) =
s(x∗, G(t)) + x∗f (t), by the hypotheses the support function s(x∗, Γ (·)) is
KH-integrable. Then, taking into account that s(x∗, G(t)) � 0

(KH)

∫ 1

0
x∗f dt � (KH)

∫ 1

0
s(x∗, Γ (t)) dt

for each f ∈ SKHP(Γ ). Hence,

s

(

x∗, (AKHP)

∫ 1

0
Γ (t) dt

)

� (KH)

∫ 1

0
s(x∗, Γ (t)) dt.

Take now an arbitrary ε > 0 and define a new multifunction H : [0, 1] → cwk(X)

by setting for each t ∈ [0, 1]
H(t) := Γ (t) ∩ {x ∈ X : x∗(x) � s(x∗, Γ (t)) − ε}.

If h is a measurable selection of H , s(x∗, Γ (t)) − ε � x∗h(t) � s(x∗, Γ (t)) and
so

(KH)

∫ 1

0
x∗h dt � (KH)

∫ 1

0
s(x∗, Γ (t)) dt − ε.

Since h is also a selection of Γ , the assertion follows.
(v) ⇒ (i), (ii) ⇒ (iii) and (iii) ⇒ (i) are obvious.
By Lemma 1 (i) implies (vi) and (vi) ⇒ (i) follows from Lemmata 3 and 4.

This completes the proof. �
Remark 1. Theorem 1 remains true if cwk(X) is replaced by ck(X). The proof

requires only obvious changes.

COROLLARY 1. If Γ , G and f are as in Theorem 1, then the (KHP)-integral of
Γ is a translation of the Pettis integral of G:

(KHP)

∫ b

a

Γ (t) dt = (P )

∫ b

a

G(t) dt + (KHP)

∫ b

a

f (t) dt

for all [a, b] ⊆ [0, 1].

Analysis of the proof of Theorem 1 gives also the following result:

THEOREM 2. Let Γ : [0, 1] → cb(X) be a measurable and scalarly KH-integra-
ble multifunction. If SKHP(Γ ) �= ∅, then the following conditions are equivalent:

(j) Γ is KHP-integrable in cb(X);
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(jj) for every f ∈ SKHP(Γ ) the multifunction G: [0, 1] → cb(X), given by
G(t) = Γ (t) − f (t), is Pettis integrable in cb(X);

(jjj) there exists f ∈ SKHP(Γ ) such that the multifunction G: [0, 1] → cb(X),
given by G(t) = Γ (t) − f (t), is Pettis integrable in cb(X).

We have then

(KHP)

∫ b

a

Γ (t) dt = (P )

∫ b

a

G(t) dt + (KHP)

∫ b

a

f (t) dt

for all [a, b] ⊆ [0, 1].
Without the assumption SKHP(Γ ) �= ∅ we get only the following:

THEOREM 3. Let Γ : [0, 1] → cb(X) be a measurable and scalarly KH-inte-
grable multifunction. If Γ is KHP-integrable in cb(X), then for every measurable
selection f of Γ the multifunction G: [0, 1] → cb(X) given by G(t) = Γ (t)−f (t)

is Pettis integrable in cb(X). We have then

(KH)

∫ b

a

s(x∗, Γ (t)) dt = (L)

∫ b

a

s(x∗, G(t)) dt + (KH)

∫ b

a

x∗f (t) dt

for all [a, b] ⊆ [0, 1] and all x∗ ∈ X∗.
Proof. Let f be a measurable selection of Γ and let G be defined in the way de-

scribed above. As a measurable selection of a scalarly KH-integrable multifunction
is scalarly KH-integrable, we see that Γ (t) = G(t)+f (t), where f is scalarly KH-
integrable. Since G has at least one Bochner integrable selection (the null function),
according to Corollary 3.8 of [5], for every E ∈ L there is DE ∈ c(X) with

s(x∗, DE) = (L)

∫

E

s(x∗, G(t)) dt

for all x∗ ∈ X∗. Hence, we have for every x∗ ∈ X∗

s(x∗, D[0,1]) + (KH)

∫ 1

0
x∗f (t) dt = (KH)

∫ 1

0
s(x∗, Γ (t)) dt �= ±∞.

It follows that s(x∗, D[0,1]) �= ±∞ for all x∗ ∈ X∗. The Banach–Steinhaus theorem
yields now D[0,1] ∈ cb(X). And so applying Lemma 1 we get that also every DE

is bounded, proving the Pettis integrability of G in cb(X). �
The Theorems 1 and 2 show that under suitable assumptions a measurable and

scalarly (KH)-integrable multifunction is a sum of a Pettis integrable multifunction
and a selection. In case of a cwk(X)-valued multifunction all selections of the Pettis
integrable component are Pettis integrable.

We finish with an example showing that a decomposition theorem for a Pettis
integrable in cwk(X) multifunction G in the form G(t) = H(t) + f (t), where
f ∈ SP (G) and all measurable selections of H are Bochner integrable, is in general
false. In particular H cannot be taken integrably bounded.
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EXAMPLE 2. Let f : [0, 1] → X be a Pettis but not Bochner integrable function
(it is well known that if X is infinite-dimensional, then there are such functions).
We define a multifunction G: [0, 1] → ck(X) by setting G(t) = conv{0, f (t)}.
Since for every x∗ ∈ X∗ we have s(x∗, G(t)) = [x∗f (t)]+, the multifunction G

is scalarly integrable and measurable. Moreover all measurable selections of G are
Pettis integrable and so G itself is Pettis integrable in ck(X) (see [5]). Suppose
there is h ∈ SP (G) which is not Bochner integrable and H(t) := G(t) − h(t) is
such that all its measurable selections are Bochner integrable. We have H(t) =
conv{0, f (t)} − h(t) = conv{−h(t), f (t) − h(t)}. But the function −h is a non-
Bochner integrable selection of H .
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