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Abstract Regime channel formation is a delicate adaptation to the imposed environ-
mental conditions compatible with flow and sediment transport mechanisms. The 
present paper concerns the computation of the regime configuration of a meandering 
stream. It is supposed that the channel develops until it reaches the state of “final 
thermodynamic equilibrium”, where the ratio of the kinetic energy of the flow to its 
cross-sectional potential energy is minimum. An optimization procedure that allows 
the analysis of the regime channel formation is presented and it is checked using a 
real case. 
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INTRODUCTION 
 
Natural rivers tend to adjust their plane shape and longitudinal profile in order to assume a 
configuration compatible with the changing hydraulic and man-made constraints. The final 
configuration, called “regime configuration”, represents the equilibrium geometry self-
formed by the alluvial stream. The prediction of the regime channel configuration has 
generated a lot of interest amongst scientists and engineers. In technical terms the approach 
consists of the identification of the independent variables (often called controlling variables) 
and of the dependent variables (channel width, water depth, channel slope, meandering or 
braiding pattern). The independent variables, which are imposed upon the river by nature or 
by man, maintain their constant values through the duration of the regime development and 
they can be considered as the cause of the evolution process; the dependent variables vary 
during the channel evolution in order to obtain a value compatible with the imposed 
conditions. In selecting the independent variables for the prediction analysis, it is necessary 
to take into account the time scale of the process under study. In long-term processes, as 
considered in the present work, the mechanisms controlling the planimetric channel 
evolution become significant (Chang, 1988; Di Silvio, 1994): the water discharge and the 
sediment discharge can be considered as independent variables and the channel 
characteristics (width, depth and slope) as dependent variables. The planimetric evolution of 
the channel follows as effect of the regime-formation process that could take place in 
different ways: in some cases the stream is meandering, in others it is braiding (Yalin & da 
Silva, 2001).  
 There is still no unanimity on the question of which process is mainly responsible for the 
initiation and development of meandering stream. In particular, two major theories can be 
considered: the stability theories (Engelund & Skovgaard, 1973; Callander, 1978; Parker et 
al., 1982; Zolezzi & Seminara, 2001) which consider the meandering pattern as a 
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consequence of an unstable response of the river to some perturbations; the rational theories 
or extreme methods (Yang & Song, 1979; White et al., 1982; Davies & Sutherland, 1983; 
Yang, 1984), which are motivated by the conviction that the regime configuration develops 
because an energy related physical quantity tends to acquire its minimum value. In the latter 
case the regime configuration is revealed by solving a system of equations determining the 
dependent variables (width, depth and slope). Within the rational theories various physical 
quantities reaching the minimum value have been considered: the rate of energy dissipation 
(Yang & Song, 1979), the transport rate (White et al., 1982), the unit stream power (Yang, 
1984), the stream power (Chang, 1988), etc.  
 Recently Yalin & da Silva (2000, 2001) demonstrated, on the basis of thermodynamics 
considerations, that the channel develops until it reaches the state of “final thermodynamic 
equilibrium”, where the ratio of the kinetic energy of the flow to its cross-sectional potential 
energy (as implied by the flow Froude number) is minimum. In the present work, this last 
approach is applied and a computational procedure to determine the regime channel 
formation is presented.  
 
 
THE SYSTEM OF EQUATIONS  
 
In accordance with the rational theories, the regime characteristics (channel width, water 
depth, channel bed slope) of an alluvial stream of constant flow rate, Q, can be estimated by 
solving a system of equations formed by: 
—the resistance equation, that can be written as: 

gShBhcQ =  (1) 

where c is the friction factor; g is the acceleration due to gravity; B is channel width; h is the 
water depth, S is the bed slope; 
—the transport equation, written in the following general form: 

),,(*50 ZYXuDQ
sQs φ=  (2) 

where Qs is the sediment transport rate; u* is the shear flow velocity; D50 is the representative 
sediment diameter; φQS is in general a function of the non-dimensional parameters 

ν
= 50*DuX , 
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ρ= , 

50D
hZ = , where ρ is water density; γs is specific weight of water; ν 

is kinematic viscosity, and it has to be specified on the basis of the relationship used to 
express the transport rate (Einstein, 1942; Meyer-Peter; 1949; Yalin, 1963). 
—the optimization condition of a quantity related to the stream energy. As a rule, it is 
written as : 

Minimize O.F.= φ(V,Vc) 

V=(B, h, S,…);   Vc=(Q, Qs, γs, γ, ρ, D50,…) (3) 

where V is the decision variables vector, Vc is the controlling variables vector. The 
optimization condition (3) expresses the condition to which the river system tends 
spontaneously. 
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 The equations (1) and (2) can be treated as constraint equations of the optimization 
problem (3). The equations (1)–(3) system is solved and the regime values of the variables B, 
h and S are estimated. Because it is not easy to evaluate the controlling variable Qs, Yalin & 
da Silva (2001) proposed to replace equation (2) by the following equation: 

cru
QffB
*,

21=   (4) 

3.0

2

3
50

1 639.0 







ρν

γ
=

D
f s  (5) 

if the term in square brackets is <15;  

42.11 =f  otherwise 
c
cebf c









+







 −=
−−

2.112.0
2.1

5.2735.0
2  (6) 

 with b = 1 if  5.27≥c ; b = –1 if 5.27<c   

where u*,cr is the critical shear flow velocity, c  is the friction factor with flat bed. 
 In accordance with previous experimental observations (Leopold & Wolman, 1957; 
Ackers, 1964), equations (4)÷(6) were derived by assuming that the variation of channel 
width essentially takes place during a very short time period (say tb) in comparison with the 
entire duration of the regime channel formation (tR); thus, no substantial adjustment in 
channel width occurs during the time interval (tR–tb). 
 
 
THERMODYNAMIC CONSIDERATIONS 
 
The second law of thermodynamic establishes that the entropy, ζ, of an isolated system tends 
to increase with the passage of time. If a river system is considered as a closed sub-system 
(Yalin & da Silva, 2001), it tends to evolve in order to increase its entropy. Thus, it is: 

0
d
d ≥

θ
ζ   (7) 

where θ = t/tR represents the no-dimensional time. 
 On the other hand, in accordance with Gibb’s equation, the increment of the system 
entropy is related to the increment of the system internal energy U: 

θ
=

θ
ζ

d
d

d
d UT  (8) 

where T is the absolute temperature.  
 In general, a body of mass M and volume W (control volume of the river system) 
receives both mechanical energy by the work of forces to which it is subjected and thermal 
energy through the contour surface. The contribution to the system of these forms of energy 
is equal to the variation in time both of the kinetic energy and of the internal energy of the 
system. If a river system is considered, as aforementioned, a closed sub-system, it is 
supposed that the net heat and the work time rates exchanged between the stream and the 
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boundaries is null. Thus, the variation in time (i.e. during the regime development) of the 
sum of the kinetic and internal energy has to be equal to zero:  

0
2d

d 2 =





 ρ+

θ
WuU  (9) 

where u  is the average flow velocity. 
 Consequently, the increment of the system entropy corresponds to a decrement of the 
kinetic energy and, because W and ρ are positive quantities, the decrement of the kinetic 
energy coincides with the decrement in average flow velocity. 
 Thus, the kinetic energy (and thus the average flow velocity) represents the physical 
quantity that tends to reach its minimum value in time, producing the channel regime forma-
tion. On the other hand, from the constraint equation (1), for a wide alluvial stream, it is: 

Sc
gh
u 2

2

=   (10) 

where the term on right hand side represents the Froude number Fr. Thus, replacing equation 
(10) in (9) and taking into account equation (8), after simple passages (Yalin & da Silva, 
2001) it can be concluded that, during a time period tb ≤ t ≤ tR, the increment of the entropy 
(equation (7)) is necessarily accompanied by a decrement of the stream Froude number. 
 
 
SOLUTION OF THE OPTIMIZATION PROBLEM 
 
On the basis of the thermodynamic considerations reported in previous section, it is assumed 
that the regime channel formation has to be related to the minimization of the stream Froude 
number, that can be estimated by equation (10). Thus, the objective function of the 
optimization problem (3) has to express the minimization of the product (c2S). 
 For given geometric characteristics of the sediment on the bed, the friction factor c 
depends on the hydraulic characteristics of the flow and it can be estimated as (Engelund, 
1966; Yalin, 1992): 
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where κ is the Von Karman’s constant (assumed equal to 0.4); ks is the representative bed 
roughness (assumed equal to 2D50); Bs is a function of the Reynolds shear number 
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Thus, it can be synthetically written (Yalin, 1992) that:  
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 The parameter ξ depends on the physical characteristics of water and sediment, that are 
supposed constant during the regime channel evolution; the parameter Z depends on the 
water depth h, that is a state variable of the considered optimization problem; the parameter 
η represents the ratio of the average shear stress to the critical shear stress and, thus, it is 
related to the stream energetic properties; thus, η is considered the decision variable of the 
optimization problem. 
 The bed slope, S, varies in time and it can also be expressed as a function of the variable 
η. Taking into account that Shgu =2

* , it is: 
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equation (14) can be rewritten as: 
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Finally, the optimization problem (3) is expressed as: 
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subjected to constraints (1) and (4)÷(6). The function c(η) is determined by (11). 
 In gravel-bed channels the evolution process stops when η = 1 (i.e. τ = τcr). In sand bed 
channels the regime configuration could be reached for η>1, because of the presence of bed 
forms. Thus, the following constraint has also been considered: 

η ≥ 1 (17) 

The critical mobility number Ycr can be estimated as a function of the parameter ξ (Yalin & 
da Silva, 2001), that depends on the physical characteristics of the granular material and of 
the fluid, both assumed constant during the regime channel formation. Thus, on the plane Fr-
η, the objective function (16) is a curve of parameter N.  
 
 
APPLICATION 
 
The optimization problem (1)–(4)÷(16)–(17) is nonlinear and it has been solved with the 
help of the commercial code MINOS (Murtagh & Saunders, 1983). The solution of the 
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optimization problem allows to estimate the regime values of the channel width, water depth 
and longitudinal bed slope, for a given bed material and for a given flow rate. The procedure 
is iterative and it gives as result the values of pairs (Fr–η) at each i-th stage of the channel 
evolution. At t = 0 (initial condition) both the characteristics of the “initial” channel (Bo, ho, 
So) and the physical characteristics of the bed material and of the fluid have to be known. 
Thus, the parameters ξ and Ycr can be estimated and the critical shear velocity is calculated as:  
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s
cr YDu 
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The no-dimensional parameter Ni, at i-th evolution stage, is determined and the minimum 
value of the Froude number (Fr,i) and the corresponding flow intensity ηi are obtained as 
solution of the optimization problem (16). Then, the corresponding flow depth is evaluated 

as 
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Qh  and the new channel width is calculated by (4)÷(6). The procedure 

stops when the values of the channel width estimated for two following iterations are almost 
the same.  
 Finally, the regime bed slope is calculated as: 

R
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RR h

YDS
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η= 50  (19) 

The flow chart of the proposed procedure is reported in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flow chart of the proposed procedure. 
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 It is assumed that the channel plane shape follows the sine-generated curve (Langbein & 
Leopold, 1966). Thus, it is: 









πϑ=ϑ

m
o L

l2cos  (20) 

where l is the longitudinal abscissa along the channel centreline; Lm is the meander length;  
ϑo is the deflection angle at l = 0; ϑ is the deflection angle at the abscissa l. 
 Thus, the regime plane configuration of the channel is evaluated by (20), taking into 
account that Lm and the meander wave length (Λ) are interrelated by ϑo as (Yalin, 1992): 
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where J(ϑo) is the Bessel function of the first kind and zero-th order. 
 The procedure has been applied in order to evaluate the regime configuration of Peace 
River in Alberta (data found in Yalin & da Silva, 2001). The initial channel width (Bo) is 
619.2 m, the initial water depth (ho) is 9.33 m and the initial bed slope (S)o is 0.0084%; the 
water discharge is equal to 9905 m3 s-1 and the median size of bed material (D50) is 0.31 mm. 
 The regime values of channel width, water depth and longitudinal bed slope estimated as 
solution of problem (1)–(6) and (16)–(17) are: BR= 797.7 m; hR = 18.6 m; SR = 0.0000339. 
These values have been obtained for ηR = 29.64 and Fr,R = 2.7 × 10-3 The regime (at θ = 1) 
planimetric channel configuration is characterized by a value of the deflection angle  
ϑo = 96.6°, and it has been determined by (20). In Fig. 2 the configurations of the channel 
axis estimated at three evolution stages are reported.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Estimated planimetric channel configurations. 
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Fig. 3 Objective function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 State variables calculated at each time step: (a) channel width; (b) water depth;  
(c) channel bed slope.  
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 In Fig. 3 the pairs of Fr–η estimated at each evolution stage are reported. The parameter 
of each curve is the value of N estimated at the corresponding evolution stage; the point O 
identifies the final regime condition.  
 The channel width, the water depth and the channel bed slope estimated at each 
evolution stage are reported in Fig. 4(a–c), respectively. Both the channel width and the 
water depth increase during the channel evolution, while the longitudinal channel bed slope 
decreases. As Fig. 4(a) shows, the variation of the channel width is significant in the early 
evolution stages (θ < 0.1); it is almost equal to the final regime value already for θ = 0.1.  
 Furthermore, Fig. 4(b) and (c) show that three variation phases can be identified both for 
the water depth and for the longitudinal bed slope: a first phase (θ ≤ 0.1) where both the 
water depth and the longitudinal bed slope vary rapidly; a second phase (0.1 ≤ θ ≤ 0.5) 
where gradual variations occur, and a third phase (θ > 0.5) where very little variation takes 
place until the variables reach the corresponding regime values.  
 
 
CONCLUSION 
 
In this paper a computational procedure for the prediction of the regime channel formation is 
presented. The procedure solves an optimization constrained problem where the objective 
function expresses the minimization of the stream Froude number, as recently suggested by 
one of the authors. The proposed computational procedure allows the evaluation of the 
planimetric configuration of the channel at each evolution stage until the regime 
configuration is reached. The application to a real case highlights the procedure capability. 
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