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Abstract

A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of
Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approx-
imate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues
of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting
on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent
operators commuting with T .
© 2007 Elsevier Inc. All rights reserved.
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1. Definitions and basic results

Throughout this paper, X will denote an infinite-dimensional complex Banach space,
L(X) the algebra of all bounded linear operators on X. For an operator T ∈ L(X) we shall denote
by α(T ) the dimension of the kernel kerT , and by β(T ) the codimension of the range T (X). We
recall that an operator T ∈ L(X) is called upper semi-Fredholm if α(T ) < ∞ and T (X) is closed,
while T ∈ L(X) is called lower semi-Fredholm if β(T ) < ∞. Let Φ+(X) and Φ−(X) denote the
class of all upper semi-Fredholm operators and the class of all lower semi-Fredholm operators,
respectively. The class of all semi-Fredholm operators is defined by Φ±(X) := Φ+(X)∪Φ−(X),
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while the class of all Fredholm operators is defined by Φ(X) := Φ+(X)∩Φ−(X). If T ∈ Φ±(X),
the index of T is defined by ind(T ) := α(T ) − β(T ). Recall that a bounded operator T is said
bounded below if it injective and has closed range. Define

W+(X) := {
T ∈ Φ+(X): indT � 0

}
and

W−(X) := {
T ∈ Φ−(X): indT � 0

}
.

The set of Weyl operators is defined by

W(X) := W+(X) ∩ W−(X) = {
T ∈ Φ(X): indT = 0

}
.

The classes of operators defined above generate the following spectra. The Weyl spectrum is
defined by

σw(T ) := {
λ ∈ C: λI − T /∈ W(X)

}
,

while the Weyl essential approximate point spectrum is defined by

σwa(T ) := {
λ ∈ C: λI − T /∈ W+(X)

}
.

The approximate point spectrum is canonically defined by

σa(T ) := {λ ∈ C: λI − T is not bounded below}.
Note that σwa(T ) is the intersection of all approximate point spectra σa(T + K) of compact

perturbations K of T , see for instance [1, Theorem 3.65]. Write isoK for the set of all isolated
points of K ⊆ C. It is known that if K ∈ L(X) is a finite-rank operator commuting with T , then

λ ∈ accσa(T ) ⇔ λ ∈ accσa(T + K), (1)

for a proof see Theorem 3.2 of [9].
The classes W+(X),W−(X) and W(X) are stable under some perturbations. In fact we have:

Theorem 1.1. Let T ∈ L(X) and K ∈ L(X) be a compact operator. Then

(i) T ∈ W+(X) ⇔ T + K ∈ W+(X).
(ii) T ∈ W−(X) ⇔ T + K ∈ W−(X).

(iii) T ∈ W(X) ⇔ T + K ∈ W(X).

Proof. The implication (i) is a consequence of the well-known fact if T ∈ Φ+(X), then T +K ∈
Φ+(X) with ind(T + K) = ind(T ). The same happens for T ∈ Φ−(X) or T ∈ Φ(X). �

For an operator T the ascent is defined as p := p(T ) = inf{n ∈ N: kerT n = kerT n+1}, while
the descent is defined as let q := q(T ) = inf{n ∈ N: T n(X) = T n+1(X)}, the infimum over the
empty set is taken ∞. It is well known that if p(T ) and q(T ) are both finite, then p(T ) = q(T )

(see [15, Proposition 38.3]). Moreover, 0 < p(λI − T ) = q(λI − T ) < ∞ precisely when λ is a
pole of the resolvent of T , see Proposition 50.2 of Heuser [15].

The class of all upper semi-Browder operators is defined

B+(X) := {
T ∈ Φ+(X): p(T ) < ∞}

,

while the class of all lower semi-Browder operators is defined

B−(X) := {
T ∈ Φ−(X): q(T ) < ∞}

.
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The class of all Browder operators is defined

B(X) := B+(X) ∩ B−(X) = {
T ∈ Φ(X): p(T ) = q(T ) < ∞}

.

We have

B(X) ⊆ W(X), B+(X) ⊆ W+(X), B−(X) ⊆ W−(X),

see [1, Theorem 3.4].
The Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {
λ ∈ C: λI − T /∈ B(X)

}
,

the upper semi-Browder spectrum is defined by

σub(T ) := {
λ ∈ C: λI − T /∈ B+(X)

}
.

Recall that T ∈ L(X) is said to be a Riesz operator if λI − T ∈ Φ(X) for all λ ∈ C \ {0}.
Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the
following result may be found in Rakočević [23]:

Theorem 1.2. Let T ∈ L(X) and K be a Riesz operator commuting with T . Then

(i) T ∈ B+(X) ⇔ T + K ∈ B+(X).
(ii) T ∈ B−(X) ⇔ T + K ∈ B−(X).

(iii) T ∈ B(X) ⇔ T + K ∈ B(X).

The single-valued extension property was introduced by Dunford [10,11] and has an important
role in local spectral theory, see the recent monograph by Laursen and Neumann [16]. In this
article we shall consider the following local version of this property, which has been studied
in [3,6,12], see also the recent monograph by Aiena [1].

Definition 1.3. Let X be a complex Banach space and T ∈ L(X). The operator T is said to
have the single valued extension property at λ0 ∈ C (abbreviated SVEP at λ0), if for every
open disc D centered at λ0, the only analytic function f : D → X which satisfies the equation
(λI − T )f (λ) = 0 for all λ ∈ D, is the function f ≡ 0.

An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point λ ∈ C.

An operator T ∈ L(X) has SVEP at every point of the resolvent ρ(T ) := C \ σ(T ) and from
the identity theorem for analytic function it easily follows that T ∈ L(X) has SVEP at every
point of the boundary ∂σ (T ) of the spectrum σ(T ). In particular, T has SVEP at every isolated
point of the spectrum σ(T ).

Note that

p(λI − T ) < ∞ ⇒ T has SVEP at λ, (2)

and dually

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ, (3)

see [1, Theorem 3.8]. Furthermore, from definition of SVEP we have

σa(T ) does not cluster at λ ⇒ T has SVEP at λ. (4)
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An important subspace in local spectral theory is the quasi-nilpotent part of T defined by

H0(T ) :=
{
x ∈ X: lim

n→∞
∥∥T nx

∥∥ 1
n = 0

}
.

We also have [3]

H0(λI − T ) closed ⇒ T has SVEP at λ. (5)

Remark 1.4. It should be noted that the implications (2)–(5) are equivalences if we assume that
λI − T ∈ Φ±(X), see [1, Chapter 3].

2. Property (ω) and perturbations

For a bounded operator T ∈ L(X), define pa
00(T ) := σa(T ) \ σub(T ). If λ ∈ pa

00(T ), then
p(λI − T ) < ∞, and, since λI − T is upper semi-Fredholm from Remark 1.4 it then follows
that λ ∈ isoσa(T ), so

pa
00(T ) ⊆ πa

00(T ) := {
λ ∈ isoσa(T ): 0 < α(λI − T ) < ∞}

.

Define

π00(T ) := {
λ ∈ isoσ(T ): 0 < α(λI − T ) < ∞}

.

Following Harte and W.Y. Lee [14] we shall say that T satisfies Browder’s theorem if

σw(T ) = σb(T ),

or equivalently σ(T ) \ σw(T ) = p00(T ), where p00(T ) := σ(T ) \ σb(T ). Evidently, p00(T ) ⊆
pa

00(T ) for every T ∈ L(X).
A bounded operator T ∈ L(X) is said to satisfy a-Browder’s theorem if

σwa(T ) = σub(T ),

or equivalently σa(T ) \ σwa(T ) = pa
00(T ). If T is a finite-rank operator commuting with T , from

Theorems 1.1 and 1.2 it then easily follows the following equivalence:

T satisfies a-Browder’s theorem ⇔ T + K satisfies a-Browder’s theorem.

Following Coburn [8], we say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = π00(T ), (6)

Weyl’s theorem entails Browder’s theorem. In fact, we have:

Theorem 2.1. (See [2].) T ∈ L(X) satisfies Weyl’s theorem precisely when T satisfies Browder’s
theorem and π00(T ) = p00(T ).

The following two variants of Weyl’s theorem has been introduced by Rakočević [21,22].

Definition 2.2. A bounded operator T ∈ L(X) is said to satisfy property (w) if

σa(T ) \ σaw(T ) = π00(T ),

while T ∈ L(X) is said to satisfy a-Weyl’s theorem if

σa(T ) \ σaw(T ) = πa
00(T ).
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Property (w) has been also studied in recent paper [5]. As observed in [21] and [5], we have:

either a-Weyl’s theorem or property (w) for T ⇒ Weyl’s theorem holds for T ,

and examples of operators satisfying Weyl’s theorem but not property (w) may be found in [5].
Property (w) is fulfilled by a relevant number of Hilbert space operators, see [5], and this property
for T is equivalent to Weyl’s theorem for T or to a-Weyl’s theorem whenever T ∗ satisfies SVEP
[5, Theorem 2.16]. For instance, property (w) is satisfied by generalized scalar operator, or if the
Hilbert adjoint T ′ has property H(p) [5, Corollary 2.20]. Note that

property (w) for T ⇒ a-Browder’s theorem holds for T ,

and precisely we have:

Theorem 2.3. (See [5].) If T ∈ L(X), the following statements are equivalent:

(i) T satisfies property (w);
(ii) a-Browder’s theorem holds for T and pa

00(T ) = π00(T ).

It should be noted that property (w) is not intermediate between Weyl’s theorem and a-Weyl’s
theorem, see [5] for examples.

Lemma 2.4. Suppose that T ∈ L(X) satisfies property (w) and K is a finite rank operator
commuting with T such that σa(T + K) = σa(T ). Then pa

00(T + K) ⊆ π00(T + K).

Proof. Let λ ∈ pa
00(T + K) be arbitrary given. Then λ ∈ isoσa(T + K) and λI − (T + K) ∈

B+(X), so α(λI − (T + K)) < ∞. Since λI − (T + K) has closed range, the condition λ ∈
σa(T + K) entails that 0 < α(λI − (T + K)). Therefore, in order to show that λ ∈ π00(T + K),
we need only to prove that λ is an isolated point of σ(T + K).

We know that λ ∈ isoσa(T ). Also, by Theorem 1.2 we also have λI − (T + K) − K = λI −
T ∈ B+(X) so that λ ∈ σa(T ) \ σub(T ) = pa

00(T ).
Now, by assumption T satisfies property (w) so, by Theorem 2.3, pa

00(T ) = π00(T ). More-
over, T satisfies Weyl’s theorem and hence, by Theorem 2.1,

π00(T ) = p00(T ) = σ(T ) \ σb(T ).

Therefore, λI − T is Browder and hence also λI − (T + K) is Browder, so

0 < p
(
λI − (T + K)

) = q
(
λI − (T + K)

)
< ∞

and hence λ is a pole of the resolvent of T + K . Consequently, λ an isolated point of σ(T + K),
as desired. �

Define

π0f(T ) := {
λ ∈ isoσ(T ): α(λI − T ) < ∞}

.

Obviously, π00(T ) ⊆ π0f(T ).

Lemma 2.5. If T ,K ∈ L(X), K is a Riesz operator commuting with T , then π00(T + R) ∩
σa(T ) ⊆ isoσ(T ).
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Proof. Clearly,

π00(T + R) ∩ σa(T ) ⊆ π0f (T + R) ∩ σ(T ),

and by Lemma 2.3 of [20] the last set is contained in isoσ(T ). �
A bounded operator T ∈ L(X) is said to be a-isoloid if every isolated point of σa(T ) is an

eigenvalue of T .

Theorem 2.6. Suppose that T ∈ L(X) is a-isoloid and K is a finite rank operator commuting
with T such that σa(T + K) = σa(T ). If T satisfies property (w), then T + K satisfies prop-
erty (w).

Proof. Suppose that T satisfies property (w). Then, by Theorem 2.3, T satisfies a-Browder’s
theorem, and hence also T + K satisfies a-Browder’s theorem.

By Theorem 2.3, in order to show that T + K satisfies property (w) it suffices only to prove
the equality pa

00(T + K) = π00(T + K). The inclusion pa
00(T + K) ⊆ π00(T + K) follows from

Lemma 2.4, so we need only to show the opposite inclusion π00(T + K) ⊆ pa
00(T + K).

We first show the inclusion

π00(T + K) ⊆ p00(T ). (7)

Let λ ∈ π00(T + K). By assumption λ ∈ isoσ(T + K) and α(λI − (T + K)) > 0 so λ ∈
isoσa(T + K), and hence λ ∈ isoσa(T ). By Lemma 2.5 we then conclude that λ is an isolated
point of σ(T ). Furthermore, since T is a-isoloid, we have also 0 < α(λI − T ).

We show now that α(λI −T ) < ∞. To see this, note first that the restriction λI − (T +K) | M
of λI − (T + K) on M := ker(λI − T ) coincides with the restriction of K on M , so (λI −
(T + K)) | M has both finite-dimensional kernel and finite-dimensional range. From this it then
follows that M = ker(λI − T ) is finite-dimensional, and consequently α(λI − T ) < ∞.

Therefore the inclusion π00(T +K) ⊆ π00(T ) is proved. Now, since property (w) entails that
T satisfies Weyl’s theorem, by Theorem 2.1, we then have π00(T + K) ⊆ p00(T ) and hence
the inclusion (7) is established. Consequently, if λ ∈ π00(T + K), then λI − T is Browder. By
Theorem 1.2 it then follows that λI − (T + K)) is also Browder, hence

λ ∈ σ(T + K) \ σb(T + K) = p00(T + K) ⊆ pa
00(T + K),

as desired. �
In the sequel we shall consider nilpotent perturbations of operators satisfying property (w). It

easy to check that if N is a nilpotent operator commuting with T , then σ(T ) = σ(T + N) and
σa(T ) = σa(T + N).

Lemma 2.7. Suppose that T ∈ L(X) satisfies property (w). If N is a nilpotent operator that
commutes with T , then pa

00(T + N) ⊆ π00(T + N).

Proof. Suppose that λ ∈ pa
00(T + N). Then

λ ∈ σa(T + N) \ σub(T + N) = σa(T ) \ σub(T ) = pa
00(T ).

Since T satisfies property (w) we then have, by Theorem 2.3, pa
00(T ) = π00(T ). Hence λ is an

isolated point of σ(T ) = σ(T ∗) and therefore both T and T ∗ have SVEP at λ. Since λI − T ∈
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B+(X) it then follows that 0 < p(λI − T ) = q(λI − T ) < ∞. Furthermore, since λ ∈ π00(T )

we also have α(λI − T ) < ∞ and Theorem 3.4 of [1] entails that α(λI − T ) = β(λI − T ) < ∞,
thus λI − T is Browder and hence also λI − (T + N) is Browder, by Theorem 1.2. Hence λ is
an isolated point of σ(T + N) and α(λI − (T + N)) < ∞.

On the other hand, λI − (T + N) has closed range and since λ ∈ σa(T + N) it then follows
that 0 < α(λI − (T + N)). Thus λ ∈ π00(T + N). �
Theorem 2.8. Suppose that T ∈ L(X) is a-isoloid and suppose that N is a nilpotent operator
that commutes with T . If T satisfies property (w), then T + N satisfies property (w).

Proof. Observe first that σwa(T + N) = σwa(T ), see Theorem 2.13 of [9], and by Theorem 1.2
we also have σub(T + N) = σub(T ). Since a-Browder’s theorem holds for T , by Theorem 2.3,
it then follows that σub(T + N) = σwa(T + N), i.e. T + N satisfies a-Browder’s theorem. By
Theorem 2.3 and Lemma 2.7 we have only to prove the inclusion

π00(T + N) ⊆ pa
00(T + N). (8)

Let λ ∈ π00(T + N) be arbitrary given. There is no harm if we assume λ = 0. Clearly, 0 ∈
isoσ(T + N) = isoσ(T ). Let p ∈ N be such that Np = 0. If x ∈ ker(T + N), then

T px = (−1)pT px = 0,

thus ker(T + N) ⊆ kerT p . Since by assumption 0 < α(T + N) it then follows that α(T p) > 0
and this obviously implies that 0 < α(T ). By assumption we also have α(T + N) < ∞ and this
implies that α(T + N)p < ∞, see Remark 2.6 of [4]. It is easily seen that if x ∈ kerT , then

(T + N)px = Npx = 0,

so kerT ⊆ ker(T + N)p and hence α(T ) < ∞. Therefore, 0 ∈ π00(T ) and consequently
π00(T + N) ⊆ π00(T ). Now, since T satisfies Weyl’s theorem we have

π00(T ) = p00(T ) ⊆ pa
00(T ).

The inclusion (8) will be then proved if we show that pa
00(T ) = pa

00(T + N). But this is imme-
diate, since σa(T ) = σa(T + N) and σub(T ) = σub(T + N), so the proof is complete. �
Example 2.9. The following example shows that both Theorem 2.8 and Theorem 2.6 fail if we do
not assume that the nilpotent operator N , and the finite rank operator K do not commute with T .

Let X := 
2(N) and T and N be defined by

T (x1, x2, . . .) :=
(

0,
x1

2
,
x2

3
, . . .

)
, (xn) ∈ 
2(N),

and

N(x1, x2, . . .) :=
(

0,−x1

2
,0,0, . . .

)
, (xn) ∈ 
2(N).

Clearly, N is a nilpotent finite rank operator, T is a quasi-nilpotent operator satisfying Weyl’s
theorem. Since T is decomposable, then T satisfies property (w), see Corollary 2.10 of [5]. On
the other hand, it is easily seen that 0 ∈ π00(T + N) and 0 /∈ σ(T + N) \ σw(T + N), so that
T + N does not satisfies Weyl’s theorem, and hence does not satisfies property (w). Note that
σa(T + K) = σa(T ).
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Example 2.10. The following example shows that and Theorem 2.6 fails if we do not as-
sume that T is a-isoloid. Let S :
2(N) → 
2(N) be an injective quasi-nilpotent operator, and
let U :
2(N) → 
2(N) be defined:

U(x1, x2, . . .) := (−x1,0,0, . . .) with (xn) ∈ 
2(N).

Define on X := 
2(N) ⊕ 
2(N) the operators T and K by

T :=
(

I 0

0 S

)
, K :=

(
U 0

0 0

)
.

Clearly, K is a finite-rank operator and KT = T K . It is easy to check that

σ(T ) = σw(T ) = σa(T ) = {0,1}.
Since α(T ) = 0, then T is not a-isoloid. Now, both T and T ∗ have SVEP, since σ(T ) = σ(T ∗)
is finite. Moreover, π00(T ) = σ(T ) \ σw(T ) = ∅, so T satisfies Weyl’s theorem, and hence by
Theorem 2.16 of [5], T satisfies property (w).

On the other hand,

σ(T + K) = σw(T + K) = {0,1},
and π00(T + K) = {0}, so that Weyl’s theorem does not hold for T + K and this implies that
property (w) does not hold for T + K . Note that σa(T + K) = σa(T ).

Generally, property (w) is not transmitted from T to a quasi-nilpotent perturbation T + Q.
For instance, take T = 0, and Q ∈ L(
2(N) defined by

Q(x1, x2, . . .) =
(

x2

2
,
x3

3
, . . .

)
for all (xn) ∈ 
2(N).

Then Q is quasi-nilpotent and

{0} = π00(Q) �= σa(Q) \ σaw(Q) = ∅.

Hence T satisfies property (w) but T + Q = Q fails this property.
We want now to show that property (w) is preserved under injective quasi-nilpotent perturba-

tions. We need first some preliminary results.

Lemma 2.11. Let T ∈ L(X) be such that α(T ) < ∞. Suppose that there exists an injective quasi-
nilpotent operator Q ∈ L(X) such that T Q = QT . Then α(T ) = 0.

Proof. Suppose that there exists 0 �= x ∈ kerT . By the commutative assumption we have T Qn =
QnT x = 0 for all n = 0,1, . . . , so that the sequence (Qnx)n=0,1,... is contained in kerT . We
claim that (Qnx)n=0,1,... is a sequence of linearly independent vectors. In fact, suppose that

c0x + c1Qx + · · · + cnQ
nx = 0.

Write p(λ) := c0 + c1λ + · · · + cnλ
n. If λ1, . . . , λn are the zeros of p(λ), then

p(λ) = cn

n∏
i=1

(λi − λ)

and

0 = p(Q)x = cn

n∏
(λiI − Q)x.
i=1
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Since Q is injective and quasi-nilpotent, then all (λiI − Q) are injective and hence the con-
dition p(Q)x = 0 entails that cn = 0. An inductive argument then shows that cn−1 = · · · =
c0 = 0, as claimed. Now, Qnx ∈ kerT for all n = 0,1, . . . , and this contradicts our assumption
α(T ) < ∞. �
Theorem 2.12. Suppose that T ∈ L(X) and Q be a quasi-nilpotent operator commuting with T .
The following statements hold:

(i) σaw(T ) = σaw(T + Q).
(ii) If Q is injective, then σa(T ) = σa(T + Q).

Proof. (i) It is well known that if T ∈ Φ+(X) and K is a Riesz operator commuting with T ,
then T + λK ∈ Φ+(X) for all λ ∈ C, see [24]. Suppose that λ /∈ σaw(T ). There is no harm if we
suppose that λ = 0. Then T ∈ W+(X) and hence T +μQ ∈ Φ+(X) for all μ ∈ C. Clearly, T and
T + Q belong to the same component of the open set Φ+(X), so indT = ind(T + Q) � 0, and
hence 0 /∈ σaw(T + Q). This shows σaw(T + Q) ⊆ σaw(T ). By symmetry then

σaw(T ) = σaw(T + Q − Q) ⊆ σaw(T + Q),

so the equality σaw(T ) = σaw(T + Q) is proved.
(ii) Suppose that λ /∈ σa(T ). Then λI − T is bounded below and hence λI − T ∈ W+(X).

By part (i) then λI − (T + Q) ∈ W+(X), and since Q commutes with λI − (T + Q) from
Lemma 2.11 we deduce that α(λI − (T + Q)) = 0. Since λI − (T + Q) has closed range we
then conclude that λ /∈ σa(T + Q). This shows that σa(T + Q) ⊆ σa(T ). A symmetric argument
may be used for obtaining the opposite inclusion, so also the equality σa(T ) = σa(T + Q) is
proved. �
Theorem 2.13. Suppose that T ∈ L(X) and Q an injective quasi-nilpotent operator commuting
with T . If T satisfies property (w), then also T + Q satisfies property (w).

Proof. Since T satisfies property (w) from Theorem 2.12 we have

σa(T + Q) \ σaw(T + Q) = σa(T ) \ σaw(T ) = π00(T ). (9)

To show property (w) for T + Q it suffices to prove that

π00(T ) = π00(T + Q) = ∅.

Suppose that π00(T ) �= ∅ and let λ ∈ π00(T ). From (9) we know that λI − T ∈ W+(X), and
hence by Lemma 2.11 it then follows that α(λI − T ) = 0, a contradiction.

To show that π00(T +Q) = ∅ suppose that λ ∈ π00(T +Q). Then 0 < α(λI − (T +Q)) < ∞,
so there exists x �= 0 such that (λI − (T + Q))x = 0. Since Q commutes with λI − (T + Q)

the same argument of the proof of Lemma 2.11 shows that α(λI − (T + Q) = ∞, a contradic-
tion. �

Theorems 2.6 and 2.8 apply to several classes of operators. A bounded operator T ∈ L(X) is
said to have property H(p) if for all λ ∈ C there exists p := p(λ) ∈ N such that

H0(λI − T ) = ker(λI − T )p.

In [5] it has been observed that if T ∗ ∈ L(X) has property H(p), then T satisfies property (w).
Moreover, T is a-isoloid. Indeed, from the implication (5), we see that property H(p) for T ∗
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entails that T ∗ has SVEP and hence, by [1, Corollary 2.45], σa(T ) = σ(T ) = σ(T ∗). Since every
isolated point of σ(T ) is a pole of the resolvent [2, Lemma 3.3], and hence an eigenvalue of T

it then follows that T is a-isoloid. By Theorems 2.6 and 2.8 it then follows that property (w)

holds for T + K , where K is nilpotent or a finite rank operator commuting with T . It should be
noted that property H(p) holds for a relevant number of operators. In [19, Example 3] Oudghiri
observed that every generalized scalar operator and every subscalar operator T (i.e. T is similar
to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has prop-
erty H(p), see [16] for definitions and properties. Consequently, property H(p) is satisfied by
p-hyponormal operators and log-hyponormal operators [17, Corollary 2], w-hyponormal opera-
tors [18], M-hyponormal operators [16, Proposition 2.4.9], and totally paranormal operators [7].
Also totally ∗-paranormal operators have property H(1) [13].

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic Publishers, 2004.
[2] P. Aiena, Classes of operators satisfying a-Weyl’s theorem, Studia Math. 169 (2005) 105–122.
[3] P. Aiena, M.L. Colasante, M. Gonzalez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math.

Soc. 130 (9) (2002) 2701–2710.
[4] P. Aiena, J. R. Guillen, Weyl’s theorem for perturbations of paranormal operators, Proc. Amer. Math. Soc (2005),

in press.
[5] P. Aiena, P. Peña, A variation on Weyl’s theorem, J. Math. Anal. Appl. 324 (2006) 566–579.
[6] P. Aiena, E. Rosas, The single valued extension property at the points of the approximate point spectrum, J. Math.

Anal. Appl. 279 (1) (2003) 180–188.
[7] P. Aiena, F. Villafãne, Weyl’s theorem for some classes of operators, Integral Equations Operator Theory 53 (2005)

453–466.
[8] L.A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 20 (1970) 529–544.
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[23] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1997) 131–137.
[24] M. Schechter, R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988) 175–190.


