

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 336 (2007) 683-692

www.elsevier.com/locate/jmaa

Property (w) and perturbations \ddagger

Pietro Aiena^{a,*}, Maria Teresa Biondi^b

^a Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy

^b Departamento de Matemáticas, Facultad de Ciencias, Universidad UCLA de Barquisimeto, Venezuela

Received 25 September 2006

Available online 12 March 2007

Submitted by R. Curto

Abstract

A bounded linear operator $T \in L(X)$ defined on a Banach space X satisfies property (w), a variant of Weyl's theorem, if the complement in the approximate point spectrum $\sigma_a(T)$ of the Weyl essential approximate spectrum $\sigma_{wa}(T)$ coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Localized SVEP; Weyl's theorems; Browder's theorems; Property (w)

1. Definitions and basic results

Throughout this paper, X will denote an infinite-dimensional complex Banach space, L(X) the algebra of all bounded linear operators on X. For an operator $T \in L(X)$ we shall denote by $\alpha(T)$ the dimension of the kernel ker T, and by $\beta(T)$ the codimension of the range T(X). We recall that an operator $T \in L(X)$ is called *upper semi-Fredholm* if $\alpha(T) < \infty$ and T(X) is closed, while $T \in L(X)$ is called *lower semi-Fredholm* if $\beta(T) < \infty$. Let $\Phi_+(X)$ and $\Phi_-(X)$ denote the class of all upper semi-Fredholm operators and the class of all lower semi-Fredholm operators, respectively. The class of all semi-Fredholm operators is defined by $\Phi_{\pm}(X) := \Phi_+(X) \cup \Phi_-(X)$,

* This research was supported by Fondi ex-60, 2005, Università di Palermo.

* Corresponding author.

0022-247X/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.02.084

E-mail addresses: paiena@unipa.it (P. Aiena), mtbiondi@hotmail.com (M.T. Biondi).

while the class of all Fredholm operators is defined by $\Phi(X) := \Phi_+(X) \cap \Phi_-(X)$. If $T \in \Phi_{\pm}(X)$, the *index* of *T* is defined by $ind(T) := \alpha(T) - \beta(T)$. Recall that a bounded operator *T* is said *bounded below* if it injective and has closed range. Define

$$W_+(X) := \left\{ T \in \Phi_+(X) \colon \text{ind} \ T \leq 0 \right\}$$

and

$$W_{-}(X) := \left\{ T \in \Phi_{-}(X) : \text{ ind } T \ge 0 \right\}.$$

The set of Weyl operators is defined by

 $W(X) := W_+(X) \cap W_-(X) = \{ T \in \Phi(X) : \text{ ind } T = 0 \}.$

The classes of operators defined above generate the following spectra. The Weyl spectrum is defined by

$$\sigma_{\mathsf{W}}(T) := \big\{ \lambda \in \mathbb{C} \colon \lambda I - T \notin W(X) \big\},\$$

while the Weyl essential approximate point spectrum is defined by

 $\sigma_{\mathrm{wa}}(T) := \big\{ \lambda \in \mathbb{C} \colon \lambda I - T \notin W_+(X) \big\}.$

The approximate point spectrum is canonically defined by

 $\sigma_{a}(T) := \{\lambda \in \mathbb{C}: \lambda I - T \text{ is not bounded below}\}.$

Note that $\sigma_{wa}(T)$ is the intersection of all approximate point spectra $\sigma_a(T + K)$ of compact perturbations K of T, see for instance [1, Theorem 3.65]. Write iso K for the set of all isolated points of $K \subseteq \mathbb{C}$. It is known that if $K \in L(X)$ is a finite-rank operator commuting with T, then

 $\lambda \in \operatorname{acc} \sigma_{a}(T) \quad \Leftrightarrow \quad \lambda \in \operatorname{acc} \sigma_{a}(T+K), \tag{1}$

for a proof see Theorem 3.2 of [9].

The classes $W_+(X)$, $W_-(X)$ and W(X) are stable under some perturbations. In fact we have:

Theorem 1.1. Let $T \in L(X)$ and $K \in L(X)$ be a compact operator. Then

(i) $T \in W_+(X) \Leftrightarrow T + K \in W_+(X)$. (ii) $T \in W_-(X) \Leftrightarrow T + K \in W_-(X)$. (iii) $T \in W(X) \Leftrightarrow T + K \in W(X)$.

Proof. The implication (i) is a consequence of the well-known fact if $T \in \Phi_+(X)$, then $T + K \in \Phi_+(X)$ with ind(T + K) = ind(T). The same happens for $T \in \Phi_-(X)$ or $T \in \Phi(X)$. \Box

For an operator *T* the *ascent* is defined as $p := p(T) = \inf\{n \in \mathbb{N}: \ker T^n = \ker T^{n+1}\}$, while the *descent* is defined as let $q := q(T) = \inf\{n \in \mathbb{N}: T^n(X) = T^{n+1}(X)\}$, the infimum over the empty set is taken ∞ . It is well known that if p(T) and q(T) are both finite, then p(T) = q(T)(see [15, Proposition 38.3]). Moreover, $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$ precisely when λ is a pole of the resolvent of *T*, see Proposition 50.2 of Heuser [15].

The class of all upper semi-Browder operators is defined

$$B_{+}(X) := \{ T \in \Phi_{+}(X) : p(T) < \infty \},\$$

while the class of all lower semi-Browder operators is defined

$$B_{-}(X) := \{ T \in \Phi_{-}(X) : q(T) < \infty \}.$$

The class of all Browder operators is defined

$$B(X) := B_+(X) \cap B_-(X) = \{ T \in \Phi(X) : p(T) = q(T) < \infty \}.$$

We have

 $B(X) \subseteq W(X), \qquad B_+(X) \subseteq W_+(X), \qquad B_-(X) \subseteq W_-(X),$

see [1, Theorem 3.4].

The *Browder spectrum* of $T \in L(X)$ is defined by

 $\sigma_{\mathbf{b}}(T) := \big\{ \lambda \in \mathbb{C} \colon \lambda I - T \notin B(X) \big\},\$

the upper semi-Browder spectrum is defined by

 $\sigma_{\rm ub}(T) := \big\{ \lambda \in \mathbb{C} \colon \lambda I - T \notin B_+(X) \big\}.$

Recall that $T \in L(X)$ is said to be a *Riesz operator* if $\lambda I - T \in \Phi(X)$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the following result may be found in Rakočević [23]:

Theorem 1.2. Let $T \in L(X)$ and K be a Riesz operator commuting with T. Then

(i) $T \in B_+(X) \Leftrightarrow T + K \in B_+(X)$. (ii) $T \in B_-(X) \Leftrightarrow T + K \in B_-(X)$. (iii) $T \in B(X) \Leftrightarrow T + K \in B(X)$.

The single-valued extension property was introduced by Dunford [10,11] and has an important role in local spectral theory, see the recent monograph by Laursen and Neumann [16]. In this article we shall consider the following local version of this property, which has been studied in [3,6,12], see also the recent monograph by Aiena [1].

Definition 1.3. Let *X* be a complex Banach space and $T \in L(X)$. The operator *T* is said to have *the single valued extension property* at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0), if for every open disc \mathbb{D} centered at λ_0 , the only analytic function $f : \mathbb{D} \to X$ which satisfies the equation $(\lambda I - T) f(\lambda) = 0$ for all $\lambda \in \mathbb{D}$, is the function $f \equiv 0$.

An operator $T \in L(X)$ is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$.

An operator $T \in L(X)$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$ and from the identity theorem for analytic function it easily follows that $T \in L(X)$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$. In particular, T has SVEP at every isolated point of the spectrum $\sigma(T)$.

Note that

$$p(\lambda I - T) < \infty \implies T \text{ has SVEP at } \lambda,$$
 (2)

and dually

$$q(\lambda I - T) < \infty \implies T^* \text{ has SVEP at } \lambda,$$
 (3)

see [1, Theorem 3.8]. Furthermore, from definition of SVEP we have

 $\sigma_{a}(T)$ does not cluster at $\lambda \implies T$ has SVEP at λ . (4)

An important subspace in local spectral theory is the quasi-nilpotent part of T defined by

$$H_0(T) := \left\{ x \in X \colon \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0 \right\}$$

We also have [3]

$$H_0(\lambda I - T)$$
 closed \Rightarrow T has SVEP at λ . (5)

Remark 1.4. It should be noted that the implications (2)–(5) are equivalences if we assume that $\lambda I - T \in \Phi_{\pm}(X)$, see [1, Chapter 3].

2. Property (ω) and perturbations

For a bounded operator $T \in L(X)$, define $p_{00}^a(T) := \sigma_a(T) \setminus \sigma_{ub}(T)$. If $\lambda \in p_{00}^a(T)$, then $p(\lambda I - T) < \infty$, and, since $\lambda I - T$ is upper semi-Fredholm from Remark 1.4 it then follows that $\lambda \in iso \sigma_a(T)$, so

$$p_{00}^{a}(T) \subseteq \pi_{00}^{a}(T) := \left\{ \lambda \in \operatorname{iso} \sigma_{a}(T) \colon 0 < \alpha(\lambda I - T) < \infty \right\}$$

Define

$$\pi_{00}(T) := \left\{ \lambda \in \operatorname{iso} \sigma(T) \colon 0 < \alpha(\lambda I - T) < \infty \right\}.$$

Following Harte and W.Y. Lee [14] we shall say that T satisfies Browder's theorem if

 $\sigma_{\rm w}(T) = \sigma_{\rm b}(T),$

or equivalently $\sigma(T) \setminus \sigma_w(T) = p_{00}(T)$, where $p_{00}(T) := \sigma(T) \setminus \sigma_b(T)$. Evidently, $p_{00}(T) \subseteq p_{00}^a(T)$ for every $T \in L(X)$.

A bounded operator $T \in L(X)$ is said to satisfy *a*-Browder's theorem if

 $\sigma_{\rm wa}(T) = \sigma_{\rm ub}(T),$

or equivalently $\sigma_a(T) \setminus \sigma_{wa}(T) = p_{00}^a(T)$. If T is a finite-rank operator commuting with T, from Theorems 1.1 and 1.2 it then easily follows the following equivalence:

T satisfies a-Browder's theorem \Leftrightarrow T + K satisfies a-Browder's theorem.

Following Coburn [8], we say that Weyl's theorem holds for $T \in L(X)$ if

$$\sigma(T) \setminus \sigma_{\rm w}(T) = \pi_{00}(T), \tag{6}$$

Weyl's theorem entails Browder's theorem. In fact, we have:

Theorem 2.1. (See [2].) $T \in L(X)$ satisfies Weyl's theorem precisely when T satisfies Browder's theorem and $\pi_{00}(T) = p_{00}(T)$.

The following two variants of Weyl's theorem has been introduced by Rakočević [21,22].

Definition 2.2. A bounded operator $T \in L(X)$ is said to satisfy property (*w*) if

$$\sigma_{\rm a}(T) \setminus \sigma_{\rm aw}(T) = \pi_{00}(T),$$

while $T \in L(X)$ is said to satisfy *a*-Weyl's theorem if

$$\sigma_{\mathrm{a}}(T) \setminus \sigma_{\mathrm{aw}}(T) = \pi_{00}^{a}(T).$$

686

Property (w) has been also studied in recent paper [5]. As observed in [21] and [5], we have:

either *a*-Weyl's theorem or property (w) for $T \Rightarrow$ Weyl's theorem holds for T,

and examples of operators satisfying Weyl's theorem but not property (w) may be found in [5]. Property (w) is fulfilled by a relevant number of Hilbert space operators, see [5], and this property for *T* is equivalent to Weyl's theorem for *T* or to *a*-Weyl's theorem whenever T^* satisfies SVEP [5, Theorem 2.16]. For instance, property (w) is satisfied by generalized scalar operator, or if the Hilbert adjoint *T'* has property H(p) [5, Corollary 2.20]. Note that

property (w) for $T \Rightarrow a$ -Browder's theorem holds for T,

and precisely we have:

Theorem 2.3. (See [5].) If $T \in L(X)$, the following statements are equivalent:

- (i) *T* satisfies property (*w*);
- (ii) a-Browder's theorem holds for T and $p_{00}^a(T) = \pi_{00}(T)$.

It should be noted that property (w) is not intermediate between Weyl's theorem and *a*-Weyl's theorem, see [5] for examples.

Lemma 2.4. Suppose that $T \in L(X)$ satisfies property (w) and K is a finite rank operator commuting with T such that $\sigma_a(T+K) = \sigma_a(T)$. Then $p_{00}^a(T+K) \subseteq \pi_{00}(T+K)$.

Proof. Let $\lambda \in p_{00}^a(T + K)$ be arbitrary given. Then $\lambda \in iso \sigma_a(T + K)$ and $\lambda I - (T + K) \in B_+(X)$, so $\alpha(\lambda I - (T + K)) < \infty$. Since $\lambda I - (T + K)$ has closed range, the condition $\lambda \in \sigma_a(T + K)$ entails that $0 < \alpha(\lambda I - (T + K))$. Therefore, in order to show that $\lambda \in \pi_{00}(T + K)$, we need only to prove that λ is an isolated point of $\sigma(T + K)$.

We know that $\lambda \in iso \sigma_a(T)$. Also, by Theorem 1.2 we also have $\lambda I - (T + K) - K = \lambda I - T \in B_+(X)$ so that $\lambda \in \sigma_a(T) \setminus \sigma_{ub}(T) = p_{00}^a(T)$.

Now, by assumption T satisfies property (w) so, by Theorem 2.3, $p_{00}^a(T) = \pi_{00}(T)$. Moreover, T satisfies Weyl's theorem and hence, by Theorem 2.1,

$$\pi_{00}(T) = p_{00}(T) = \sigma(T) \setminus \sigma_{\mathsf{b}}(T).$$

Therefore, $\lambda I - T$ is Browder and hence also $\lambda I - (T + K)$ is Browder, so

$$0 < p(\lambda I - (T+K)) = q(\lambda I - (T+K)) < \infty$$

and hence λ is a pole of the resolvent of T + K. Consequently, λ an isolated point of $\sigma(T + K)$, as desired. \Box

Define

$$\pi_{0f}(T) := \left\{ \lambda \in \operatorname{iso} \sigma(T) \colon \alpha(\lambda I - T) < \infty \right\}.$$

Obviously, $\pi_{00}(T) \subseteq \pi_{0f}(T)$.

Lemma 2.5. If $T, K \in L(X)$, K is a Riesz operator commuting with T, then $\pi_{00}(T + R) \cap \sigma_a(T) \subseteq iso \sigma(T)$.

Proof. Clearly,

 $\pi_{00}(T+R) \cap \sigma_{a}(T) \subseteq \pi_{0f}(T+R) \cap \sigma(T),$

and by Lemma 2.3 of [20] the last set is contained in iso $\sigma(T)$. \Box

A bounded operator $T \in L(X)$ is said to be *a-isoloid* if every isolated point of $\sigma_a(T)$ is an eigenvalue of T.

Theorem 2.6. Suppose that $T \in L(X)$ is a -isoloid and K is a finite rank operator commuting with T such that $\sigma_a(T + K) = \sigma_a(T)$. If T satisfies property (w), then T + K satisfies property (w).

Proof. Suppose that T satisfies property (w). Then, by Theorem 2.3, T satisfies a-Browder's theorem, and hence also T + K satisfies a-Browder's theorem.

By Theorem 2.3, in order to show that T + K satisfies property (w) it suffices only to prove the equality $p_{00}^a(T + K) = \pi_{00}(T + K)$. The inclusion $p_{00}^a(T + K) \subseteq \pi_{00}(T + K)$ follows from Lemma 2.4, so we need only to show the opposite inclusion $\pi_{00}(T + K) \subseteq p_{00}^a(T + K)$.

We first show the inclusion

$$\pi_{00}(T+K) \subseteq p_{00}(T). \tag{7}$$

Let $\lambda \in \pi_{00}(T + K)$. By assumption $\lambda \in iso \sigma(T + K)$ and $\alpha(\lambda I - (T + K)) > 0$ so $\lambda \in iso \sigma_a(T + K)$, and hence $\lambda \in iso \sigma_a(T)$. By Lemma 2.5 we then conclude that λ is an isolated point of $\sigma(T)$. Furthermore, since T is a-isoloid, we have also $0 < \alpha(\lambda I - T)$.

We show now that $\alpha(\lambda I - T) < \infty$. To see this, note first that the restriction $\lambda I - (T + K) | M$ of $\lambda I - (T + K)$ on $M := \ker(\lambda I - T)$ coincides with the restriction of K on M, so $(\lambda I - (T + K)) | M$ has both finite-dimensional kernel and finite-dimensional range. From this it then follows that $M = \ker(\lambda I - T)$ is finite-dimensional, and consequently $\alpha(\lambda I - T) < \infty$.

Therefore the inclusion $\pi_{00}(T+K) \subseteq \pi_{00}(T)$ is proved. Now, since property (*w*) entails that T satisfies Weyl's theorem, by Theorem 2.1, we then have $\pi_{00}(T+K) \subseteq p_{00}(T)$ and hence the inclusion (7) is established. Consequently, if $\lambda \in \pi_{00}(T+K)$, then $\lambda I - T$ is Browder. By Theorem 1.2 it then follows that $\lambda I - (T+K)$) is also Browder, hence

$$\lambda \in \sigma(T+K) \setminus \sigma_{\rm b}(T+K) = p_{00}(T+K) \subseteq p_{00}^a(T+K),$$

as desired. \Box

In the sequel we shall consider nilpotent perturbations of operators satisfying property (*w*). It easy to check that if *N* is a nilpotent operator commuting with *T*, then $\sigma(T) = \sigma(T + N)$ and $\sigma_a(T) = \sigma_a(T + N)$.

Lemma 2.7. Suppose that $T \in L(X)$ satisfies property (w). If N is a nilpotent operator that commutes with T, then $p_{00}^a(T+N) \subseteq \pi_{00}(T+N)$.

Proof. Suppose that $\lambda \in p_{00}^a(T+N)$. Then

$$\lambda \in \sigma_{a}(T+N) \setminus \sigma_{ub}(T+N) = \sigma_{a}(T) \setminus \sigma_{ub}(T) = p_{00}^{a}(T).$$

Since T satisfies property (w) we then have, by Theorem 2.3, $p_{00}^a(T) = \pi_{00}(T)$. Hence λ is an isolated point of $\sigma(T) = \sigma(T^*)$ and therefore both T and T^* have SVEP at λ . Since $\lambda I - T \in$

 $B_+(X)$ it then follows that $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$. Furthermore, since $\lambda \in \pi_{00}(T)$ we also have $\alpha(\lambda I - T) < \infty$ and Theorem 3.4 of [1] entails that $\alpha(\lambda I - T) = \beta(\lambda I - T) < \infty$, thus $\lambda I - T$ is Browder and hence also $\lambda I - (T + N)$ is Browder, by Theorem 1.2. Hence λ is an isolated point of $\sigma(T + N)$ and $\alpha(\lambda I - (T + N)) < \infty$.

On the other hand, $\lambda I - (T + N)$ has closed range and since $\lambda \in \sigma_a(T + N)$ it then follows that $0 < \alpha(\lambda I - (T + N))$. Thus $\lambda \in \pi_{00}(T + N)$. \Box

Theorem 2.8. Suppose that $T \in L(X)$ is a-isoloid and suppose that N is a nilpotent operator that commutes with T. If T satisfies property (w), then T + N satisfies property (w).

Proof. Observe first that $\sigma_{wa}(T + N) = \sigma_{wa}(T)$, see Theorem 2.13 of [9], and by Theorem 1.2 we also have $\sigma_{ub}(T + N) = \sigma_{ub}(T)$. Since *a*-Browder's theorem holds for *T*, by Theorem 2.3, it then follows that $\sigma_{ub}(T + N) = \sigma_{wa}(T + N)$, i.e. T + N satisfies *a*-Browder's theorem. By Theorem 2.3 and Lemma 2.7 we have only to prove the inclusion

$$\pi_{00}(T+N) \subseteq p_{00}^{a}(T+N). \tag{8}$$

Let $\lambda \in \pi_{00}(T + N)$ be arbitrary given. There is no harm if we assume $\lambda = 0$. Clearly, $0 \in iso \sigma(T + N) = iso \sigma(T)$. Let $p \in \mathbb{N}$ be such that $N^p = 0$. If $x \in ker(T + N)$, then

$$T^p x = (-1)^p T^p x = 0,$$

thus ker $(T + N) \subseteq \ker T^p$. Since by assumption $0 < \alpha(T + N)$ it then follows that $\alpha(T^p) > 0$ and this obviously implies that $0 < \alpha(T)$. By assumption we also have $\alpha(T + N) < \infty$ and this implies that $\alpha(T + N)^p < \infty$, see Remark 2.6 of [4]. It is easily seen that if $x \in \ker T$, then

$$(T+N)^p x = N^p x = 0,$$

so ker $T \subseteq$ ker $(T + N)^p$ and hence $\alpha(T) < \infty$. Therefore, $0 \in \pi_{00}(T)$ and consequently $\pi_{00}(T + N) \subseteq \pi_{00}(T)$. Now, since T satisfies Weyl's theorem we have

$$\pi_{00}(T) = p_{00}(T) \subseteq p_{00}^{d}(T).$$

The inclusion (8) will be then proved if we show that $p_{00}^a(T) = p_{00}^a(T+N)$. But this is immediate, since $\sigma_a(T) = \sigma_a(T+N)$ and $\sigma_{ub}(T) = \sigma_{ub}(T+N)$, so the proof is complete. \Box

Example 2.9. The following example shows that both Theorem 2.8 and Theorem 2.6 fail if we do not assume that the nilpotent operator N, and the finite rank operator K do not commute with T.

Let $X := \ell^2(\mathbb{N})$ and T and N be defined by

$$T(x_1, x_2, \ldots) := \left(0, \frac{x_1}{2}, \frac{x_2}{3}, \ldots\right), \quad (x_n) \in \ell^2(\mathbb{N}),$$

and

$$N(x_1, x_2, \ldots) := \left(0, -\frac{x_1}{2}, 0, 0, \ldots\right), \quad (x_n) \in \ell^2(\mathbb{N}).$$

Clearly, *N* is a nilpotent finite rank operator, *T* is a quasi-nilpotent operator satisfying Weyl's theorem. Since *T* is decomposable, then *T* satisfies property (*w*), see Corollary 2.10 of [5]. On the other hand, it is easily seen that $0 \in \pi_{00}(T + N)$ and $0 \notin \sigma(T + N) \setminus \sigma_w(T + N)$, so that T + N does not satisfies Weyl's theorem, and hence does not satisfies property (*w*). Note that $\sigma_a(T + K) = \sigma_a(T)$.

Example 2.10. The following example shows that and Theorem 2.6 fails if we do not assume that *T* is *a*-isoloid. Let $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be an injective quasi-nilpotent operator, and let $U: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be defined:

$$U(x_1, x_2, \ldots) := (-x_1, 0, 0, \ldots) \text{ with } (x_n) \in \ell^2(\mathbb{N}).$$

Define on $X := \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N})$ the operators *T* and *K* by

$$T := \begin{pmatrix} I & 0 \\ 0 & S \end{pmatrix}, \qquad K := \begin{pmatrix} U & 0 \\ 0 & 0 \end{pmatrix}.$$

Clearly, K is a finite-rank operator and KT = TK. It is easy to check that

$$\sigma(T) = \sigma_{\mathrm{w}}(T) = \sigma_{\mathrm{a}}(T) = \{0, 1\}.$$

Since $\alpha(T) = 0$, then *T* is not *a*-isoloid. Now, both *T* and *T*^{*} have SVEP, since $\sigma(T) = \sigma(T^*)$ is finite. Moreover, $\pi_{00}(T) = \sigma(T) \setminus \sigma_w(T) = \emptyset$, so *T* satisfies Weyl's theorem, and hence by Theorem 2.16 of [5], *T* satisfies property (*w*).

On the other hand,

$$\sigma(T+K) = \sigma_{\mathrm{w}}(T+K) = \{0, 1\},$$

and $\pi_{00}(T + K) = \{0\}$, so that Weyl's theorem does not hold for T + K and this implies that property (w) does not hold for T + K. Note that $\sigma_a(T + K) = \sigma_a(T)$.

Generally, property (w) is not transmitted from T to a quasi-nilpotent perturbation T + Q. For instance, take T = 0, and $Q \in L(\ell^2(\mathbb{N})$ defined by

$$Q(x_1, x_2, \ldots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \ldots\right) \quad \text{for all } (x_n) \in \ell^2(\mathbb{N}).$$

Then Q is quasi-nilpotent and

$$\{0\} = \pi_{00}(Q) \neq \sigma_{a}(Q) \setminus \sigma_{aw}(Q) = \emptyset.$$

Hence T satisfies property (w) but T + Q = Q fails this property.

We want now to show that property (w) is preserved under injective quasi-nilpotent perturbations. We need first some preliminary results.

Lemma 2.11. Let $T \in L(X)$ be such that $\alpha(T) < \infty$. Suppose that there exists an injective quasinilpotent operator $Q \in L(X)$ such that TQ = QT. Then $\alpha(T) = 0$.

Proof. Suppose that there exists $0 \neq x \in \ker T$. By the commutative assumption we have $TQ^n = Q^nTx = 0$ for all n = 0, 1, ..., so that the sequence $(Q^nx)_{n=0,1,...}$ is contained in ker *T*. We claim that $(Q^nx)_{n=0,1,...}$ is a sequence of linearly independent vectors. In fact, suppose that

$$c_0 x + c_1 Q x + \dots + c_n Q^n x = 0.$$

Write $p(\lambda) := c_0 + c_1 \lambda + \dots + c_n \lambda^n$. If $\lambda_1, \dots, \lambda_n$ are the zeros of $p(\lambda)$, then

$$p(\lambda) = c_n \prod_{i=1}^n (\lambda_i - \lambda)$$

and

$$0 = p(Q)x = c_n \prod_{i=1}^n (\lambda_i I - Q)x.$$

Since Q is injective and quasi-nilpotent, then all $(\lambda_i I - Q)$ are injective and hence the condition p(Q)x = 0 entails that $c_n = 0$. An inductive argument then shows that $c_{n-1} = \cdots = c_0 = 0$, as claimed. Now, $Q^n x \in \ker T$ for all $n = 0, 1, \ldots$, and this contradicts our assumption $\alpha(T) < \infty$. \Box

Theorem 2.12. Suppose that $T \in L(X)$ and Q be a quasi-nilpotent operator commuting with T. The following statements hold:

(i) $\sigma_{aw}(T) = \sigma_{aw}(T+Q)$.

(ii) If Q is injective, then $\sigma_a(T) = \sigma_a(T+Q)$.

Proof. (i) It is well known that if $T \in \Phi_+(X)$ and K is a Riesz operator commuting with T, then $T + \lambda K \in \Phi_+(X)$ for all $\lambda \in \mathbb{C}$, see [24]. Suppose that $\lambda \notin \sigma_{aw}(T)$. There is no harm if we suppose that $\lambda = 0$. Then $T \in W_+(X)$ and hence $T + \mu Q \in \Phi_+(X)$ for all $\mu \in \mathbb{C}$. Clearly, T and T + Q belong to the same component of the open set $\Phi_+(X)$, so ind $T = ind(T + Q) \leq 0$, and hence $0 \notin \sigma_{aw}(T + Q)$. This shows $\sigma_{aw}(T + Q) \subseteq \sigma_{aw}(T)$. By symmetry then

$$\sigma_{aw}(T) = \sigma_{aw}(T + Q - Q) \subseteq \sigma_{aw}(T + Q),$$

so the equality $\sigma_{aw}(T) = \sigma_{aw}(T+Q)$ is proved.

(ii) Suppose that $\lambda \notin \sigma_a(T)$. Then $\lambda I - T$ is bounded below and hence $\lambda I - T \in W_+(X)$. By part (i) then $\lambda I - (T + Q) \in W_+(X)$, and since Q commutes with $\lambda I - (T + Q)$ from Lemma 2.11 we deduce that $\alpha(\lambda I - (T + Q)) = 0$. Since $\lambda I - (T + Q)$ has closed range we then conclude that $\lambda \notin \sigma_a(T + Q)$. This shows that $\sigma_a(T + Q) \subseteq \sigma_a(T)$. A symmetric argument may be used for obtaining the opposite inclusion, so also the equality $\sigma_a(T) = \sigma_a(T + Q)$ is proved. \Box

Theorem 2.13. Suppose that $T \in L(X)$ and Q an injective quasi-nilpotent operator commuting with T. If T satisfies property (w), then also T + Q satisfies property (w).

Proof. Since T satisfies property (w) from Theorem 2.12 we have

$$\sigma_{a}(T+Q) \setminus \sigma_{aw}(T+Q) = \sigma_{a}(T) \setminus \sigma_{aw}(T) = \pi_{00}(T).$$
(9)

To show property (w) for T + Q it suffices to prove that

$$\pi_{00}(T) = \pi_{00}(T+Q) = \emptyset$$

Suppose that $\pi_{00}(T) \neq \emptyset$ and let $\lambda \in \pi_{00}(T)$. From (9) we know that $\lambda I - T \in W_+(X)$, and hence by Lemma 2.11 it then follows that $\alpha(\lambda I - T) = 0$, a contradiction.

To show that $\pi_{00}(T+Q) = \emptyset$ suppose that $\lambda \in \pi_{00}(T+Q)$. Then $0 < \alpha(\lambda I - (T+Q)) < \infty$, so there exists $x \neq 0$ such that $(\lambda I - (T+Q))x = 0$. Since Q commutes with $\lambda I - (T+Q)$ the same argument of the proof of Lemma 2.11 shows that $\alpha(\lambda I - (T+Q) = \infty$, a contradiction. \Box

Theorems 2.6 and 2.8 apply to several classes of operators. A bounded operator $T \in L(X)$ is said to have *property* H(p) if for all $\lambda \in \mathbb{C}$ there exists $p := p(\lambda) \in \mathbb{N}$ such that

$$H_0(\lambda I - T) = \ker(\lambda I - T)^p.$$

In [5] it has been observed that if $T^* \in L(X)$ has property H(p), then T satisfies property (w). Moreover, T is a-isoloid. Indeed, from the implication (5), we see that property H(p) for T^* entails that T^* has SVEP and hence, by [1, Corollary 2.45], $\sigma_a(T) = \sigma(T) = \sigma(T^*)$. Since every isolated point of $\sigma(T)$ is a pole of the resolvent [2, Lemma 3.3], and hence an eigenvalue of T it then follows that T is *a*-isoloid. By Theorems 2.6 and 2.8 it then follows that property (w) holds for T + K, where K is nilpotent or a finite rank operator commuting with T. It should be noted that property H(p) holds for a relevant number of operators. In [19, Example 3] Oudghiri observed that every *generalized scalar operator* and every *subscalar operator* T (i.e. T is similar to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has property H(p), see [16] for definitions and properties. Consequently, property H(p) is satisfied by p-hyponormal operators and log-hyponormal operators [17, Corollary 2], w-hyponormal operators [7]. Also totally *-paranormal operators have property H(1) [13].

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic Publishers, 2004.
- [2] P. Aiena, Classes of operators satisfying a-Weyl's theorem, Studia Math. 169 (2005) 105-122.
- [3] P. Aiena, M.L. Colasante, M. Gonzalez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 130 (9) (2002) 2701–2710.
- [4] P. Aiena, J. R. Guillen, Weyl's theorem for perturbations of paranormal operators, Proc. Amer. Math. Soc (2005), in press.
- [5] P. Aiena, P. Peña, A variation on Weyl's theorem, J. Math. Anal. Appl. 324 (2006) 566-579.
- [6] P. Aiena, E. Rosas, The single valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. 279 (1) (2003) 180–188.
- [7] P. Aiena, F. Villafăne, Weyl's theorem for some classes of operators, Integral Equations Operator Theory 53 (2005) 453–466.
- [8] L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 20 (1970) 529-544.
- [9] D.S. Djordjević, Operators obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (3-4) (1999) 283-298.
- [10] N. Dunford, Spectral theory I. Resolution of the identity, Pacific J. Math. 2 (1952) 559-614.
- [11] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954) 321-354.
- [12] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975) 61-69.
- [13] Y.M. Han, An-Hyun Kim, A note on *-paranormal operators, Integral Equations Operator Theory 49 (2004) 435– 444.
- [14] R. Harte, Woo Young Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997) 2115–2124.
- [15] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
- [16] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [17] C. Lin, Y. Ruan, Z. Yan, p-Hyponormal operators are subscalar, Proc. Amer. Math. Soc. 131 (9) (2003) 2753–2759.
- [18] C. Lin, Y. Ruan, Z. Yan, w-Hyponormal operators are subscalar, Integral Equations Operator Theory 50 (2004) 165–168.
- [19] M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. 163 (1) (2004) 85-101.
- [20] M. Oudghiri, Weyl's theorem and perturbations, Integral Equations Operator Theory 53 (4) (2005) 535-545.
- [21] V. Rakočević, On a class of operators, Mat. Vesnik 37 (1985) 423-426.
- [22] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (10) (1989) 915–919.
- [23] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1997) 131-137.
- [24] M. Schechter, R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988) 175-190.