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Abstract

A bounded linear operator 7 € L(X) defined on a Banach space X satisfies property (w), a variant of
Weyl’s theorem, if the complement in the approximate point spectrum o, (7) of the Weyl essential approx-
imate spectrum owy (7") coincides with the set of all isolated points of the spectrum which are eigenvalues
of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting
on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent
operators commuting with 7'.
© 2007 Elsevier Inc. All rights reserved.
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1. Definitions and basic results

Throughout this paper, X will denote an infinite-dimensional complex Banach space,
L(X) the algebra of all bounded linear operators on X . For an operator T € L(X) we shall denote
by «(T') the dimension of the kernel ker 7', and by B(T") the codimension of the range 7 (X). We
recall that an operator 7' € L(X) is called upper semi-Fredholm if «(T) < oo and T (X) is closed,
while T € L(X) is called lower semi-Fredholm if B(T) < co. Let @, (X) and @_(X) denote the
class of all upper semi-Fredholm operators and the class of all lower semi-Fredholm operators,
respectively. The class of all semi-Fredholm operators is defined by @4 (X) := @ (X)UP_(X),
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while the class of all Fredholm operators is defined by @ (X) := @, (X)NP_(X). If T € D1 (X),
the index of T is defined by ind(T) := «(T) — B(T). Recall that a bounded operator T is said
bounded below if it injective and has closed range. Define

Wi (X):={T € ®,(X): ind T <0}
and
W_(X):={T e ®_(X): ind T > 0}.
The set of Weyl operators is defined by
W(X) :=We(X) NW_(X)={T € (X): indT =0}.

The classes of operators defined above generate the following spectra. The Weyl spectrum is
defined by

ow(T):={reC: Al =T ¢ W(X)},

while the Weyl essential approximate point spectrum is defined by
owa(T):={reC: Al =T ¢ W, (X)}.

The approximate point spectrum is canonically defined by
0a(T) :={A € C: Al — T is not bounded below}.

Note that oy, (T) is the intersection of all approximate point spectra o, (T + K) of compact
perturbations K of T, see for instance [1, Theorem 3.65]. Write iso K for the set of all isolated
points of K € C. It is known that if K € L(X) is a finite-rank operator commuting with 7', then

reaccoy(T) <& Aecaccoa(T +K), (D)

for a proof see Theorem 3.2 of [9].
The classes W (X), W_(X) and W(X) are stable under some perturbations. In fact we have:

Theorem 1.1. Let T € L(X) and K € L(X) be a compact operator. Then

) TeWi(X)&T+KeWi(X).
(i) TeW_(X)&T+KeW_(X).
(i) TeWX) & T+ K e W(X).

Proof. The implication (i) is a consequence of the well-known factif T € @, (X),then T + K €
@, (X) with ind(T + K) =ind(T). The same happens for T € @_(X)or T e ®(X). O

For an operator T the ascent is defined as p := p(T) = inf{n € N: ker T" = ker T"*!}, while
the descent is defined as let ¢ := ¢(T) = inf{n € N: T"(X) = T+ (X)}, the infimum over the
empty set is taken oo. It is well known that if p(T') and ¢(T) are both finite, then p(T) = q(T)
(see [15, Proposition 38.3]). Moreover, 0 < p(Al —T) =q (Al — T) < oo precisely when A is a
pole of the resolvent of 7', see Proposition 50.2 of Heuser [15].

The class of all upper semi-Browder operators is defined

Bi(X):={T € 1. (X): p(T) < 00},
while the class of all lower semi-Browder operators is defined

B_(X):={T € ?_(X): ¢(T) < o0}.
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The class of all Browder operators is defined
B(X):=BL(X)NB_(X)={T € ®(X): p(T) =q(T) < o0}.
We have
B(X) € W(X), B (X) € Wi (X), B_(X) € W_(X),

see [1, Theorem 3.4].
The Browder spectrum of T € L(X) is defined by

ob(T):={reC: Al =T ¢ B(X)},
the upper semi-Browder spectrum is defined by
ow(T):={reC: Al =T ¢ BL.(X)}.

Recall that T € L(X) is said to be a Riesz operator if A\l — T € @ (X) for all A € C\ {0}.
Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the
following result may be found in Rakocevié [23]:

Theorem 1.2. Let T € L(X) and K be a Riesz operator commuting with T. Then

(i) TeBL(X)& T+ K e BL(X).
(i) T € B_(X) & T+ K € B_(X).
(iii) T € B(X) & T + K € B(X).

The single-valued extension property was introduced by Dunford [10,11] and has an important
role in local spectral theory, see the recent monograph by Laursen and Neumann [16]. In this
article we shall consider the following local version of this property, which has been studied
in [3,6,12], see also the recent monograph by Aiena [1].

Definition 1.3. Let X be a complex Banach space and T € L(X). The operator T is said to
have the single valued extension property at Ao € C (abbreviated SVEP at 1), if for every
open disc D centered at ¢, the only analytic function f:ID — X which satisfies the equation
(M —T)f() =0 forall » €D, is the function f =0.

An operator T € L(X) is said to have SVEP if T has SVEP at every point A € C.

An operator T € L(X) has SVEP at every point of the resolvent p(T") := C\ ¢ (7T) and from
the identity theorem for analytic function it easily follows that T € L(X) has SVEP at every
point of the boundary do (T') of the spectrum o (T'). In particular, 7 has SVEP at every isolated
point of the spectrum o (7T').

Note that
p(Al —T)<oo = T hasSVEPatAa, 2)
and dually
gMl —T)<oo = T*hasSVEPatA, 3)

see [1, Theorem 3.8]. Furthermore, from definition of SVEP we have

0a(T) does not clusterat . = T has SVEP at A. @
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An important subspace in local spectral theory is the quasi-nilpotent part of T defined by

1
Hy(T) =[x e X: lim |Tx]7 =o0].
n—oo

We also have [3]
Ho(AI —T)closed = T hasSVEPatA. 5)

Remark 1.4. It should be noted that the implications (2)—(5) are equivalences if we assume that
A —T e @4(X), see [1, Chapter 3].

2. Property (w) and perturbations

For a bounded operator 7' € L(X), define pg,(T) := 0a(T) \ ow(T). If A € pg(T), then
p(Al —T) < o0, and, since Al — T is upper semi-Fredholm from Remark 1.4 it then follows
that A € iso0,(T), so

Poo(T) S mgo(T) == {A €is00,(T): 0 <a(AMl —T) < oo}

Define
moo(T) :={r €isoo(T): 0 <a(rl —T) < 00}.

Following Harte and W.Y. Lee [14] we shall say that T satisfies Browder’s theorem if
ow(T) = op(T),

or equivalently o (T') \ ow(T) = poo(T), where poo(T) := o (T) \ on(T). Evidently, poo(T) <
Poo(T) forevery T € L(X).
A bounded operator T € L(X) is said to satisfy a-Browder’s theorem if

owa(T) = ouw(T),

or equivalently o3 (T') \ owa(T) = pgo(T). If T is a finite-rank operator commuting with 7', from
Theorems 1.1 and 1.2 it then easily follows the following equivalence:

T satisfies a-Browder’s theorem <« T + K satisfies a-Browder’s theorem.
Following Coburn [8], we say that Weyl’s theorem holds for T € L(X) if
o (T)\ ow(T) = moo(T), (6)

Wey!’s theorem entails Browder’s theorem. In fact, we have:

Theorem 2.1. (See [2].) T € L(X) satisfies Weyl’s theorem precisely when T satisfies Browder’s
theorem and moo(T) = poo(T).

The following two variants of Weyl’s theorem has been introduced by Rakocevi¢ [21,22].

Definition 2.2. A bounded operator 7" € L(X) is said to satisfy property (w) if

0a(T) \ oaw(T) = 700(T),
while 7' € L(X) is said to satisfy a-Weyl’s theorem if
0a(T) \ 0aw(T) = 7150(T).
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Property (w) has been also studied in recent paper [5]. As observed in [21] and [5], we have:
either a-Weyl’s theorem or property (w) forT = Weyl’s theorem holds for 7,

and examples of operators satisfying Weyl’s theorem but not property (w) may be found in [5].
Property (w) is fulfilled by a relevant number of Hilbert space operators, see [5], and this property
for T is equivalent to Weyl’s theorem for T or to a-Weyl’s theorem whenever T* satisfies SVEP
[5, Theorem 2.16]. For instance, property (w) is satisfied by generalized scalar operator, or if the
Hilbert adjoint T’ has property H (p) [5, Corollary 2.20]. Note that

property (w) forT = a-Browder’s theorem holds for 7,

and precisely we have:
Theorem 2.3. (See [5].) If T € L(X), the following statements are equivalent:

(1) T satisfies property (w);
(i) a-Browder’s theorem holds for T and pgo(T) =moo(T).

It should be noted that property (w) is not intermediate between Weyl’s theorem and a-Weyl’s
theorem, see [5] for examples.

Lemma 2.4. Suppose that T € L(X) satisfies property (w) and K is a finite rank operator
commuting with T such that o,(T + K) = 0a(T). Then pjy(T + K) € moo(T + K).

Proof. Let A € p(j,(T + K) be arbitrary given. Then A € iso0,(T + K) and Al — (T + K) €
B4 (X), so a(Al — (T 4+ K)) < oo. Since Al — (T + K) has closed range, the condition A €
0,(T + K) entails that 0 < (Al — (T + K)). Therefore, in order to show that A € woo(T + K),
we need only to prove that X is an isolated point of o (T + K).
We know that A € is0o0,(T'). Also, by Theorem 1.2 we also have Al — (T + K) — K =Xl —
T € B (X) sothat A € 05(T) \ oun(T) = p(T).
Now, by assumption T satisfies property (w) so, by Theorem 2.3, pgo(T) = moo(T). More-
over, T satisfies Weyl’s theorem and hence, by Theorem 2.1,
700(T) = poo(T) =0 (T) \ ou(T).
Therefore, Al — T is Browder and hence also Al — (T 4+ K) is Browder, so
0<p(M —(T+K))=q(r — (T +K)) <o0

and hence A is a pole of the resolvent of T + K. Consequently, A an isolated point of o (T + K),
as desired. O

Define
moe(T) = {A eisoo(T): oM —T) < oo}
Obviously, moo(T) S moe(T).

Lemma 2.5. If T, K € L(X), K is a Riesz operator commuting with T, then mwoo(T + R) N
04(T) Cisoo(T).
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Proof. Clearly,
oo(T + R) Noa(T) Cmor(T + R)No(T),

and by Lemma 2.3 of [20] the last set is contained in isoo (7). O

A bounded operator T € L(X) is said to be a-isoloid if every isolated point of o,(T) is an
eigenvalue of 7.

Theorem 2.6. Suppose that T € L(X) is a-isoloid and K is a finite rank operator commuting
with T such that oo(T + K) = 0,(T). If T satisfies property (w), then T + K satisfies prop-
erty (w).

Proof. Suppose that T satisfies property (w). Then, by Theorem 2.3, T satisfies a-Browder’s
theorem, and hence also T + K satisfies a-Browder’s theorem.

By Theorem 2.3, in order to show that T 4 K satisfies property (w) it suffices only to prove
the equality pg,(T + K) = moo(T + K). The inclusion pg,(T + K) € moo(T + K) follows from
Lemma 2.4, so we need only to show the opposite inclusion wgo(7 + K) € pgo(T + K).

We first show the inclusion

700(T + K) < poo(T). @)

Let A € mpo(T + K). By assumption A € isoo (T 4+ K) and (Al — (T + K)) >0 so A €
is00,(T + K), and hence A € iso0,(7T). By Lemma 2.5 we then conclude that A is an isolated
point of o (T'). Furthermore, since 7T is a-isoloid, we have also 0 < a(Al — T').

We show now that (Al — T) < oc. To see this, note first that the restriction Al — (T + K) | M
of Ml — (T 4+ K) on M :=ker(Al — T) coincides with the restriction of K on M, so (Al —
(T 4+ K)) | M has both finite-dimensional kernel and finite-dimensional range. From this it then
follows that M =ker(AI — T) is finite-dimensional, and consequently (Al — T') < oo.

Therefore the inclusion oo (7 + K) € moo(T) is proved. Now, since property (w) entails that
T satisfies Weyl’s theorem, by Theorem 2.1, we then have woo(T + K) € pgo(T) and hence
the inclusion (7) is established. Consequently, if A € moo(T + K), then Al — T is Browder. By
Theorem 1.2 it then follows that Al — (T + K)) is also Browder, hence

reo(T+ K)\oo(T + K) = poo(T + K) € pgo(T + K),
as desired. O
In the sequel we shall consider nilpotent perturbations of operators satisfying property (w). It

easy to check that if N is a nilpotent operator commuting with 7', then o (T) = o (T + N) and
0a(T) = 0a(T + N).

Lemma 2.7. Suppose that T € L(X) satisfies property (w). If N is a nilpotent operator that
commutes with T, then pg,(T + N) C moo(T + N).
Proof. Suppose that A € p(j,(T + N). Then

%€ 0o(T + N)\ 0un(T + N) = 04(T) \ o (T) = pi (7).

Since T satisfies property (w) we then have, by Theorem 2.3, pg,(T) = 7oo(T). Hence A is an
isolated point of o (T) = o (T*) and therefore both T and T* have SVEP at A. Since Al — T €
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B4 (X) it then follows that 0 < p(AI — T) = q(Al — T) < oo. Furthermore, since A € myo(T)
we also have a (L] — T') < oo and Theorem 3.4 of [1] entails that a(Al — T) = B(MI — T) < o0,
thus A/ — T is Browder and hence also Al — (T + N) is Browder, by Theorem 1.2. Hence A is
an isolated point of o (T + N) and (Al — (T + N)) < oo.

On the other hand, Al — (T 4+ N) has closed range and since A € 0,(T + N) it then follows
that 0 < a(Al — (T + N)). Thus A € mpo(T + N). O

Theorem 2.8. Suppose that T € L(X) is a-isoloid and suppose that N is a nilpotent operator
that commutes with T. If T satisfies property (w), then T + N satisfies property (w).

Proof. Observe first that oy, (T + N) = owa(T), see Theorem 2.13 of [9], and by Theorem 1.2
we also have oy (T + N) = oy (T). Since a-Browder’s theorem holds for 7', by Theorem 2.3,
it then follows that oyb,(T + N) = owa(T + N), i.e. T + N satisfies a-Browder’s theorem. By
Theorem 2.3 and Lemma 2.7 we have only to prove the inclusion

700 (T + N) S pgo(T + N). ®)

Let & € mpo(T + N) be arbitrary given. There is no harm if we assume A = 0. Clearly, 0 €
isoo (T + N) =isoo (T). Let p € N be such that N” = 0. If x € ker(T + N), then

TPx=(-1D)PT?x =0,

thus ker(7 + N) C ker T?. Since by assumption 0 < (7 + N) it then follows that «(7”) > 0
and this obviously implies that 0 < « (7). By assumption we also have (T + N) < oo and this
implies that o (T + N)? < oo, see Remark 2.6 of [4]. It is easily seen that if x € ker T', then

(T + N)Px = NPx =0,

so kerT C ker(T + N)? and hence a(T) < co. Therefore, 0 € mpp(7T) and consequently
woo(T + N) S moo(T). Now, since T satisfies Weyl’s theorem we have

700(T) = poo(T) S po(T).

The inclusion (8) will be then proved if we show that pg,(T) = pg,(T + N). But this is imme-
diate, since 0,(T) = 0,(T + N) and oy (T) = oup (T + N), so the proof is complete. O

Example 2.9. The following example shows that both Theorem 2.8 and Theorem 2.6 fail if we do
not assume that the nilpotent operator N, and the finite rank operator K do not commute with 7.
Let X := ¢2(N) and T and N be defined by

X1 X2

T(x1,x2,...) = (o, 53 ) (x,) € 2(N),

and
N(x1,x2,...) = (0, —%,0, 0, ) (xn) € £2(N).

Clearly, N is a nilpotent finite rank operator, 7' is a quasi-nilpotent operator satisfying Weyl’s
theorem. Since T is decomposable, then T satisfies property (w), see Corollary 2.10 of [5]. On
the other hand, it is easily seen that 0 € mpo(T + N) and 0 ¢ o (T + N) \ ow(T + N), so that
T + N does not satisfies Weyl’s theorem, and hence does not satisfies property (w). Note that
0a(T + K) = 0a(T).
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Example 2.10. The following example shows that and Theorem 2.6 fails if we do not as-
sume that T is a-isoloid. Let S:¢>(N) — ¢*(N) be an injective quasi-nilpotent operator, and
let U : £*(N) — €*(N) be defined:

U(xy,x2,...):=(—x1,0,0,...) with (x,) € EZ(N).

Define on X := £2(N) @ ¢2(N) the operators T and K by

() (0

Clearly, K is a finite-rank operator and K7 = T K. It is easy to check that
o(T) =ow(T) =0a(T) ={0, 1}.

Since a(T) =0, then T is not a-isoloid. Now, both T and T* have SVEP, since o (T) = o (T™)
is finite. Moreover, moo(T) = o (T) \ ow(T) =@, so T satisfies Weyl’s theorem, and hence by
Theorem 2.16 of [5], T satisfies property (w).

On the other hand,

o(T+K)=0w(T+K)={0,1},

and moo(T + K) = {0}, so that Weyl’s theorem does not hold for 7 + K and this implies that
property (w) does not hold for T + K. Note that 0,(T + K) = 0,(T).

Generally, property (w) is not transmitted from 7' to a quasi-nilpotent perturbation 7 + Q.
For instance, take 7 =0, and Q € L(¢%(N) defined by
O(x1,x2,...) = <X_22 ?) for all (x,) € £2(N).
Then Q is quasi-nilpotent and

{0} = m00(Q) # 0a(Q) \ 0w (Q) =¥.

Hence T satisfies property (w) but T + Q = Q fails this property.
We want now to show that property (w) is preserved under injective quasi-nilpotent perturba-
tions. We need first some preliminary results.

Lemma 2.11. Let T € L(X) be such that «(T) < o0o. Suppose that there exists an injective quasi-
nilpotent operator Q € L(X) suchthat T Q = QT. Then a(T) =0.

Proof. Suppose that there exists 0 # x € ker 7. By the commutative assumption we have 7 Q" =
Q"'"Tx=0foralln=0,1,..., so that the sequence (Q"x),=0,1,... is contained in ker 7. We
claim that (Q"x),=0.1,... is a sequence of linearly independent vectors. In fact, suppose that

cox+c10x+---+¢,0"x =0.
Write p(A) :=co+c1h+---+c,A". If A1, ..., A, are the zeros of p(A), then
n
pMy=ca [ Ji =2

i=1

and

0=p(@Qx=cu] [l = Q)x.

i=1
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Since Q is injective and quasi-nilpotent, then all (A;I — Q) are injective and hence the con-
dition p(Q)x = 0 entails that ¢, = 0. An inductive argument then shows that ¢, =--- =
co =0, as claimed. Now, Q"x € kerT for alln =0, 1,..., and this contradicts our assumption
a(T)<oo. O

Theorem 2.12. Suppose that T € L(X) and Q be a quasi-nilpotent operator commuting with T .
The following statements hold:

(1) oaw(T) = oaw(T + Q).
(i) If Q is injective, then o,(T) = 0,(T + Q).

Proof. (i) It is well known that if T € @, (X) and K is a Riesz operator commuting with T,
then T + LK € @, (X) for all A € C, see [24]. Suppose that A ¢ o,w(T'). There is no harm if we
suppose that A =0. Then T € W,.(X) and hence T+ uQ € @, (X) forall u € C. Clearly, T and
T + Q belong to the same component of the open set @4 (X), soind7T =ind(T + Q) <0, and
hence 0 ¢ o,w (T + Q). This shows o,w (T + Q) C 0ayw(T). By symmetry then

Oaw(T) = oaw(T + Q — Q) Coaw(T + Q),
so the equality 04w (T) = oaw (T + Q) is proved.

(ii) Suppose that A ¢ 0,(T). Then Al — T is bounded below and hence Al — T € W (X).
By part (i) then Al — (T 4+ Q) € W (X), and since Q commutes with Al — (T + Q) from
Lemma 2.11 we deduce that «(AI — (T + Q)) =0. Since Al — (T + Q) has closed range we
then conclude that A ¢ 0,(T + Q). This shows that 0,(T + Q) C 0,(T). A symmetric argument
may be used for obtaining the opposite inclusion, so also the equality 0,(T) = 0,(T + Q) is
proved. O

Theorem 2.13. Suppose that T € L(X) and Q an injective quasi-nilpotent operator commuting
with T. If T satisfies property (w), then also T + Q satisfies property (w).

Proof. Since T satisfies property (w) from Theorem 2.12 we have

oa(T + @)\ oaw(T + Q) = 0a(T) \ 0aw(T) = 700(T). ©))
To show property (w) for T + Q it suffices to prove that

7o0(T) = moo(T + Q) = 4.

Suppose that moo(T) # @ and let A € mpo(T). From (9) we know that Al — T € W (X), and
hence by Lemma 2.11 it then follows that « (Al — T') = 0, a contradiction.

To show that oo (7 + Q) = @ suppose that A € 7go(T + Q). Then 0 < a(A — (T + Q)) < o0,
so there exists x # 0 such that (Al — (T + Q))x = 0. Since Q commutes with Al — (T + Q)
the same argument of the proof of Lemma 2.11 shows that « (Al — (T 4+ Q) = oo, a contradic-
tion. O

Theorems 2.6 and 2.8 apply to several classes of operators. A bounded operator 7 € L(X) is
said to have property H(p) if for all A € C there exists p := p(}) € N such that
Ho(AM — T) =ker(Al — T)P.

In [5] it has been observed that if T* € L(X) has property H (p), then T satisfies property (w).
Moreover, T is a-isoloid. Indeed, from the implication (5), we see that property H (p) for T*
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entails that 7* has SVEP and hence, by [1, Corollary 2.45], 0,(T) = o (T) = o (T*). Since every
isolated point of o (T) is a pole of the resolvent [2, Lemma 3.3], and hence an eigenvalue of T’
it then follows that T is a-isoloid. By Theorems 2.6 and 2.8 it then follows that property (w)
holds for T 4+ K, where K is nilpotent or a finite rank operator commuting with 7'. It should be
noted that property H (p) holds for a relevant number of operators. In [19, Example 3] Oudghiri
observed that every generalized scalar operator and every subscalar operator T (i.e. T is similar
to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has prop-
erty H(p), see [16] for definitions and properties. Consequently, property H (p) is satisfied by
p-hyponormal operators and /og-hyponormal operators [17, Corollary 2], w-hyponormal opera-
tors [18], M-hyponormal operators [16, Proposition 2.4.9], and totally paranormal operators [7].
Also totally *-paranormal operators have property H (1) [13].
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