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1. INTRODUCTION 
Temporal segmentation of video data is the process aimed at the detection 
and classification of transitions between subsequent sequences of frames 
semantically homogeneous and characterized by spatiotemporal continuity. 
These sequences, generally called camera-shots, constitute the basic units of 
a video indexing system. In fact, from a functional point of view, temporal 
segmentation of video data can be considered as the first step of the more 
general process of content-based automatic video indexing. Although the 
principal application of temporal segmentation is in the generation of 
content-based video databases, there are other important fields of 
application. For example in video browsing, automatic summarization of 
sports video or automatic trailer generation of movies temporal segmentation 
is implicitly needed. Another field of application of temporal segmentation is 
the transcoding of MPEG 1 or 2 digital video to the new MPEG-4 standard. 
As MPEG-4 is based on video objects that are not coded in MPEG 1 or 2, a 
temporal segmentation step is in general needed to detect and track the 
objects across the video. 

It is important to point out the conceptual difference between the operation 
of an automatic tool aimed at the detection and classification of the 
information present in a sequence and the way a human observer analyzes 
the same sequence. While the human observer usually performs a semantic 
segmentation starting from the highest conceptual level and then going to 
the particular, the automatic tool of video analysis, in a dual manner, starts 
from the lowest level, i.e. the video bitstream, and tries to reconstruct the 
semantic content. For this reason, operations that are very simple and 
intuitive for a human may require the implementation of quite complex 
decision making schemes. For example consider the process of archiving an 
episode of a tv show. The human observer probably would start annotating 
the title of the episode and its number, then a general description of the 
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scenes and finally the detailed description of each scene. On the other side 
the automatic annotation tool, starting form the bitstream, tries to determine 
the structure of the video based on the homogeneity of consecutive frames 
and then can extract semantic information. If we assume a camera-shot is a 
sequence of semantically homogeneous and spatiotemporally continuous 
frames then the scene can be considered as an homogeneous sequence of 
shots and the episode as a homogeneous sequence of scenes. In practice, the 
first step for the automatic annotation tool is the determination of the 
structure of the video based on camera-shots, scenes and episodes as 
depicted in figure 1. 

 

 
 

Figure 1. General structure of a video sequence. 
 
In a video sequence the transitions between camera-shots can be of different 
typologies. Even though in many cases the detection of a transition is 
sufficient, in some cases it is important at least to determine if the transition 
is abrupt or gradual. Abrupt transitions, also called cuts, involve only two 
frames (one for each shot), while gradual transitions involve several frames 
belonging to the two shots processed and mixed together using different 
spatial and intensity variation effects [4]. 

It is also possible to further classify gradual transitions [28], [5]. Most 
common gradual transitions are fades, dissolves and wipes. Fade effects 
consisting of the transition between the shot and a solid background are 
called fade-out, while opposite effects are called fade-in. Fade-in and fade-out 
are often used as beginning and end effect of a video. Dissolve is a very 
common editing effect and consists of a gradual transition between two shots 
where the first one slowly disappears and, at the same time and at the same 
place, the second one slowly appears. Finally, wipes are the family of gradual 
transitions where the first shot is progressively covered with the second one, 
following a well defined trajectory. While in the dissolve the superposition of 
the two shots is obtained changing the intensity of the frames belonging to 
the shots, in the case of the wipes the superposition is obtained changing the 
spatial position of the frames belonging to the second shot. In Figure 2 are 
reported a few frames from a fade-out, a dissolve and a wipe effect. 
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Figure 2. Examples of editing effects. (a) fade-out, (b) dissolve, (c) wipe. 
 
The organization of this chapter is as follows. In Sect. 2 we review most 
relevant shot boundary detection techniques, starting with basic algorithms 
in uncompressed and compressed domains and then discussing some more 
articulated methodologies and tools. In Sect. 3 we propose a new 
segmentation technique, grounded on a neural network architecture, which 
does not require explicit threshold values for detection of both abrupt and 
gradual transitions. Finally, we present in Sect. 4 a test bed for experimental 
evaluation of the quality of temporal segmentation techniques, employing our 
proposed technique as an example of use. 

 
 

2. TEMPORAL SEGMENTATION TECHNIQUES 
It has been pointed out that the aim of temporal segmentation is the 
decomposition of a video in camera-shots. Therefore, the temporal 
segmentation must primarily allow to exactly locate transitions between 
consecutive shots. Secondarily, it is of interest the classification of the type 
of transition. Basically, temporal segmentation algorithms are based on the 
evaluation of the quantitative differences between successive frames and on 
some kind of thresholding. In general an effective segmentation technique 
must combine an interframe metric computationally simple and able to 
detect video content changes with robust decision criteria. 
In subsections 2.1-2.4 we will review some of the most significant 
approaches proposed in recent years and discuss their strength and 
limitations. These techniques also constitute the building blocks of more 
sophisticated segmentation methodologies and tools, such as the ones 
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illustrated in subsection 2.5, and may be used to evaluate new segmentation 
techniques. 

 

2.1 TECHNIQUES BASED ON PIXELS DIFFERENCE METRICS  
Metrics classified as PDM (pixels difference metrics) are based on the 
intensity variations of pixels in equal position in consecutive frames. 
Temporal segmentation techniques using interframe differences based on 
color are conceptually similar, but they are not very popular as they have a 
greater computational burden and almost the same accuracy of their 
intensity based counterpart.  

A basic PDM is the sum of the absolute differences of intensity of the pixels 
of two consecutive frames [8]. In particular, indicating with Y(x, y, j) and Y(x, 
y, k) the intensity of the pixels at position (x, y) and frames j and k, the 
metric can be expressed in the following way:  
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where the summation is taken all over the frame. 

The same authors propose other metrics based on first and second order 
statistical moments of the distributions of the levels of intensity of the pixels. 
Indicating with µk and σk respectively the values of mean and standard 
deviation of the intensity of the pixels of the frame k, it is possible to define 
the following interframe metric between the frames j and k: 
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This metric has been also used in [7], [30], and is usually named likelihood 
ratio, assuming a uniform second order statistic. Other metrics based on 
statistical properties of pixels are: 
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Associating a threshold to a metric it is possible to detect a transition 
whenever the metric value exceeds the threshold value. As it was pointed out 
in [8], PDMs offer the best performance for the detection of abrupt 
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transitions. In general all the PDMs are particularly exposed to the effects of 
noise, camera/object movements or sudden lighting changes, leading to 
temporally or spatially localized luminance perturbations, and then to a 
potentially large number of false transitions. From this point of view, slightly 
better performances are obtained considering block-based comparisons 
between successive frames, with matching criteria based on values of mean 
and variance in corresponding blocks. Several  block-based PDMs are 
reviewed in [18].  

In order to limit the effects of local perturbations, some authors have 
developed top-down methods based on mathematical models of video. For 
example, in [1] a differential model of motion picture is presented, where 
three factors concur to the intensity variations of pixels of consecutive 
frames: a small amplitude additive zero-centered Gaussian noise,  essentially 
modelling the noise effects of camera, film and digitizer, the intrashot 
intensity variations due to camera/object motion and focal length or 
lightness changes; and finally the intershot variations due to the presence of 
abrupt or gradual transitions. In [34], another approach for gradual 
transitions detection based on a model of intensity changes during fade out, 
fade in and dissolve effects is presented. 

Another interesting approach based on PDMs has been proposed in [6]. In 
this paper the authors propose the use of moment invariants of the image. 
Properties such as the scale and rotation invariance make them particularly 
suited to represent the frame. Denoting by Y(x, y) the intensity at the 
position (x, y), the generic moment of order pq of the image is defined as: 
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Moment invariants are derived from normalized central moments defined as: 
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Limiting our attention to the first three moment invariants, these are defined 
as:  
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These three numbers may be interpreted as the components of a vector, say 
σσσσ, that can be used to represent the image: 

}{ 321 ,, φφφ=σ        (10) 
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The interframe metric adopted in [6] is the Euclidean distance between the 
vector σσσσ  associated to frames j and k: 

( ) 2
, kjmoms kjf σσ −=      (11) 

Although the use of moment invariants can lead to robust segmentation 
algorithms, with respect to noise and other local perturbations, techniques 
based on statistical properties generally exhibit a computational load not 
adequate for specific applications, e.g. real time systems. 

 

2.2 TECHNIQUES BASED ON HISTOGRAM DIFFERENCE METRICS 
Metrics classified as HDM (histograms difference metrics) are based on the 
evaluation of the histograms of one ore more channels of the adopted color 
space. As it is well known, the histogram of a digital image is a measure that 
supplies information on the general appearance of the image. With reference 
to an image represented by three color components, each  quantized with 8 
bit/pixel, a three-dimensional histogram or three monodimensional 
histograms can be defined. Although the histogram does not contain any 
information on the spatial distribution of intensity, the use of interframe 
metrics based on image histograms is very diffused because it represents a 
good compromise between the computational complexity and the ability to 
represent  the image content. 

In recent years several histogram-based techniques have been proposed [9], 
[6], [23], [37], some of them are based only on the luminance channel, others 
on the conversion of 3-D or 2-D histograms to linear histograms [2]. An RGB 
24 bit/pixel image would generate an histogram with 16.7 millions of bins 
and this is not usable in practice. To make manageable histogram-based 
techniques, a coarse color quantization is needed. For example in [2] the 
authors use an histogram in the HSV color space using 18 levels for hue and 
3 for saturation and value leading to a easily tractable 162 bins histogram. 
Other approaches are based both on PDM and HDM. For example, in [24] 
two metrics are combined together: a PDM metric is used to account for 
spatial variation in the images and a HDM metric to account for color 
variations. Ideally, a high value in both metrics corresponds to a transition, 
however the choice of thresholds and weights may be critical. 

In what follows some of the most popular HDM metrics are reviewed. In all 
the equations M and N are respectively the width and height (in pixels) of the 
image, j and k are the frame indices, L is the number of intensity levels and 
H[j, i] the value of the histogram for the i-th intensity level at frame j. A 
commonly used metric [9] is the bin-to-bin difference, defined as the sum of 
the absolute differences between histogram values computed for the two 
frames: 
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The metric can easily be extended to the case of color images, computing the 
difference separately for every color component and weighting the results. 
For example, for a RGB representation we have: 
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where r, g, and b are the average values of the three channels and s is: 
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Another metric, used for example in [9], [6] is called intersection difference 
and is defined in the following way: 
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In other approaches [28], the chi-square test has been used, that is generally 
accepted as a test useful to detect if two binned distributions are generated 
from the some source: 
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Also the correlation between histograms is used: 
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where cov(i, j) is the covariance between frame histograms: 
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and µj e σj represent the mean and the standard deviation, respectively, of 
the histogram of the frame j:  
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All the metrics discussed so far are global, i.e. based on the histogram 
computed over the entire frame. Some authors propose metrics based on 
histograms computed on subframes. For example, in [5] a rectangular 6x4 
frame partitioning is used. Each frame is subdivided into 6 horizontal blocks 
and 4 vertical blocks. The reason for this asymmetry is that horizontal 
movements are statistically more frequent than vertical ones. Then an HDM 
is used to compute difference between corresponding blocks in consecutive 
frames, after an histogram equalization. The shape of histograms is also 
taken into account for each block, using histogram moments up to the third 
order. Region differences are also weighted, using experimentally determined 
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coefficients, to account for different contribution, in correspondence of a shot 
transition, of low and high intensity levels. The global metric is finally 
obtained adding up the contribution of all the sub-regions. In despite of its 
greater complexity, the performance of this technique remains, in many 
cases, quite sensitive to the choice of thresholds and weights. 

Both PDM and HDM techniques are based on the computation of a similarity 
measure of two subsequent frames and on comparison of this measure with 
a threshold. The choice of the threshold is critical, as too low threshold 
values may lead to false detections and too high threshold values may cause 
the opposite effect of missed transitions. 

To limit the problem of threshold selection, several techniques have been 
proposed. For example, in [5] a short-term analysis of the sequence of 
interframe differences is proposed to obtain temporally localized thresholds. 
The analysis is performed within a temporal window of appropriate size, for 
example 7 frames. This approach is more robust to local variations of 
brightness and camera/object motion. In detail, naming Dk the difference 
metric between the frames k and k-1 and Wk the short-term temporal 
window centered on the frame k, we have: 
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k

k
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Dk =ρ   where { }kWkk DM

k∈= max   (21) 

If ρ(k) exceeds a threshold, computed experimentally, then an abrupt 
transition at frame k is detected. In a similar approach based on temporal 
windows and local thresholds [7], the statistical properties of a bin-to-bin 
histogram metric are evaluated over a 21-frame temporal window and used 
to detect transitions. 

 

2.3 TECHNIQUES FOR DETECTION OF EDITING EFFECTS 
The techniques reported in the previous sections, based on PDMs or HDMs, 
are mainly suited for the detection of abrupt transitions. Other techniques 
have been developed to detect gradual transition like fades or wipes. For 
example, in [5] the authors propose a technique to detect fading effects based 
on a linear model of the luminance L in the CIE L*u*v color space. Assuming 
that chrominance components are approximately constant during the fading, 
the model for a fade-out is: 
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where L(x, y, t) is the luminance of the pixel at position (x, y) and time t, t0 is 
the time of beginning of the fading effect and d its duration. Similarly the 
model for a fade-in is: 
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Even if the behavior of real luminance is not strictly linear during the fading, 
a technique based on the recognition of pseudo-linearity of L may be used to 
detect transitions. Even in this case, however, local thresholds have to be 
considered. Moreover, for some kind of video with very fast dynamic 
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characteristics (for example TV commercials) this technique cannot be used. 
Other approaches have been proposed to overcome this limitation. For 
example, in [12] a production-based model of the most common editing 
effects is used to detect gradual transitions, in [37] a simple and effective 
two-thresholds technique based on HDM is reported. The two thresholds 
respectively detect the beginning and the end of the transition. The method, 
called of twin-comparison, takes into account the cumulative differences 
between frames of the gradual transition. In the first pass a high threshold 
Th is used to detect cuts, in the second pass a lower threshold Tl is employed 
to detect the potential starting frame Fs of a gradual transition. Fs is then 
compared to subsequent frames. An accumulated comparison is performed 
as during a gradual transition this difference value increases. The end frame 
Fe of the transition is detected when the difference between consecutive 
frames decreases to less than Tl, while the accumulated comparison has 
increased to a value higher than Th. If the consecutive difference falls below 
Tl before the accumulated difference exceeds Th, then the potential start 
frame Fs is dropped and the search continues for other gradual transitions. 

Specific techniques have been aimed at the detection of other gradual 
transitions. For example, in [32]a two-step technique for the detection of 
wipe effects is proposed. It is based on statistical and structural properties of 
the video sequence and operates on a partially decompressed MPEG streams. 
In [26]the authors propose a technique for transition detection and camera 
motion analysis based on spatiotemporal textures (spatiotemporal images 
will be further treated in the next subsection 2.5). The analysis of the texture 
changes can lead to the estimation of shooting conditions and to the 
detection of some types of wipes. 

Finally, techniques based on higher level image features have also been tried. 
For example, in [35] the analysis of intensity edges between consecutive 
frames is used. During a cut or a dissolve, new intensity edges appear far 
from the locations of the old edges. Similarly, old edges disappear far from 
the location of new edges. Thus, by counting the entering and exiting edge 
pixels, cuts, fades and dissolves may be detected and classified. 

 

2.4 TECHNIQUES OPERATING ON COMPRESSED VIDEO 
Due to the increasingly availability of MPEG [19]compressed digital video, 
many authors have focused their attention on temporal segmentation 
techniques operating directly on the compressed domain or on a partially 
decompressed video sequence. Before discussing some of presented methods, 
we shortly  review the fundamentals of MPEG compression standard. 

MPEG uses two basic compression techniques: 16 x 16 macroblock-based 
motion compensation to reduce temporal redundancy and 8 x 8 Discrete 
Cosine Transform (DCT) block-based compression to capture spatial 
redundancy. An MPEG stream consists of three types of pictures, I, P and B, 
which are combined in a repetitive pattern called group of picture (GOP).  

I (Intra) frames provide random access points into the compressed data 
and are coded using only information present in the picture itself.  DCT 
coefficients of each block are quantized and coded using Run Length 
Encoding (RLE) and entropy coding. The first DCT coefficient is called DC 
term and is proportional to the average intensity of the respective block. 
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P (Predicted) frames are coded with forward motion compensation using 
the nearest previous reference (I or P) pictures. 

B (Bi-directional) pictures are also motion compensated, this time with 
respect to both past and future reference frames.  

Motion compensation is performed finding for each 16 x 16 macroblock of 
the current frame the best matching block in the respective reference 
frame(s). The residual error is DCT-encoded and one or two motion vectors 
are also transmitted.  

A well known approach to temporal segmentation in the MPEG compressed 
domain, useful for detecting both abrupt and gradual transitions, has been 
proposed in [33] using the DC sequences. A DC sequence is a low resolution 
version of the video, since it is made up of frames where each pixel is the DC 
term of a block (see Figure 3). Since this technique uses I, P and B frames, a 
partial decompression of the video is necessary. The DC terms of I frames are 
directly available in the MPEG stream, while those of B and P frames must 
be estimated using the motion vectors and the DCT coefficients of previous I 
frames. This reconstruction process is computationally very expensive. 

 

   
 

Figure 3. Sample frame from a sequence and corresponding DC image. 
 
Differences of DC images are compared and a sliding window is used to set 
the thresholds for abrupt transitions. Both PDM and HDM metrics are suited 
as similarity measures, but pixel differences-based metrics give satisfactory 
results as DC images are already smoothed versions of the corresponding full 
images. Gradual transitions are detected through a accurate temporal 
analysis of the metric. 

The technique reported in[28] uses only I pictures. It is based on the chi-
square test applied to the luminance histogram and to row and column 
histograms of DC frames. The use of horizontal and vertical projections of 
the histogram introduces local information that is not available in the global 
histogram. In particular, for frames of M x N blocks, row and column 
histograms are defined as: 
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where b0,0(i, j) is the DC coefficient of the block (i, j). The three interframe 
differences computed on the three histograms are then used in a binned 
decision scheme to detect abrupt or gradual transitions. As only I frames are 
used, the DC recovering is eliminated. Note that as in a video there are 
typically two I frames per second, the analysis based on I frames only is 
adequate to approximately detect abrupt transition. For gradual transitions 
this coarse temporal sub-sampling of the video may introduce more serious 
problems. 

Another technique operating in the compressed domain is presented in [3], 
that is based on the correlation of DCT coefficients for M-JPEG compressed 
sequences. Other authors [38] extended this approach to MPEG sequences. 

2.5 OTHER TECHNIQUES 
Many authors tried to organize one or more of the previously described basic 
algorithms within more general frameworks, with the aim of defining and 
implementing more robust techniques. In particular, most of the approaches 
discussed so far rely on suitable thresholding of similarity measures between 
successive frames. However, the thresholds are typically highly sensitive to 
the type of input video. 

In [11], the authors try to overcome this drawback by applying an 
unsupervised clustering algorithm. In particular, the temporal video 
segmentation is viewed as a 2-class clustering problem (“scene change” and 
“no scene change”) and the well-known K-means algorithm [27] is used to 
cluster frame dissimilarities. Then the frames from the cluster “scene 
change” which are temporary adjacent are labeled as belonging to a gradual 
transition and the other frames from this cluster are considered as cuts. 
Both chi-square statistics and HDMs were used to measure frame similarity, 
both in RGB and YUV color spaces. This approach is not able to recognize 
the type of the gradual transitions, but it exhibits the advantage that it is a 
generic techniques that not only eliminates the need for threshold setting 
but also allows multiple features to be used simultaneously to improve the 
performance. The same limitations and advantages characterize the 
technique presented at end of this chapter. 

Among others, Hanjalick recently proposed a robust statistical shot-
boundary detector [14]. The problem of shot-boundary detection is analyzed 
in detail and a conceptual solution to the shot-boundary detection problem is 
presented in the form of a statistical detector based on minimization of the 
average detection-error probability. The idea is that to draw reliable 
conclusions about the presence or absence of a shot boundary, a clear 
separation should exist between discontinuity-value ranges for 
measurements performed within shots and at shot boundaries. Visual-
content differences between consecutive frames within the same shot are 
mainly caused by two factors: object/camera motion and lighting changes. 
Unfortunately, depending on the magnitude of these factors, the computed 
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discontinuity values within shots vary and sometimes may cause detection 
mistakes.  

An effective way to reduce the influence of motion and lighting changes on 
the detection performance is to embed additional information in the shot 
boundary detector. The main characteristic of this information is that it is 
not based on the range of discontinuity values but on some other 
measurements performed on a video. For example, this information may 
result from the comparison between the measured pattern formed by 
discontinuity values surrounding the interval of frames taken into 
consideration and a known template pattern of a shot boundary. Various 
template patterns, specific for different types of shot boundaries (cuts or 
fades, wipes and dissolves), may be considered.  

 

 
Figure 4. Representation of the shot boundary detector proposed in [14]. 

 
Another type of useful additional information may result from observation of 
the characteristic behavior of some visual features for frames surrounding a 
shot boundary for the case of gradual transitions. For example, since a 
dissolve is the result of mixing the visual material from two neighboring 
shots, it can be expected that variance values measured per frame along a 
dissolve ideally reveal a downwards-parabolic pattern [22]. Hence, the 
decision about the presence of a dissolve can be supported by investigating 
the behavior of the intensity variance in the “suspected” series of frames.  

Further improvement of the detection performance can be obtained by taking 
into account a priori information about the presence or absence of a shot 
boundary at a certain time stamp along a video. The difference between 
additional information and a priori information is that the latter is not based 
on any measurement  performed on the video. An example of a priori 
information is the dependence of the probability for shot boundary 
occurrence on the number of elapsed frames since the last detected shot 
boundary. While it can be assumed zero at the beginning of a shot, this 
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probability grows and converges to the value 0.5 as the number of frames in 
the shot increases. The main purpose of this probability is to make the 
detection of one shot boundary immediately after another one practically 
impossible and so to contribute to a reduction of false detection rate. 

Combining measurements of discontinuity values with additional and a 
priori information may result in a robust shot-boundary detector, e.g. by 
continuously adapting the detection threshold T(k) for each frame k. 
Statistical decision theory is employed to obtain T(k) based on the criterion 
that average probability for detection mistakes is minimized. To this aim, all 
detection errors (e.g., both missed and false detections) are treated equally, 
thus the detector performance is determined by the average probability that 
any of errors occurs. This average probability is expressed in terms of the 
probability of missed detection and of the probability of false detection. The 
necessary likelihood functions are pre-computed using training data. Both 
additional information (for cuts and dissolves) and a priori information are 
taken into account in the computation of the average probability, while 
discontinuity values are computed by using a block-matching, motion 
compensated procedure [31]. The input sequence is assumed to be a MPEG 
partially decoded sequence, i.e. a DC sequence. This makes possible to limit 
the block dimensions to 4 x 4 pixels. The system performance is evaluated by 
using five test sequences (different from those employed for training) 
belonging to four video categories: movies, soccer game, news, and 
commercials. The authors report a 100% precision and recall for cuts, 79% 
precision and 83% recall for dissolve detection1. 

Another probabilistic approach was presented in [21], where Li et al. propose 
a temporal segmentation method based on spatial–temporal joint probability 
image (ST-JPI) analysis. Here, joint probabilities are viewed as a similarity 
estimate between two images (only luminance images are considered in the 
paper). Given two images A(x, y) and B(x, y), a joint probability image (JPI) is 
a matrix whose element value JPIA,B(i1, i2) is the probability that luminance i1 
and i2 appear at the same position in image A and image B, respectively. 
Each element of a JPI corresponds to an intensity pair in two images. The 
distribution of the values in a JPI maps the correlation between two images: 
for two identical images, the JPI shows a diagonal line, while for two 
independent images the JPI consists of a uniform distribution. Because of 
the high correlation between video frames within a single shot, a JPI derived 
from two frames belonging to the same shot usually has a narrow 
distribution along the diagonal line. On the contrary, since narrative and 
visual content changes between two consecutive shots, then a uniform 
distribution is expected in the JPI. Thus the JPI behavior may be used to 
develop transition detection methods.  

In particular, a spatial-temporal joint probability image (ST-JPI) is defined as 
a series of JPIs in chronological order, with all JPIs sharing the same initial 
image. The ST-JPI reflects the temporal evolution of video contents. For 
example, if a ST-JPI is derived between frames 0 e T, and a cut happens 
within this frame interval, the JPIs before the cut have very limited 
dispersion from the diagonal line, while after the cut uniform JPIs are 
usually obtained. The shift from narrow dispersion JPIs to uniform JPIs 

                                                           
1 Recall and precision are popular quality factors whose formal definition is given in 
the following Sect. 4. 
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happens instantaneously at the cut position. By estimating the uniformity of 
JPIs, cuts can be detected and reported.  

Detection of gradual transitions is also obtained with this approach, even if 
in a more complicated way. In particular, two kinds of gradual transition are 
considered, cross transitions and dither transitions. During a cross 
transition, every pixel value gradually changes from one shot to another, 
while during a dither transition a small portion of pixels abruptly change 
from pixels values from the first shot to those of the second shot every 
moment. With time, more and more pixels change until all of the pixels 
change into the second video shot. Wipes, fades and various types of dissolve 
may be described in terms of this scheme.  

Template ST-JPIs are derived both for cross transitions and dither 
transitions. The detection of gradual transitions is performed by analyzing 
the pattern match between model ST-JPIs and the ST-JPI derived for the 
frame interval under consideration. Experiments performed on several digital 
videos of various kind gave the following results: 97% (recall) and 96% 
(precision) for cuts, 82% and 93% for cross transitions, 75% and 81% for 
dither transitions. 

The algorithm proposed in [25] is based on the coherence analysis of 
temporal slices extracted from the digital video. Temporal slices are extracted 
from the video by slicing through the sequence of video frames and collecting 
temporal signatures. Each of these slices contains both spatial and temporal 
information from which coherent regions are indicative of uninterrupted 
video partitions separated by camera breaks (cuts, wipes and dissolves). 
Each spatiotemporal slice is a collection of scans, namely horizontal, vertical 
or diagonal image stripes, as a function of time. The detection of a shot 
boundary therefore becomes a problem of spatiotemporal slice segmentation 
into regions each of a coherent rhythm. Properties could further be extracted 
from the slice for both the detection and classification of camera breaks. For 
example, cut and wipes are detected by color-texture properties, while 
dissolves are detected by mean intensity and variance. The analysis is 
performed on the DC sequence extracted from a MPEG video. The approach 
has been tested by experiments on news sequences, documentary films, 
movies, and TV streams, with the following results: 100% (recall) and 99% 
(precision) for cuts, 75% and 80% for wipes, 76% and 77% for dissolves.  

Finally, a fuzzy theoretic approach for temporal segmentation is presented in 
[16], with a fusion of various syntactic features to obtain more reliable 
transition detection. Cuts are detected using histogram intersection, gradual 
changes are detected using a combination of pixel difference and histogram 
intersection, while fades are detected using a combination of pixel difference, 
histogram intersection and edge-pixel-count. Frame-to-frame differences of 
these properties are considered as the input variable of the problem 
expressed in fuzzy terms. In particular, the linguistic variable “inter-frame-
difference” is fuzzified so that it can be labeled as “negligible”, “small”, 
“significant”, “large” or “huge”. The values of metric differences are 
represented as these linguistic terms. To this aim, appropriate class 
boundaries and membership functions must be selected for each category. 
This is made by modeling the interframe property difference through the 
Rayleigh distribution. The appropriateness of this model has been tested by 
fitting Rayleigh distribution (chi-square test) to interframe difference data for 
about 300 video sequences of various kind, having 500-5000 frames each. 
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Fuzzy rules for each property are derived by taking into account the current 
interframe difference, the previous interframe difference and the next 
interframe difference.  

3. A MLP-BASED TECHNIQUE 
As already stated, one of the critical aspects of most of the techniques 
discussed in previous section is the determination of thresholds or, in 
general, the definition of criteria of detection and classification of the 
transitions. Moreover, most of the techniques present in literature are 
strongly dependent on the kind of sequences analyzed. To cope with these 
problems we propose the use of a neural network that analyzes the sequence 
of interframe metric values and is able to detect shot transitions, also 
producing a coarse classification of the detected transitions. This approach 
may be considered a generalization of the MLP-based algorithm already 
proposed in [2]. 

 

3.1 SHORT NOTES ON NEURAL NETWORKS 
In the last decades, neural networks [29] have been successfully used in 
many problems of pattern recognition and classification. Briefly, a neural 
network is a set of units or nodes connected by links or synapses. A numeric 
weight is associated to each link, the set of weights represents the memory of 
the network, where knowledge is stored. The determination of these weights 
is done during the learning phase. There are three basic classes of learning 
paradigms [15]: supervised learning (i.e. performed under an external 
supervision), reinforcement learning (i.e. through a trial-and-error process), 
and unsupervised learning (i.e. performed in a self-organized manner). 

The network interacts with the environment in which it is embedded through 
a set of input nodes and a set of output nodes, respectively. During the 
learning process, synaptic weights are modified in an orderly fashion so as 
input-output pairs fit a desired function. Each processing unit is 
characterized by a set of connecting links to other units, a current activation 
level and an activation function used to determine the activation level in the 
next step, given the input weights. 

A multilayer perceptron or MLP exhibits a network architecture of the kind 
shown in fig. 5. It is a multilayer  (i.e. the network units are organized in the 
form of layers) feedforward (i.e., signals propagate through the network in a 
forward direction) neural network characterized by the presence of one or 
more hidden layers, whose nodes are correspondingly called hidden units. 
This network architecture, already proposed in the fifties, has been applied 
successfully to solve diverse problems after the introduction[17], [29] of the 
highly popular learning algorithm known as error back-propagation 
algorithm. This supervised learning algorithm is based on the error-
correction learning rule. 

Basically, the back-propagation process consists of two passes through the 
different network layers, a forward pass and a backward pass. In the forward 
pass, an input vector (training pattern) is applied to the input nodes, and its 
effect propagates through the network, layer by layer, so as to produce a set 
of outputs as the actual response of the network. In this phase the synaptic 
weights are all fixed. During the backward pass, the synaptic weights are all 
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adjusted in accordance with the error-correction rule. Specifically, the actual 
response of the network is subtracted from the desired response to produce 
an error signal. This error signal is then propagated backward through the 
network, and the synaptic weights are adjusted so as to make the actual 
response of the network move closer to the desired response. The process is 
then iterated until the synaptic weights stabilize and the error converge to 
some minimum, or acceptably small, value. In practical applications, 
learning results from the many presentations of a prescribed set of training 
examples to the network. One complete presentation of the entire training 
set is called an epoch. It is common practice to randomize the order of 
presentation of training examples from one epoch to the next. 

 

 
Figure 5. An example of multilayer perceptron with one hidden layer. 

 

3.2 USE OF MLPs IN TEMPORAL SEGMENTATION 
We propose the use of a MLP with an input layer, an hidden layer and an 
output layer, whose input vector is a set of interframe metric difference 
values. The training set is made up by examples extracted from sequences 
containing abrupt transitions, gradual transitions or no transition at all. We 
adopted the bin-to-bin luminance histogram difference as interframe metric. 
This choice is due to the simpleness of this metric, to its sufficient 
representativity with respect to both abrupt and gradual transitions, and to 
its ability to provide a simple interpretation model of the general video 
content evolution. As an example, figure 6 illustrates the evolution of the 
bin-to-bin metric within a frame interval of 1000 frames, extracted from a 
soccer video sequence. Five cuts and four dissolves are present in the 
sequence, and all these shot boundaries are clearly present in the figure. In 
the same figure it is also evident as gradual transitions are sometimes very 
difficult to distinguish from intrashot sequences (e.g. compare A and B in the 
figure). 
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Figure 6. Interframe bin-to-bin metric for a soccer sequence. 

The MLP’s input units are fed with the values of the HDM computed within a 
temporal windows of several frames (the details about the choice of the 
number of input and hidden units will be provided in the next section). The 
output units are three, each of them representing one of three distinct 
possibilities: abrupt transition, gradual transition or no break at all. Output 
units assume real values in the range 0 – 1. Table 1 shows the output values 
used during the training process, in correspondence to the following input 
configurations: abrupt transition at the center of the temporal window, 
gradual transition with its maximum located near the center of the temporal 
window, no-transition. 

 

Table 1. Output values of the MLP during the training phase 
 

 O1 O2 O3 
Abrupt transition 0.99 0.01 0.01 
Gradual transition 0.01 0.99 0.01 
No transition 0.01 0.01 0.99 

 

During the learning phase, the position of each transition in the input video 
sequence is known, thus defining the correct triple of output values for each 
position of the input temporal window, i.e. for each input pattern in the 
training set. The above described back-propagation process therefore allows 
for the weights adjustment. When the trained network analyzes an unknown 
input sequence, at each step of the analysis the highest value of the output 
triple determines the detection of an abrupt or gradual transition, or the 
absence of transitions, in the analyzed temporal window. As a consequence, 
explicit threshold values are not required for the decision. 
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4. PERFORMANCE EVALUATION OF TEMPORAL 
SEGMENTATION TECHNIQUES 

In this section we give some guidelines for the performance evaluation of 
temporal segmentation techniques. In particular, we define a test bed made 
of two techniques, respectively named T1 and T2, used as comparison terms 
and suitable for detection of abrupt and abrupt/gradual transitions, 
respectively. Both T1 and T2 techniques require a manual or semi-automatic 
work for adapting thresholds and other parameters to the feature of input 
sequences, in order to obtain performances near to the optimum for both of 
them. It is with these optimal or near-to-optimal performances that a new 
temporal segmentation technique can be compared. As an example, we will 
evaluate the performance of our MLP-based approach. The design of this 
evaluation framework is part of a project on video temporal segmentation 
currently under development at the Computer Science and Artificial 
Intelligence lab of the University of Palermo.  
We also describe the dataset we used for the evaluation. We used four video 
sequences representative of different types of video. In particular, we 
considered two sport sequences (soccer and F1 world championship), one 
news sequence and one naturalistic documentary. Details on test sequences 
are reported in table 2. 
 

Table 2. Characteristics of dataset. 
 

Sequence Frame rate 
(fps) 

# of 
frames 

# of abrupt 
transitions 

# of gradual 
transitions 

Total # of 
transitions 

Soccer 25 19260 115 51 166 
F1 25 20083 106 14 120 
News 25 20642 122 6 128 
Nature 25 25016 150 12 162 
 Total 85001 493 83 576 
 
Most of the gradual transitions are dissolves. A few wipes are present and 
they are mainly in the F1 sequence. As previously stated both the T2 
technique and the MLP-based one are aimed to the detection of a gradual 
transition but cannot discriminate between different kinds of gradual 
transitions. 
In order to evaluate the performance of a segmentation algorithm we should 
primarily consider correctly detected transitions, false detections and missed 
transitions. Then we should analyze the performance with respect to gradual 
transition classification accuracy. 
Recall and precision factors are normally used to evaluate performance [28] 
of transition detection techniques. These quality factors are defined as 
follows: 
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where nc is the number of transitions correctly detected, nf is the number of 
false positives and nm is the number of missed detections. Ideally, nf = nm =0 
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so that both the factors are 1. In our test bed we found useful a new quality 
factor defined in the following way: 
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where ntot is the total number of transitions and ctotm nnn −= .This quality 
factor takes simultaneously into account the ability to avoid both false and 
missed detections. 
To evaluate the performance of transition classification techniques a different 
quality factor is needed. Assume ncc as the number of abrupt transitions 
detected and correctly classified, ncg as the number of gradual transitions 
detected and correctly classified and nsw the number of transitions detected 
but misclassified. We can define the following quality factor: 
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This quality factor is 1 if nsw=0. Note that, as previously stated, Isw is only a 
measure of transition classification accuracy and then cannot replace the 
quality factor Qr that is a measure of transition detection performance. The 
two factors should always be used together to evaluate the performance of a 
system. 
 
4.1 PERFORMANCE EVALUATION OF THE TECHNIQUE T1 
We used the interframe metrics bin-to-bin, chi-square and histogram 
correlation, and called T1 the technique whose result coincides, in each 
analyzed case, with the output of the best performing of the three methods. 
We evaluated the quality factor Qr for the different HDM used varying the 
value of the threshold.  
Using the annotated dataset described in the previous section we were able 
to determine for each sequence the optimal threshold. For example, in 
figures 7 and 8 is reported the quality factor Qr as a function of the threshold 
using the bin-to-bin metric, respectively for soccer and nature videos. 
Obviously, as the threshold increases the number of false detections 
decreases but the number of missed detections increases. From figures 7 
and 8 it is possible to see as Qr for the nature video is higher, meaning a 
better performance, than Qr for the soccer video. This is due to the larger 
presence of gradual transitions in soccer video that are misdetected. 
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Figure 7. Performance of abrupt detection technique T1 for the soccer test 
sequence. 

 

 
 

Figure 8. Performance of abrupt detection technique T1 for the nature test 
sequence. 

 
For the other sequences and for the other metrics we obtained very similar 
shapes of the curves of figures 7 and 8. In tables 3-5 it is summarized the 
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performance of this technique on the four different test video and using three 
different histogram metrics in correspondence to the optimal value of the 
threshold: 

Table 3. Performance using the b2b metric 
 

Sequence Optimal 
threshold 

Qr 

Soccer 0.30 0.68 
News 0.30 0.76 
F1 0.30 0.72 
Nature 0.35 0.79 

 
 

Table 4. Performance using the chi-square metric 
 

Sequence Optimal 
threshold 

Qr 

Soccer 0.35 0.62 
News 0.35 0.74 
F1 0.40 0.69 
Nature 0.40 0.75 

 
 

Table 5. Performance using the histogram correlation metric. 
 

Sequence Optimal 
threshold 

Qr 

Soccer 0.20 0.64 
News 0.25 0.74 
F1 0.25 0.71 
Nature 0.25 0.77 

 
It should be noted that the bin-to-bin metric, despite of its simpleness, 
exhibits the best behavior for the proposed input sequences. 

 

4.2 PERFORMANCE EVALUATION OF THE TECHNIQUE T2  
To evaluate the performance of a temporal segmentation technique in 
presence of gradual transitions, as a term of comparison we implemented a 
multi-threshold technique, called T2, inspired to the algorithm presented in 
[7].The technique T2, similarly to other techniques present in literature, is 
based on the observation that the video properties relevant for the shot 
transition detection are intrinsically local, i.e. depending on the behavior of 
the interframe metric within a temporal window of a few decades of frames. 
Within the window, a shot boundary may be detected and classified 
analyzing statistical factors like the mean and the standard deviation of the 
sequence of interframe metric values. In particular, the local standard 
deviation calculated when an abrupt transition is present within the window 
is very different from those obtained in case of a gradual transition, due to 
the more distributed changes of the interframe metric values in latter case.  
Table 6 shows the definition and the meaning of thresholds and other factors 
intervening in the transition detection process. 
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Table 6. Factors intervening in transition detection (technique T2) 
 

Parameter Description 
w Temporal window of analysis 
Thc = µw + αcσw High threshold for abrupt transitions 
Thg = µw + αgσw High threshold for gradual transitions 
Tlc = βcµT Low threshold for abrupt transitions 
Tlg = βgµT Low threshold for gradual transitions 

 
 
In the above definitions, µw and σw respectively are the mean and the 
standard deviation of the interframe metric values within the temporal 
window w, while µT is the global mean of the interframe metric. The 
coefficients αc, αg, βc and βg are determined experimentally, as well as the 
optimal size of the window w.  
The technique T2 operates in the following way. Shot boundary occurrences 
are detected in correspondence to the central pair of frames within the 
current temporal window. To detect a cut, the corresponding interframe 
metric value must be the maximum of values belonging to the current 
window, and also greater than the local thresholds Thc and Thg. Moreover, it 
must also be greater than the global threshold Tlc, whose value is depending, 
through the coefficient βc, on the global mean of the interframe metric. 
Similarly, a gradual transition is detected in correspondence to the central 
pair of frames within the current temporal window if the corresponding 
interframe metric value is a local maximum, and if it is greater than Thg and 
Tlg, but not greater than Thc.  
It should be noted that verifying the presence of a local maximum before 
declaring a transition is a condition necessary to avoid the detection of more 
than one transition within the same temporal window. Moreover, two 
different local thresholds, Tlc and Tlg, have been introduced to overcome the 
problem of local perturbation effects, that could cause exceeding the 
threshold Thg, as it has also been experimentally verified. Tlc and Tlg must be 
different, because the average metric values related to abrupt transitions are 
very different from the average metric values related to gradual transitions.  
Figure 9 shows the behavior of the interframe metric bin-to-bin for the 
soccer sequence, outlining the variation of local thresholds Thc and Thg (the 
values w = 21, αc = 4, and αg = 1.5 have been assumed). It should be noted 
that both the thresholds are exceeded in correspondence to abrupt 
transitions, while Thg (but not Thc) is sometimes exceeded when searching for 
gradual transitions. 
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Figure 9. Interframe bin-to-bin metric and local thresholds for a soccer 

sequence. 

 
These aspects are even more evident in Figure 10, where the metric bin-to-
bin is shown for a shorter sequence of 250 frames extracted from the same 
video sequence. In this figure two cuts of different value are reported, along 
with a gradual transition (dissolve) characterized by prominent fluctuations. 
 

 
Figure 10. Interframe bin-to-bin metric and local thresholds for a soccer 

sequence. 
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As the technique T2 is largely dependent on various parameters and 
thresholds, we carefully evaluated its performance by letting the parameters 
vary in quite large intervals, with small variation steps (intervals and steps 
were determined on the basis of preliminary experiments): 
 

Table 7. Range of parameters used for experiments. 
 

Parameter Range Step 
w 15 – 49 2 
αc 2.0 – 5.0 0.5 
αg 1.0 – 3.0 0.5 
βc 2.0 – 5.0 0.5 
βg 1.0 – 4.0 0.5 

 
 
In Tables 8-10 we report the best result obtained for each metric and each 
sequence and the set of parameters that led to the result: 
 
 

Table 8. Optimal result using bin-to-bin metric 
 

Sequence Qr Isw W ααααc ααααg ββββc ββββg 
Soccer 0.84 0.94 21 4.0 1.5 3.0 2.0 
F1 0.82 0.92 25 3.5 1.5 3.0 2.0 
News 0.83 0.97 21 3.5 2.0 3.0 2.0 
Nature 0.83 0.96 21 3.5 2.0 3.0 2.0 

 
 

Table 9. Optimal result using chi-squares metric 
 

Sequence Qr Isw W ααααc ααααg ββββc ββββg 
Soccer 0.72 0.80 29 3.5 2.0 3.5 3.0 
F1 0.75 0.76 27 3.0 2.0 3.0 2.5 
News 0.78 0.86 27 3.5 2.5 3.5 2.5 
Nature 0.71 0.88 25 3.0 2.5 3.5 3.0 

 
 

Table 10. Optimal result using correlation metric 
 

Sequence Qr Isw W ααααc ααααg ββββc ββββg 
Soccer 0.76 0.90 25 4.0 2.5 2.0 1.5 
F1 0.77 0.92 29 4.0 2.5 2.5 1.5 
News 0.78 0.86 27 4.0 2.5 2.0 1.5 
Nature 0.75 0.79 25 4.5 2.5 2.5 2.0 

 
 
4.3 PERFORMANCE EVALUATION OF THE MLP-BASED TECHNIQUE 
To evaluate the performance of the proposed MLP-based technique we used 
the soccer and news video as training set and the nature and F1 video as 
test set. After each training epoch, the MLP performance is evaluated both on 
the training and test set. 
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The MLP architecture has been determined experimentally. The number of 
input units is obviously related to the probable number of frames belonging 
to a gradual transition. From video data available in our dataset we observed 
that the duration of gradual transitions is usually between 10 and 20 
frames, i.e. below one second at 25 fps, a result in accord with modern 
electronic editing tools. We then tried several networks with 21 or 31 input 
units, a choice allowing to capture an entire transition without the risk of 
enclosing more than one transition within an unique  temporal window. A 
negative consequence of this choice is the impossibility of dealing with very 
short shot transitions, like those ones typical of some commercial or musical 
sequences. However, we assumed our dataset more representative of kinds of 
video sequences of interest for video segmentation. 
We tried network architectures with different numbers of hidden units. If the 
number of input units is intuitively related to the duration of gradual 
transitions, the choice of the number of hidden units is critical, in the sense 
that a limited number of hidden units can limit the ability of the network to 
generalize, wile an excessive number of hidden units can induce problems of 
“overtraining”. Even this aspect has been investigated experimentally. 
 
In Table 11 the performance of different MLP architectures after 50 training 
epochs is reported. The network architecture is indicated with three numbers 
indicating, respectively, the number of input, hidden and output units. The 
performance is expressed in terms of the quality factors previously defined, 
both on training set and testing set: 
 

Table 11. Performance of MLPs of different architecture. 
 

(21,10,3) (21,40,3) (21,100,3) (31,40,3)  
Qr Isw Qr Isw Qr Isw Qr Isw 

Soccer 0.87 0.92 0.95 0.99 0.86 0.90 0.99 0.99 
News 0.84 0.94 0.94 1.00 0.84 0.94 0.94 1.00 
F1 0.84 0.90 0.89 0.97 0.82 0.91 0.88 0.97 
Nature 0.80 0.91 0.91 0.99 0.77 0.88 0.89 0.96 

 
From inspection of Table 11 it is evident as the best performance is obtained 
using a network with 21 input units and 40 hidden units. As expected, the 
network with 10 or 100 hidden units does not perform well. Since the use of 
31 input units does not give significant performance improvement on our 
dataset, the (21-40-3) network has been selected for its lower computational 
load and for its better ability to detect temporally close transitions.  
 
4.4 COMPARISON OF DIFFERENT TECHNIQUES 
In this section we compare the three techniques we described in the previous 
sections. In Table 12 a summary of most important results is reported. 
 

Table 12. Performance comparison among the described techniques. 
 

T1 T2 MLP  
Qr Isw Qr Isw Qr Isw 

Soccer 0.68 --- 0.84 0.94 0.95 0.99
News 0.76 --- 0.82 0.92 0.94 1.00
F1 0.72 --- 0.83 0.97 0.89 0.97
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Nature 0.79 --- 0.83 0,96 0.91 0.99
 
Note that the results of techniques T1 and T2 were obtained using a choice of 
optimal parameters (for T1 and T2). Similarly the results of the MLP-based 
technique for the sequences soccer and news are computed on the training 
set. These results are then to be considered optimal and, in practice, we 
should expect worse performance. 
On the other side, it is important to note that the performance of the MLP-
based classifier on the sequences F1 and Nature, that are outside of the 
training set, is not based on the knowledge of the ground truth and then 
may be considered representative of the algorithm behavior. If we used the 
optimal parameters computed for techniques T1 and T2 for the sequences 
soccer and news to analyze the sequences F1 and Nature, we would obtain a 
worse performance. 
Finally, although there is no theoretical justification, we note that, 
independently of the decision technique, best results are obtained using bin-
to-bin metric. 
 

5. CONCLUSIONS 
in the last decade, with the increasing availability of digital video material, 
advanced applications based on storage and transmission of video data 
(digital libraries, video communication over the networks, digital TV, video-
on-demand, etc…) began to appear. Their full utilization depends on the 
capability of information providers to organize and structure video data, as 
well as on the possibility of intermediate and final users to access the 
information. 

From this point of view, automatic video temporal segmentation is a 
necessary task. As we showed in this chapter, much work has been done to 
individuate algorithms and methods in this area, but results are often too 
much depending on the peculiarity of input data. Research effort is still 
necessary to find generally effective and computationally manageable 
solutions to the problem. 
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