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Abstract. The asymptotic regime of a complex ecosystem with N random interacting species and in the
presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long
time probability distribution of the ith density species, the extinction of species and the local field acting
on the ith population. We analyze in detail the transient dynamics of this field and the cavity field, which
is the field acting on the ith species when this is absent. We find that the presence or the absence of some
population give different asymptotic distributions of these fields.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a
Nonlinear dynamics and nonlinear dynamical systems – 87.23.Cc Population dynamics and ecological
pattern formation – 89.75.-k Complex systems

1 Introduction

In recent years great attention has been devoted to pop-
ulation dynamics modelled by generalized Lotka-Volterra
systems [1]. Ecosystems are a classic example of complex
systems, which became object of study as well by biolo-
gists as by physicists [2,3]. Tools developed in the context
of nonequilibrium statistical physics to analyze nonequi-
librium nonlinear physical systems provide new insights
and at the same time new approaches to the comprehen-
sion of the properties of biological and many body sys-
tems. A key aspect to understand the complex behavior
of ecosystems is the role of the external noise on the dy-
namics of such systems. Noise-induced effects in popula-
tion dynamics, such as pattern formation [4,5], stochastic
resonance, noise delayed extinction, quasi periodic oscil-
lations etc. have been investigated with increasing inter-
est [6–9]. The dynamical behavior of ecological systems of
interacting species evolves towards the equilibrium states
through the slow process of nonlinear relaxation, which is
strongly dependent on the random interaction between the
species, the initial conditions and the random interaction
with environment. Moreover biological evolution presents
the same fundamental ingredient that characterizes phys-
ical systems far from equilibrium in their route to equilib-
rium, namely the disorder-order transition. Different mod-
els of evolution are reported in literature, which are useful
to describe a lot of dynamical population problems [10,11].
Among them it is worthwhile to cite two bit-string models
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of population dynamics, namely the Eigen model [12] and
the Penna model [13].

The mathematical model here used to analyze the dy-
namics of N biological species with spatially homogeneous
densities is the generalized Lotka-Volterra system with a
Malthus-Verhulst modelling of the self regulation mecha-
nism and with the addition of an external multiplicative
noise source [14,15]. We obtain the asymptotic behaviors
of the probability distribution of the populations for dif-
ferent values of external noise intensity. To analyze the
role of the external noise on the transient dynamics of the
species we focus on the long time distribution of the local
field, that is the interaction term in the dynamical equa-
tion of the ith species that takes the influence of all other
species into account. We find that the presence or the ab-
sence of some population gives rise to different asymptotic
distributions of the local field and of the cavity field (field
acting on the ith species when this is absent) in the ab-
sence of external noise. When the noise is switched on the
asymptotic local and cavity fields tend to overlap and ap-
proximately superimpose each other for very high noise
intensity. Finally the long time evolution of the average
number of the extinct species is reported for different val-
ues of the multiplicative noise intensity.

2 The model

The dynamical evolution of our ecosystem composed by
N interacting species in a noisy environment (climate,
disease, etc.) is described by the following generalized
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Lotka-Volterra equations with a multiplicative noise, in
the framework of Ito stochastic calculus

dni(t) =

⎡
⎣
⎛
⎝gi(ni(t)) +

∑
j �=i

Jijnj(t)

⎞
⎠ dt +

√
εdwi

⎤
⎦ni(t),

i = 1, ..., N (1)

where ni(t) ≥ 0 is the population density of the ith species
at time t and the function gi(ni(t))

gi(ni(t)) =
(
α +

ε

2

)
− ni(t), (2)

describes the development of the ith species without inter-
acting with other species. In equation (1), α is the growth
parameter, the interaction matrix Jij models the inter-
action between different species (i �= j), and wi is the
Wiener process whose increment dwi satisfy the usual sta-
tistical properties 〈dwi(t)〉 = 0, and 〈dwi(t)dwj(t′)〉 =
δijδ(t− t′)dt. We consider an asymmetric interaction ma-
trix Jij , whose elements are randomly distributed accord-
ing to a Gaussian distribution with 〈Jij〉 = 0, 〈JijJji〉 = 0,
and σ2

j = J2/N . Therefore our ecosystem contains 50% of
prey-predator interactions (Jij < 0 and Jji > 0), 25%
competitive interactions (Jij > 0 and Jji > 0), and 25%
symbiotic interactions (Jij < 0 and Jji < 0). We consider
all species equivalent so that the characteristic parame-
ters of the ecosystem are independent of the species. The
formal solution of equation (1) is

ni(t) =
ni(0)zi(t)

1 + ni(0)
∫ t

0
dt′zi(t′)

, (3)

where

zi(t) = exp
[
αt +

√
εwi(t) +

∫ t

0

dt′hi,loc(t′)
]

. (4)

The term hi,loc(t) =
∑

j �=i Jijnj(t) is the local field acting
on the ith population and represents the influence of other
species on the differential growth rate. We note that the
dynamical behavior of the ith population depends on the
time integral of the process zi(t) and the time integral of
the local field.

In the absence of external noise (ε = 0), for a large
number of interacting species we can assume that the local
field hi(t) is Gaussian with zero mean and variance

σ2
hi,loc

= Σj,k〈JijJik〉〈njnk〉 = J2〈n2
i 〉 ,

with 〈JijJik〉 = δjk
J2

N
. (5)

As a consequence, in the absence of external noise, from
the fixed-point equation ni(α − ni + hi) = 0, the station-
ary probability distribution of the populations is the sum
of a truncated Gaussian distribution at ni = 0 (ni > 0
always) and a delta function for extinct species. The ini-
tial values of the populations ni(0) have also Gaussian
distribution with mean value 〈ni(0)〉 = 1, and variance

σ2
n(0) = 0.03. The interaction strength J determines two

different dynamical behaviors of the ecosystem. Above a
critical value Jc = 1.1, the system is unstable and at least
one of the populations diverges. Below Jc the system is
stable and asymptotically reaches an equilibrium state.
The equilibrium values of the populations depend both
on their initial values and on the interaction matrix. If
we consider a quenched random interaction matrix, the
ecosystem has a great number of equilibrium configura-
tions, each one with its attraction basin. For an interaction
strength J = 1 and an intrinsic growth parameter α = 1
we obtain: 〈ni〉 = 1.4387, 〈n2

i 〉 = 4.514, and σ2
ni

= 2.44.
These values agree with that obtained from numerical sim-
ulation of equation (1).

In the presence of external noise (ε �= 0) we calculate
long time probability distribution for different values of
the noise intensity. These are shown in the following Fig-
ure 1. For increasing external noise intensity we obtain a
larger probability distribution with a lower maximum (see
the different scales in Figure 1 for different noise intensity
values). The distribution becomes asymmetric for ε = 0.1
and tends to become a truncated delta function around
the zero value (P (ni) = δ(ni) for ni > 0, and P (ni) = 0
for ni ≤ 0), for further increasing noise intensity. The role
of the multiplicative noise is to act as an absorbing bar-
rier at ni = 0 [14]. To confirm this picture we calculate the
time evolution of the average number of extinct species for
different noise intensities. This time behavior is shown in
Figure 2. We see that this number increases with noise
intensity, and after the value ε = 0.1 reaches quickly the
normalized maximum value (see Fig. 2, ε = 1, ε = 10).

To analyze in more detail the influence of each species
on the long time dynamics of the ecosystem we calculate
in this regime the local field hi,loc(t) and the cavity field
hi,cav(t), which is the field acting on the ith population
when this population is absent. The probability distribu-
tions for both local and cavity fields have been obtained by
simulations for different species in the presence and in ab-
sence of external noise. The results are shown in the next
section (see Fig. 3). We found that the probability distri-
butions of the cavity fields differ substantially from those
of local fields for the same species, while in the presence
of noise the two fields overlap. To quantify this overlap
between the probability distributions of the two fields we
define an overlap coefficient λ(t), which is the distance
between the average values of the two distributions, nor-
malized to their widths

λ(t) =
h̄i,loc − h̄i,cav√
σ2

i,loc + σ2
i,cav

=
dh(t)
σd(t)

, (6)

where

dh(t) = h̄i,loc − h̄i,cav , σ2
d(t) = σ2

i,loc(t) + σ2
i,cav(t). (7)

With this definition the distributions start to overlap sig-
nificantly for |λ| � 1, and become strongly overlapping for
|λ| � 1.
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Fig. 1. Probability distribution for the species densities. The values of the external noise intensity are ε = 0, 0.001, 0.01, 0.1, 1, 10.

Fig. 2. Time evolution of the average number of extinct species for different noise intensities.

3 Results and comments

In the calculation the following parameters have been
used: α = 1.2, J = 1, σ2

J = 0.005, N = 200; the num-
ber of averaging experiment used is Nexp = 1000. Con-
cerning the initial condition the parameters are: 〈ni〉 = 1,
σ2

no
= 0.03. The dynamics of various species are different

even if they are equivalent according to the parameters
in the dynamical equation (1). However we note that to
change the species index by fixing the random matrix or
to change the random matrix by fixing the species index
is equivalent as regards the asymptotic dynamical regime.
Figure 3 shows for various noise intensities the local and

cavity fields probability distributions at time t = 50 (au).
For noiseless dynamics the distributions of the fields for
the species i = 3 appear very narrow around their mean
values and very spaced each other. By increasing the noise
intensity, we observe an equal enlargement of the two dis-
tributions, maintaining however the same mean values.
At ε = 0.1 the two distributions start to overlap until, for
stronger noise intensity (ε = 1), they superimpose each
other. The overlap coefficient λ(t) is equal to zero. The
noise makes equivalent all the species in the asymptotic
regime and the absence of some species doesn’t contribute
to any changes in the dynamics of all the other species.
The last plot in Figure 3 (ε = 10) gives a delta distribution
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Fig. 3. Probability distribution of both the local (black circles) and the cavity (white circles) fields for various values of noise
intensity ε = 0, 0.001, 0.01, 0.1, 1. The graph are taken at the time t = 50 unit steps.

Fig. 4. Time evolution of the overlap coef-
ficient λ(t) between the distributions of local
and cavity fields for different noise intensities.
The increasing behavior of the overlap coeffi-
cient as a function of time, in the noiseless case,
is due to the narrowing of the two fields distri-
butions (σloc, σcav → 0) towards a δ-function.
For a noisy environment the distributions tend
to enlarge, decreasing the value of the overlap
coefficient λ(t).

around zero. This means that, at the time considered in
our simulation (t = 50) and for this noise intensity, all the
species are extinct (see also Fig. 2).

The detailed time evolution of the overlap of the two
distributions can be seen from Figure 4, where the coeffi-
cient defined in equation (6) is plotted. For ε = 0 the λ(t)
coefficient increases with time. This is due to the different
time behavior of the distance between the mean values
of the field distributions and of their standard deviation
σ2

i,loc and σ2
i,cav. The distance dh(t) = h̄i,loc − h̄i,cav is

almost constant in time, except a rapid initial transient
(see Fig. 5, ε = 0), but the corresponding evolution of
the distribution widths decreases rapidly in time. This ef-
fect is due to the quenched random matrix. This behavior
remains unchanged until the noise intensity reaches the

value of ε = 0.01. From this value of external noise in-
tensity some differences start to be visible (see Figs. 4–6),
and at ε = 1, after some fluctuations, both the distance
dh(t) and the overlap coefficient λ(t) reach a value close
to zero. The two field distributions are totally overlapped.

It is worthwhile to note that the behaviors shown in
Figures 3–6 have been found for some species, and chang-
ing the species different evolutions of the distribution dy-
namics appear and in particular of the λ(t) coefficient.
This is due to complexity of our ecosystem and to the ex-
tinction process during the transient dynamics. Moreover
this strange behavior, found for some populations and in
the asymptotic regime, is reminiscent of the phase transi-
tion phenomenon [16], and it is related to the following pe-
culiarities of our dynamical system: (i) all the populations
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Fig. 5. Time evolution of the distance dh(t)
between the mean values of the fields distribu-
tions for different noise intensities, namely ε =
0, 0.001, 0.01, 0.1, 1.

Fig. 6. Time evolution of the standard devia-
tion σ2

i,loc (grey circles)and σ2
i,cav (black cir-

cles) of the field distributions for the same
noise intensities of Figure 5.

are positive; (ii) different initial conditions drive the
ecosystem into different attraction basins; and (iii) the
complex structure of the attraction basins. While in the
presence of noise all the populations seem to be equivalent
in the long time regime, some populations, in the absence
of external noise, have an asymptotical dynamical behav-
ior such that they significantly influence the dynamics of
the other species. A more detailed analysis on these points
will be done in a forthcoming paper.

4 Conclusions

We analyzed the asymptotic regime of an ecosystem com-
posed by N interacting species in the presence of mul-
tiplicative noise. We find the role of the noise on the
asymptotic probability distribution of populations and on
the extinction process. Concerning the local and the cav-
ity fields, a phase transition like phenomenon is observed.
Their probability distributions tend to overlap each other

in the presence of external noise, reaching strong over-
lap for high noise intensity (|λ(t)| ≈ 0), while they are
separated (|λ(t)| > 1) in the absence of noise. This phe-
nomenon can be ascribed to the complexity of our ecosys-
tem.

This work was supported by MIUR and INFM-CNR.
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