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Abstract. This paper presents a highly parallelizable numerical method to solve time
dependent acoustic obstacle scattering problems. The method proposed is a general-
ization of the “operator expansion method” developed by Recchioni and Zirilli [SIAM
J. Sci. Comput., 25 (2003), 1158-1186]. The numerical method proposed reduces, via
a perturbative approach, the solution of the scattering problem to the solution of a
sequence of systems of first kind integral equations. The numerical solution of these
systems of integral equations is challenging when scattering problems involving real-
istic obstacles and small wavelengths are solved. A computational method has been
developed to solve these challenging problems with affordable computing resources.
To this aim a new way of using the wavelet transform and new bases of wavelets are
introduced, and a version of the operator expansion method is developed that con-
structs directly element by element in a fully parallelizable way. Several numerical
experiments involving realistic obstacles and “small” wavelengths are proposed and
high dimensional vector spaces are used in the numerical experiments. To evaluate
the performance of the proposed algorithm on parallel computing facilities, appropri-
ate speed up factors are introduced and evaluated.
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1 Introduction

In this paper, we present a new version of the operator expansion method that improves
the method developed in [1]. Roughly speaking, the operator expansion method is used
to solve an exterior boundary value problem for the Helmholtz equation by reducing it
to a sequence of systems of first kind integral equations defined on a suitable reference
surface. Three innovations are introduced:

1) the use of the wavelet transform in a way different from that suggested in [1] that
allows us to compute the coefficient matrices of the systems of linear equations
mentioned above element by element in a fully parallelizable way;

2) new bases of wavelets with an (arbitrary) assigned number of vanishing moments
that generalize the Haar’s basis;

3) the representation on these wavelet bases of the integral operators, the unknowns
and the data of the systems of integral equations obtained with the operator expan-
sion method in order to approximate the integral equations with sparse systems of
linear equations.

These innovations make the development of a highly parallelizable numerical method
possible to deal with scattering problems involving obstacles having complex shapes and
wavelengths small when compared to the characteristic dimensions of the obstacles. That
is, problems that require the use of a large number of unknowns and equations can be
discretized satisfactorily. In fact, thank to the representation of the integral operators
on the wavelet bases and to a simple truncation procedure, matrices that approximate
the integral operators with a very high sparsity factor are obtained. Consequently, high
dimensional problems in the discretized variables can be solved at an affordable compu-
tational cost.

Let us begin by introducing some notation. Let R be the set of real numbers, R
h be

the h-dimensional real Euclidean space, and x=(x1,x2,··· ,xh)
T ∈R

h a generic vector. Let
(·,·) and ‖·‖ denote the Euclidean scalar product and the corresponding Euclidean vector
norm respectively.

Let C be the complex numbers. For z∈C we denote with Re(z) and Im(z) the real
and imaginary parts of z respectively. We denote with Ch the h dimensional complex
Euclidean space.

Let Ω⊂R
3 be a bounded simply connected open set with locally Lipschitz boundary

∂Ω and let Ω be its closure. Furthermore we denote with n(x)=(n1(x),n2(x),n3(x))T∈R
3

the outward unit normal vector to ∂Ω in x ∈ ∂Ω. We note that when ∂Ω is a locally
Lipschitz surface the unit normal vector n(x) exists almost everywhere in x when x∈∂Ω

(see [2, Theorem 1.8 p. 17 and p. 52]).
We assume that ∂Ω can be decomposed as follows: ∂Ω = ∂Ω1∪∂Ω2, where ∂Ω1, ∂Ω2

are two locally Lipschitz surfaces such that ∂Ω1∩∂Ω2 = ∅. Finally we assume that ∂Ω1

is characterized by a boundary acoustic impedance given by a bounded continuous non-
negative real function χ = χ(x), x ∈ ∂Ω1, and that ∂Ω2 is characterized by an infinite
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boundary acoustic impedance, that is, χ = χ(x)=+∞, x∈ ∂Ω2, that is, ∂Ω2 is an acous-
tically hard boundary. Moreover, for later convenience, we assume that Ω contains the
origin of the coordinate system.

We are interested in the solution of the following boundary value problem for the
Helmholtz equation:

∆us
k(x)+k2us

k(x)=0, x∈R
3\Ω, (1.1)

with the boundary conditions:

us
k(x)+

χ(x)

ık

∂us
k

∂n
(x)= g1,k(x), x∈∂Ω1, (1.2)

∂us
k

∂n
(x)= g2,k(x), x∈∂Ω2, (1.3)

and the Sommerfeld radiation condition:

∂us
k

∂r
(x)−ıkus

k(x)= o(r−1), r→+∞, (1.4)

where k∈R is the wave number, k 6= 0, ı is the imaginary unit, g1,k(x), x∈ ∂Ω1, g2,k(x),
x∈ ∂Ω2 are given functions, r = ‖x‖, x∈R

3. Moreover, we denote with o(·) and later on
with O(·) the Landau symbols. When k = 0, problem (1.1)-(1.4), after being rewritten,
can be approached with a simple adaptation of the method presented in this paper. The
development of a highly performing solver for problem (1.1)-(1.4) is a relevant task in
many applications and has been considered by several authors (see, e.g., [3–5]). The fast
multipole algorithms [3–5] are very successful methods for problem (1.1)-(1.4). In Section
3, we make a comparison between the algorithm proposed in this paper and the fast
multipole algorithms in terms of computational cost.

The first step in the development of the solver of (1.1)-(1.4) proposed here is the re-
duction of the boundary value problem (1.1)-(1.4) to a system of integral equations. This
step, when ∂Ω is a sufficiently regular surface, is usually done by introducing a boundary
integral method. For reasons explained in [1, 6] we prefer not to use boundary integral
methods and instead we develop an operator expansion method for problem (1.1)-(1.4).
In this way problem (1.1)-(1.4) is transformed to a sequence of systems of integral equa-
tions under the following assumptions (see [1]):

(a) there exists a bounded simply connected open set Ωc such that ∂Ωc is a sufficiently
regular surface, Ωc ⊂ Ω and such that the solution us

k(x) of (1.1)-(1.4) defined for

x ∈ R
3\Ω can be extended to x ∈ R

3\Ωc remaining a solution of the Helmholtz
equation in R

3\Ωc. We assume that the origin belongs to Ωc. To keep the notation
simple we omit the (possible) dependence on k of Ωc when k∈R, k 6=0;

(b) for k∈R, k 6=0, Fk(x), the extension of us
k(x) whose existence is assumed in (a), can

be represented as a single layer potential with density supported on ∂Ωc, that is:

Fk(x)=
∫

∂Ωc

Φk(x,y)vk(y)ds(y), x∈R
3\Ωc, (1.5)
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where ds is the surface measure on ∂Ωc (see [2, Theorem 1.2 p.15]), vk(y), y∈ ∂Ωc,
is a density function to be determined, and Φk is the fundamental solution of the
Helmholtz equation in R

3 with the Sommerfeld radiation condition at infinity:

Φk(x,y)=
eık‖x−y‖

4π‖x−y‖ , x 6=y, x,y∈R
3. (1.6)

The single layer potential (1.5) satisfies equations (1.1), (1.4) for every choice of vk that
makes possible the differentiation of (1.5) under the integral sign. So that, we can refor-
mulate problem (1.1)-(1.4) as a system of integral equations in the unknown vk imposing
that Fk satisfies the boundary conditions (1.2) and (1.3):

∫

∂Ωc

Φk(x,y)vk(y)ds(y)+
χ(x)

ık

∂

∂n(x)

∫

∂Ωc

Φk(x,y)vk(y)ds(y)= g1,k(x), x∈∂Ω1, (1.7)

∂

∂n(x)

∫

∂Ωc

Φk(x,y)vk(y)ds(y)= g2,k(x), x∈∂Ω2. (1.8)

In this way, we have reformulated the boundary value problem (1.1)-(1.4) in the unknown
us

k as a system of integral equations in the unknown vk. Since we have chosen Ωc⊂Ω the
distance between ∂Ωc and ∂Ω is greater than zero so that the integral equations (1.7)-(1.8)
have continuous kernels defining compact operators even when ∂Ω and ∂Ωc are only
Lipschitz continuous surfaces. That is, they are Fredholm integral equations of the first
kind which are known to be ill posed.

The “operator expansion method” tries to take care of the ill-posedness of the integral
equations (1.7)-(1.8) via a perturbative approach. That is, the unknown vk and the kernels
of (1.7)-(1.8) are represented through a perturbative expansion having as base point a
sufficiently regular surface ∂Ωr, boundary of a bounded simply connected open set Ωr.
The set Ωr is chosen such that: i) Ωc ⊂Ωr, ii) the “distances” between ∂Ω and ∂Ωr and
between ∂Ωr and ∂Ωc are small. Note that the natural unit to measure these distances
is the wavelength λ = 2π/k. We assume that ∂Ω, ∂Ωc, ∂Ωr can be represented by using
single valued functions in a given (curvilinear) coordinate system. By requiring that (1.7)-
(1.8) are satisfied order by order in the perturbation expansion when ∂Ω “goes to” ∂Ωr,
the solution of (1.7)-(1.8) is reduced to the solution of a sequence of systems of integral
equations. Finally representing the integral operators, the unknowns and the data of the
resulting sequence of systems of integral equations on a wavelet basis and using a simple
truncation procedure, the problem of solving the systems of integral equations obtained
by expanding (1.7)-(1.8) is approximated with the problem of solving sparse systems of
linear equations. The choice of the surfaces ∂Ωr and ∂Ωc plays an important role, that
will be discussed in Section 4, in the treatment of the ill-conditioning of (1.7)-(1.8) and in
making sparse the coefficient matrices of the linear systems that approximate the integral
equations.

Note that the assumptions made above, to develop the operator expansion, are made
for convenience in order to keep the exposition simple. The assumptions (a), (b), i) and
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Figure 1: Submarine (a) and its simplified version (b).

ii) in practice are not really restrictive. In fact our purpose is to approximate the solution
us

k of problem (1.1)-(1.4) and it is possible to show (see [7, Theorem 2.1 p. 588] for the case
∂Ω1 =∂Ω, χ(x)=0, x∈∂Ω, ∂Ω2 =∅) that under some hypotheses on the surface ∂Ωc the
set of the data generated by the single layer potentials Fk when the density vk is a square
integrable function over ∂Ωc is a dense subset of the square integrable functions over ∂Ω.

On the contrary, the assumption that ∂Ω, ∂Ωc and ∂Ωr can be represented with single
valued functions in an (unique) “easy to use” curvilinear coordinate system is restrictive.
In fact, for example, this last assumption forces us to “simplify” some of the obstacles
considered in the numerical experiments shown in Section 4 (see Figs. 1 and 2). Indeed
we can avoid this assumption and the consequent “simplifications” using an operator
expansion method that uses more than one curvilinear coordinate system to represent
the relevant boundaries (see [8]). In this paper, in order to keep the exposition and the
computer programs used simple, we restrict our attention on the scattering problems in-
volving the simplified versions of the realistic obstacles proposed in Fig. 1(a) and Fig. 2(a)
that can be solved using only one curvilinear coordinate system.

Moreover, we use the solver of the exterior boundary value problem for the Helmholtz
equation (1.1)-(1.4) developed here as a computational tool in the solution of the follow-
ing time dependent scattering problem. Let t be the time variable and ui(x,t), (x,t) ∈
R

3×R, be an incoming acoustic field propagating with velocity c >0 in a homogeneous
isotropic medium filling R

3, solution of the wave equation (1.9) in R
3×R. When ui hits

the obstacle Ω, a scattered wave us(x,t), (x,t)∈ (R
3\Ω)×R, is generated and us is the
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Figure 2: NASA space shuttle (a) and its simplified version (b).

solution of the following problem (see [6]):

∆us(x,t)− 1

c2

∂2us

∂t2
(x,t)=0, (x,t)∈ (R

3\Ω)×R, (1.9)

with the boundary conditions (see [10, p. 66]):

−∂us

∂t
(x,t)+cχ(x)

∂us

∂n(x)
(x,t)= g1(x,t), (x,t)∈∂Ω1×R, (1.10)

∂us

∂n(x)
(x,t)= g2(x,t), (x,t)∈∂Ω2×R, (1.11)

where g1, g2 are given by:

g1(x,t)=
∂ui

∂t
(x,t)−cχ(x)

∂ui

∂n(x)
(x,t), (x,t)∈∂Ω1×R, (1.12)

g2(x,t)=− ∂ui

∂n(x)
(x,t), (x,t)∈∂Ω2×R, (1.13)

with the boundary condition at infinity:

us(x,t)=O(r−1), r→∞, t∈R, (1.14)
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and the radiation condition:

∂us

∂r
(x,t)+

1

c

∂us

∂t
(x,t)=O(r−1), r→∞, t∈R. (1.15)

Note that conditions (1.10)-(1.11) and similar conditions (1.2)-(1.3) contain the limit
cases of the acoustically hard obstacle and of the acoustically soft obstacle. The bound-
ary condition at infinity (1.14) and the radiation condition (1.15) imply respectively that
us(x,t) goes to zero as r → +∞ and that us(x,t) is made to leading order of outgoing
waves. In fact we can think the scattered field us(x,t) as a superposition of outgoing
waves having their sources on ∂Ω. Let B = {x ∈R

3 |‖x‖< 1}, and ∂B be the boundary
of B. Since ui(x,t) satisfies the wave equation in R

3×R, it can be represented as a linear
superposition of time harmonic waves of the form e−ıωtui

ω
c ,α(x) where ui

ω
c ,α(x)= eı ω

c (x,α),

ω∈R, α∈ ∂B, so that we can assume that us(x,t) has a similar form, that is, us(x,t) is a
linear superposition of time harmonic waves (see Section 3 and [6] for further details),
which can be approximated as follows:

us(x,t)≈
N1

∑
i=1

N2

∑
j=1

ai,je
−ıωitus

ωi
c ,αj

(x), (x,t)∈ (R
3\Ω)×R, (1.16)

where N1, N2 are two positive integers, ωi∈R, ai,j∈R, αj∈∂B, and us
ωi
c ,αj

(x) are functions

to be determined. Thank to formula (1.16), we can approximate the solution of problem
(1.9)-(1.15) with the solution of N1 ·N2 problems of type (1.1)-(1.4). That is, in order to
obtain an approximation of the solution of problem (1.9)-(1.15), we must solve N1 ·N2

boundary value problems for the Helmholtz equation (1.1)-(1.4). These last problems can
be approached with the operator expansion method introduced in this paper.

Note that, when realistic obstacles Ω and wavelengths small compared to the charac-
teristic dimensions of the obstacles are considered, in order to have a satisfactory accu-
racy in the solution, the integral equations resulting from the operator expansion must
be discretized using finite dimensional vector spaces of high dimension. The operator
expansion method developed here can handle this situation by improving the operator
expansion method proposed in [1] in several respects. Moreover the operator expansion
method proposed here is highly parallelizable so that the computation of the entries of
the matrices that represent the integral operators in the wavelet basis can be done el-
ement by element with independent computations. In the operator expansion method
proposed in [1] this was not the case due to the way in which the wavelet transform
was used. The way of using the wavelet transform was also responsible for the severe
memory requirements of the method proposed in [1] when high dimensional discretized
problems were considered.

The operator expansion method has been widely used to solve problems in acoustic
and electromagnetic scattering, see, e.g., [6,11–17]. It was originally introduced by Milder
to solve acoustic and electromagnetic scattering problems from open surfaces [11, 12]
and later has been adapted to solve acoustic and electromagnetic scattering problems
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from bounded obstacles [13–17]. Recently it has been used in the solution of control
problems for partial differential equations in acoustics and electromagnetics motivated
by the attempt of finding active strategies to avoid the recognition of an obstacle from
the observation of its scattered field [18–22]. The operator expansion method developed
in this paper makes possible to solve control problems involving “realistic” obstacles and
“small” wavelengths.

In Section 2, we construct the generalized Haar’s wavelets, and in Section 3, we
present the new version of the operator expansion method to solve (1.1)-(1.4) that uses
the wavelet bases introduced in Section 2 and the corresponding computational method.
For simplicity, in Sections 2 and 3, we restrict our exposition to the case of obstacles with
a bounded boundary acoustic impedance, that is ∂Ω1 = ∂Ω, ∂Ω2 =∅, when k 6=0 but the
general case can be treated analogously. Furthermore in Section 3, we show how the new
version of the operator expansion method can be used to compute the solution of the
time dependent acoustic obstacle scattering problem (1.9)-(1.15). In Section 4, we present
some numerical results obtained with the method presented in Section 3. In particular we
solve time dependent acoustic scattering problems involving realistic objects including a
simplified version of a submarine (see Fig. 1(b)) and a simplified version of the NASA
space shuttle (see Fig. 2(b)). The parallel performance of the numerical algorithm used is
studied.

2 The wavelet bases

Let L2((0,1)) be the space of the square integrable real functions defined on the interval
(0,1). The wavelet bases we propose are bases of L2((0,1)) that generalize the Haar’s
basis ([9] p. 10) that, to our knowledge, have not been used before. These wavelet bases
are made of piecewise polynomial functions. The polynomials used in the numerical
experience shown in Section 4 are of low degree making the computation particularly
efficient.

The procedure that constructs these bases is implementable using a symbolic pro-
gramming language such as Mathematica or Symbolic Matlab and takes as input param-
eters the number M of vanishing moments of the wavelet basis considered, the number
N of subintervals of the interval (0,1) employed and the points ηi∈(0,1), i=1,2,··· ,N−1,
where the subdivision of (0,1) in subintervals takes place, we assume that ηi < ηi+1,
i = 1,2,··· ,N−2. That is we assume M and N to be two integers such that M ≥ 1 and
N≥2 and we denote with PM((0,1)) the space of the polynomials of degree less than M
defined on (0,1). We consider the following decomposition of L2((0,1)):

L2((0,1))= PM((0,1))⊕VM((0,1)), (2.1)

where ⊕ denotes the direct sum of subspaces. In other words, VM((0,1)) and PM((0,1))
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are orthogonal closed subspaces of L2((0,1)), such that:

the vector space generated by the union of

PM((0,1)) and VM((0,1)) is L2((0,1)), (2.2)

so that we have:

∫ 1

0
dx f (x)g(x)=0, ∀ f ∈PM((0,1)), g∈VM((0,1)), (2.3)

and

PM((0,1))∩VM((0,1))={0}. (2.4)

We choose as basis of PM((0,1)) the first M Legendre orthonormal polynomials defined
on (0,1) and we refer to them as Lj(x), x∈ (0,1), j=0,1,··· ,M−1.

We construct a basis of VM((0,1)) using the multiresolution analysis introduced by
Mallat [23] and Meyer [24]. Let N≥2 be an integer and ηN =(η1,η2,··· ,ηN−1)

T ∈R
N−1.

For M, N positive integers such that M≥1, N≥2 we define the following piecewise
polynomial functions on (0,1): for 1≤ i≤N−2 and 0≤ j≤ (N−1)M−1,

ΨM
j,N,ηN (x)=






pM
1,j,N,ηN(x), x∈ (0,η1),

pM
i+1,j,N,ηN (x), x∈ [ηi,ηi+1),

pM
N,j,N,ηN (x), x∈ [ηN−1,1),

(2.5)

where

pM
i,j,N,ηN (x)=

M−1

∑
l=0

ql,i,j,M,N,ηN xl ∈PM((0,1))

are polynomials of degree less than M.
We determine the coefficients ql,i,j,M,N,ηN of pM

i,j,N,ηN by imposing the following condi-

tions:

∫ 1

0
dxΨM

j,N,η N(x)xl =0, l =0,1,··· ,M−1, j=0,1,··· ,(N−1)M−1, (2.6)

∫ 1

0
dxΨM

j,N,η N(x)ΨM
j′ ,N,ηN(x)=

{
0, j 6= j′,
1, j= j′,

j, j′ =0,1,··· ,(N−1)M−1. (2.7)

We note that in general conditions (2.6) and (2.7) define (N−1)(M2+((N−1)M2+M)/2
distinct equations in the N(N−1)M2 unknowns ql,i,j,M,N,ηN . Note that when M = 1 and

N=2 the number of equations is equal to the number of unknowns and the unknown co-
efficients are uniquely determined up to a sign permutation. However, when M>1 (and
N ≥ 2) the number of equations is smaller than the number of unknowns. In this case,
we must choose the undetermined unknowns according to some criterion. For example a
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possible criterion consists in imposing some regularity to the piecewise polynomial func-
tions ΨM

j,N,ηN . The functions ΨM
j,N,ηN can be interpreted as “wavelet mother functions” and

we generate the elements of the wavelet basis associated to them via the multiresolution
approach (see [23, 24]).

To keep the exposition simple, from now on we choose N=2, ηi = i/N, i=1,··· ,N−1.
Results analogous to the ones obtained here can be derived for the general choice of ηi.

Let us define the functions:

ψM
j,m,ν,N,ηN(x)=

{
N

m
2 ΨM

j,N,ηN (Nmx−ν), x∈ (νN−m,(ν+1)N−m),

0, x∈ (0,1)\(νN−m ,(ν+1)N−m),
(2.8a)

(ν,m, j)∈Λ :={ν=0,1,··· ,Nm−1, m=0,1,··· , j=0,1,··· ,M−1}, (2.8b)

and the set of functions WM
N,ηN ((0,1)):

WM
N,ηN ((0,1))=

{
Lj(x), ψM

j,m,ν,N,ηN(x), x∈(0,1),(ν,m, j)∈Λ
}

, (2.9)

where Lj(x) are the Legendre polynomials and ΨM
j,N,ηN(x) are defined by (2.5) when we

choose ηN =(1/N,2/N,··· ,(N−1)/N)T . Note that the function ψM
j,m,ν,N,ηN(x) has support

given by the interval (νN−m,(ν+1)N−m)⊂ (0,1).
In the Appendix we show that the set WM

N,ηN is an orthonormal basis of L2((0,1)) and

that some classes of integral kernels can be efficiently approximated using these bases.
We note that when M=1 and, as chosen previously, N=2 the set of functions defined

in (2.9) is the well known Haar’s basis (see [9] p. 10) and that when M >1, N =2 the set
of functions defined in (2.9) is the generalization of the Haar’s basis.

Furthermore it is easy to see that the functions ΨM
j,N,ηN are determined up to a sign per-

mutation when we impose conditions (2.6)-(2.7) and use the fact that ΨM
j,N,ηN∈Cj−1((0,1)).

That is:

dν

dxν
pM

i,j,N,ηN(η−
i )=

dν

dxν
pM

i+1,j,N,ηN (η+
i ), 1≤ i≤N−1, 0≤ν≤ j−1, 1≤ j≤M−1. (2.10)

The conditions given in (2.10) are one possible choice of the criterion to determine the co-
efficients left undetermined by (2.6)-(2.7). We denote with Ψ̂M

j,N,ηN a choice of the functions

ΨM
j,N,ηN satisfying condition (2.10), with ψ̂M

j,m,ν,N,ηN the functions defined in (2.8) when we

replace ΨM
j,N,ηN with Ψ̂M

j,N,ηN , and with ŴM
N,ηN ((0,1)) the corresponding basis whose ele-

ments are Lj and ψ̂M
j,m,ν,N,ηN .

Let us rename the functions belonging to the basis WM
N,ηN ((0,1)) of L2((0,1)) defined

in (2.9) as follows:

ψ̃M
j,m,ν,N,ηN (x)=ψM

j,m,ν,N,ηN (x), x∈ (0,1), (ν,m, j)∈Λ, (2.11a)

ψ̃M
j,m,ν,N,ηN (x)= L−j−1(x), x∈ (0,1), −M≤ j≤−1, m=ν=0. (2.11b)
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Using two copies of a basis of L2((0,1)) chosen between those defined in (2.9), and taking
the tensor product of the basis functions we can construct a wavelet basis of L2((0,1)×
(0,1)), denoted with WM

N,ηN ((0,1)×(0,1)), that is:

WM
N,ηN ((0,1)×(0,1))

=
{

Υ̃M
j,m,ν,j′,m′,ν′,N,ηN (x,y)= ψ̃M

j,m,ν,N,ηN(x)ψ̃M
j′ ,m′,ν′,N,ηN(y),

(x,y)∈ (0,1)×(0,1), −M≤ j, j′≤M−1, and m=0 when j<0;

m=0,1,··· when j≥0; m′=0 when j′ <0; m′=0,1,··· when j′≥0;

ν=0,1,···(Nm−1)+, ν′ =0,1,··· ,(Nm′−1)+

}
, (2.12)

where (∗)+ denotes the maximum between 0 and ∗.
Let (a,b), (a′,b′)⊂R be two bounded intervals. We will describe the wavelet bases of

L2((a,b)×(a′ ,b′)) that will be used in the numerical experiments of Section 4.
We define the required wavelet bases of L2((a,b)×(a′ ,b′)) as follows:

WM
N,ηN

(
(a,b)×(a′ ,b′)

)

=

{
ΥM

j,m,ν,j′,m′,ν′,N,ηN (x,y)=
1√

b−a
ψ̃M

j,m,ν,N,ηN

(
x−a

b−a

)
1√

b′−a′
ψ̃M

j′,m′,ν′,N,ηN

(
y−a′

b′−a′

)
,

(x,y)∈(0,1)×(0,1), −M≤ j, j′≤M−1, and m=0 when j<0;

m=0,1,··· when j≥0; m′=0 when j′ <0; m′=0,1,··· when j′≥0;

ν=0,1,···(Nm−1)+, ν′=0,1,··· ,(Nm′−1)+

}
. (2.13)

Similarly we define ŴM
N,ηN ((a,b)×(a′ ,b′)) as the basis of L2((a,b)×(a′,b′)) obtained start-

ing from ŴM
N,ηN ((0,1)) using the construction shown in (2.12)-(2.13) and we denote with

Υ̂M
j,m,ν,j′,m′,ν′,N,ηN the basis functions of ŴM

N,ηN ((a,b)×(a′ ,b′)).

3 The use of the wavelet bases in the operator expansion method

To keep the exposition simple we consider obstacles such that ∂Ω1 = ∂Ω, ∂Ω2 = ∅ when
k 6=0 so that we consider the problem of solving the boundary value problem (1.1), (1.2),
(1.4). Formulae similar to those derived here hold for the remaining cases considered in
Section 1.

Let us recall some of the work presented in [1]. Let y=(y1,y2,y3)T =(y1,υT)T, where

υ = (y2,y3)T, be a coordinate system in R
3 (in general a curvilinear coordinate system)

and let x = x(y)= x((y1,υT)T)∈R
3, y∈ I1× I2× I3 be the change of variables from the y-

coordinates to the canonical cartesian coordinates x, where x(y) = (x1(y),x2(y),x3(y))T,
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xi(y), i=1,2,3 are given functions and Ii⊆R, i=1,2,3 are given intervals (not necessarily
bounded or open). The spherical, cylindrical and parabolic coordinate systems are exam-
ples of changes of variables that satisfy the previous assumptions. We assume that the
map x= x(y), y∈ I1× I2× I3 is sufficiently regular to make sense out of the formulae that

follow. Let X be a set contained in an Euclidean space we denote with
◦
X the interior of

X.
Let us assume that the obstacle Ω and its boundary ∂Ω can be represented as follows:

Ω={x= x(y)= x((y1,υT)T)∈R
3 |y1 ∈ I1,y1 < ξ(υ), υ∈ Î2× Î3}, (3.1)

∂Ω={x= x(y)= x((y1,υT)T)∈R
3 |y1 = ξ(υ), υ∈ Î2× Î3}, (3.2)

where Î2, Î3 ⊂R are bounded intervals such that Î2× Î3 ⊆ I2× I3, and ξ(υ), υ∈ Î2× Î3, is a
single valued bounded function regular enough to make sense out of the formulae that

follow and such that when υ∈ (
◦

Î2× Î3) we have ξ(υ)∈
◦
I1. Let

xξ(υ)= x((ξ(υ),υT)T), Xyi
(υ)=

∂xξ(υ)

∂yi
, i=2,3, υ∈ Î2× Î3 . (3.3)

Due to the assumptions made on Ω in Section 1, the surface measure on ∂Ω is given by:

ds∂Ω(υ)=
√

g(υ)dυ, υ∈ Î2× Î3, (3.4)

where dυ=dy2 dy3 is the Lebesgue measure on Î2× Î3 (see [1] Section 2 for further details)
and

g(υ)=(Xy2
,Xy2

)(Xy3
,Xy3

)−(Xy2
,Xy3

)(Xy3
,Xy2

), υ∈ Î2× Î3, (3.5)

where we remind that in (3.5) the symbol (·, ·) denotes the Euclidean scalar product in
R

3. Note that the derivatives appearing in (3.3) and as a consequence the function g(υ)
defined in (3.5) may be defined only almost everywhere.

Let us introduce now the surface ∂Ωc, boundary of the set Ωc ⊂R
3, used in the def-

inition of the single layer potential (1.5) and the auxiliary surface ∂Ωr, boundary of the
set Ωr ⊂R

3. We remind that the sets Ωc and Ωr and their boundaries ∂Ωc and ∂Ωr must
satisfy the following conditions:

i) there exists a surface measure on ∂Ωc,

ii) Ωc⊂Ω,

iii) Ωc⊂Ωr,

iv) the “distance” between ∂Ωc and ∂Ωr is “small”,

v) the “distance” between ∂Ωr and ∂Ω is “small”,

vi) the surfaces ∂Ωc and ∂Ωr are sufficiently regular to make sense out of the
formulae that follow.
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Note that ∂Ωr∩∂Ω may be non empty so that v) must be interpreted as saying that ∂Ωr

and ∂Ω are “close by” surfaces. A similar interpretation must be given to (iv) even if in
this case ∂Ωc∩∂Ωr = ∅. The way in which the series expansion derived below are built
will make clear the meaning of the expression “close by”.

In [1] it has been shown that we can choose two intervals Ĩ2 ⊂ R, Ĩ3 ⊂ R such that
Ĩ2× Ĩ3⊆ Î2× Î3 and that we can define Ωc and Ωr to be the following two sets:

Ωc ={x= x(y)= x((y1,υT)T)∈R
3 |y1 ∈ I1,y1 < ξc(υ),υ∈ Ĩ2× Ĩ3}, (3.6)

Ωr ={x= x(y)= x((y1,υT)T)∈R
3 |y1∈ I1,y1 < ξr(υ),υ∈ Î2× Î3}, (3.7)

so that we have:

∂Ωc ={x= x(y)= x((y1,υT)T)∈R
3 |y1 = ξc(υ)∈ I1,υ∈ Ĩ2× Ĩ3}, (3.8)

∂Ωr ={x= x(y)= x((y1,υT)T)∈R
3 |y1 = ξr(υ)∈ I1,υ∈ Î2× Î3}, (3.9)

where ξc, ξr are single valued, bounded, regular functions taking values in
◦
I1 satisfying

the following inequalities:

ξ(υ)> ξc(υ), υ∈ Ĩ2× Ĩ3, (3.10)

ξr(υ)> ξc(υ), υ∈ Ĩ2× Ĩ3. (3.11)

The inequality (3.10) implies that Ωc is a kind of a “regular” version of Ω made “slimmer”
along the coordinate direction y1.

The regularity of the functions ξc, ξr will be exploited later when we represent the
integral operators resulting from the operator expansion on the wavelet bases built pre-
viously. Note that the set defined in (3.8) is a surface and that since ξc is a regular function
we have that ∂Ωc has a surface measure ds given by a formula similar to formula (3.4),
that is:

ds(υ)=
√

gc(υ)dυ, υ∈ Ĩ2× Ĩ3 , (3.12)

where gc is given by formula (3.5) when we replace ξ with ξc in formula (3.3).
Now we can formulate the operator expansion method.
Let us assume that the assumptions (a) and (b) of Section 1 hold and that formulae

(3.2), (3.8), (3.9), (3.12) hold for Ω, Ωr, and Ωc and let xξ(υ) be the function defined in (3.3),

moreover let φ
k
(υ) = (1/ık)χ(xξ(υ))n(xξ(υ)), υ ∈ Î2× Î3, and xξc

(υ′) = x((ξc(υ′),υ′T)T),

υ′=(y′2,y′3)
T ∈ Ĩ2× Ĩ3, we can rewrite equation (1.7) as follows:

∫

Ĩ2× Ĩ3

dυ′
√

gc(υ′)vk(xξc
(υ′))

{
Φk(xξ(υ),xξc

(υ′))

+
(

φ
k
(υ),∇xΦk(xξ(υ),xξc

(υ′))
)}

= g1,k(xξ(υ)), υ∈ Î2× Î3 , (3.13)

where ∇x denotes the gradient operator with respect to the variable x. Remember that
since we are assuming ∂Ω2 ={∅} equation (1.8) should not be considered.
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The operator expansion method is based on the idea of taking an expansion of the
density vk in powers of (ξ−ξr), regarding vk as a function of ξ. We use ξ as an indepen-
dent variable so that, for example, we attribute a meaning to the notation O((ξ−ξr)ν),
when ξ→ ξr , ν=0,1,··· .

That is we assume that for the density vk and as a consequence for the single layer
potential (1.5) computed in x= xξ(υ) the following expansions hold:

vk(xξc
(υ))=

+∞

∑
s=0

ck,s(υ), υ∈ Ĩ2× Ĩ3, (3.14)

Fk(xξ(υ))=
+∞

∑
s=0

s

∑
ν=0

{
(ξ(υ)−ξr(υ))s−ν

(s−ν)!

×
∫

Ĩ2× Ĩ3

dυ′
√

gc(υ′)
(

∂s−νΦk

∂ys−ν
1

)
(xξr

(υ),xξc
(υ′))ck,ν(υ′)

}
, υ∈ Î2× Î3, (3.15)

and
ck,s(υ)=O((ξ(υ)−ξr(υ))s), υ∈ Ĩ2× Ĩ3, ξ→ ξr , s=0,1,··· . (3.16)

Note that in equation (3.15) we use a series expansion in powers of (ξ−ξr) of the funda-
mental solution Φk(x,y), x = xξ(υ)∈ ∂Ω, υ∈ Î2× Î3, y∈ ∂Ωc. Thank to these expansions
we solve the integral equation (3.13) using a perturbative series, that is in (3.13) we use
an expansion in powers of (ξ−ξr) of the unknown density (i.e., (3.14), (3.16)) and of the
integral kernel.

Let Kξr,ξc
be the following integral kernel: for υ∈ Î2× Î3, υ′∈ Ĩ2× Ĩ3,

Kξr,ξc
(υ,υ′)=

√
gc(υ′)

[
Φk(xξr

(υ),xξc
(υ′))+

(
φ

k
(υ),(∇xΦk)(xξr

(υ),xξc
(υ′))

)]
. (3.17)

We can formulate the operator expansion method as follows:

Lemma 3.1. Let ∂Ω1 = ∂Ω, ∂Ω2 = ∅, and let k,Ωr , Ωc , Kξr,ξc
(υ,υ′), υ∈ Î2× Î3, υ′∈ Ĩ2× Ĩ3 be

as above. We assume that the solution of (1.1), (1.2), (1.4) is given by the single layer potential Fk

defined in (1.5) and the validity of the series expansion (3.14), (3.16) for the corresponding density
function vk(y), y∈ ∂Ωc. Then the coefficients ck,s(υ), υ∈ Ĩ2× Ĩ3, of the expansion (3.14) are the
solutions of the following integral equations:

∫

Ĩ2× Ĩ3

dυ′ck,s(υ′)Kξr,ξc
(υ,υ′)=dk,s(υ), υ∈ Î2× Î3, s=0,1,2,··· , (3.18)

where

dk,0(υ)=g1,k(xξ(υ)), υ∈ Î2× Î3 , (3.19)

dk,s(υ)=
s−1

∑
ν=0

(ξ(υ)−ξr(υ))s−ν

(s−ν)!

∫

Ĩ2× Ĩ3

dυ′
√

gc(υ′)ck,ν(υ′)

×
{(

φ
k
(υ),

(
∂s−ν

∂ys−ν
1

(∇xΦk)

)
(xξr

(υ),xξc
(υ′))

)
+

(
∂s−ν

∂ys−ν
1

Φk

)
(xξr

(υ),xξc
(υ′))

}
,

υ∈ Î2× Î3, s=1,2,··· . (3.20)
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Proof. See [1] Lemma 2.1.

Finally as shown in [1] Lemma 2.3 we can write the solution of the exterior boundary
value problem (1.1), (1.2), (1.4) as follows:

us
k(x)=us

k,S(x)+Rk,S(x), x∈R
3\Ω, (3.21)

where

us
k,S(x)=

∫

Ĩ2× Ĩ3

dυ′
√

gc(υ′)Φk(x,xξc
(υ′))

S

∑
ν=0

ck,ν(υ′), x∈R
3\Ω, (3.22)

and Rk,S(x)= o((ξ−ξr)S) when ξ→ ξr .

Let us solve the integral equations (3.18) in the appropriate L2 space using the new
wavelet bases introduced in Section 2. Without loss of generality, to keep the exposition
simple, in the following we assume that Ĩ2× Ĩ3 = Î2× Î3. In fact with a change of variables
the integral equation (3.18) over Ĩ2× Ĩ3 can be transformed into an integral equation over
the set Î2× Î3.

Let N = 2 and WM
N,ηN ( Î2× Î3) be the wavelet basis of L2( Î2× Î3) defined in (2.13), for

m=0,1,··· let IM,N,m be the following set of indices:

IM,N,m =

{
µ=(j,m̂,ν)T

∣∣∣−M≤ j≤M−1; m̂=

{
m, j≥0
0, j<0

; 0≤ν≤ (Nm̂−1)+

}
. (3.23)

We represent the unknowns of the integral equations (3.18) ck,s, s = 0,1,··· , on the basis
WM

N,ηN ( Î2× Î3):

ck,s(υ)=
+∞

∑
m=0

∑
µ∈IM,N,m

+∞

∑
m′=0

∑
µ′∈IM,N,m′

ck,s,µ,µ′ΥM
µ,µ′,N,ηN (υ), υ∈ Î2× Î3. (3.24)

Similarly we represent the data dk,s, s=0,1,··· , of the integral equations (3.18):

dk,s(υ)=
+∞

∑
m=0

∑
µ∈IM,N,m

+∞

∑
m′=0

∑
µ′∈IM,N,m′

dk,s,µ,µ′ΥM
µ,µ′,N,ηN(υ), υ∈ Î2× Î3. (3.25)

Note that when µ∈ IM,N,m and µ′∈ IM,N,m′ the function ΥM
µ,µ′,N,ηN is uniquely determined

by its indices. In fact when m 6= m′ IM,N,m∩ IM,N,m′ = ∅. Furthermore we note that
WM

N,ηN ( Î2× Î3) is a basis made of real functions that we use to expand complex functions.

This corresponds to expand the real and the imaginary part of the complex functions
considered simultaneously on the wavelet basis. Hence in general the coefficients ck,s,µ,µ′

and dk,s,µ,µ′ of the wavelet expansions (3.24) and (3.25) are complex numbers.
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Finally using the tensor product basis we have the following representation for the
integral kernel Kξr,ξc :

Kξr,ξc
(υ,υ′)=

+∞

∑
n=0

∑
µ∈IM,N,n

+∞

∑
n′=0

∑
µ′∈IM,N,n′

ΥM
µ,µ′,N,ηN (υ)

×
+∞

∑
m=0

∑
µ̃∈IM,N,m

+∞

∑
m′=0

∑
µ̃′∈IM,N,m′

ak,s,µ,µ′,µ̃,µ̃′ΥM
µ̃,µ̃′,N,ηN (υ′), υ,υ′∈ Î2× Î3. (3.26)

Note that Kξr,ξc
is a complex valued kernel whose real and imaginary parts are expanded

on a basis of real functions.
Let m∗ be a positive integer and let JM,N,m∗=M2(Nm∗+1+N−2)2/ (N−1)2, truncating

the series (3.24) and (3.25) when m=m′=m∗ and the series (3.26) when m=m′=n=n′=
m∗ we approximate the sequence of integral equations (3.18)-(3.20) with the following
sequence of (complex) systems of linear equations:

Ak,Mck,s,M =dk,s,M, s=0,1,··· , (3.27)

where ck,s,M, dk,s,M ∈ CJM,N,m∗ , are the finite dimensional vectors whose components are
respectively an approximation of the first JM,N,m∗ coefficients of the wavelet expansion
of the unknowns ck,s, and the first JM,N,m∗ coefficients of the wavelet expansion of the
data dk,s, given in (3.24) and (3.25) respectively ordered by columns. More precisely, for
s=0,1,··· , we have:

ck,s,M=





ck,s,M
1 ≈ ck,s,(−M,0,0)T,(−M,0,0)T

ck,s,M
2 ≈ ck,s,(−M,0,0)T,(−M+1,0,0)T

...

ck,s,M
M ≈ ck,s,(−M,0,0)T,(−1,0,0)T

ck,s,M
M+1 ≈ ck,s,(−M,0,0)T,(0,0,0)T

ck,s,M
M+2 ≈ ck,s,(−M,0,0)T,(0,1,0)T

ck,s,M
M+3 ≈ ck,s,(−M,0,0)T,(0,1,1)T

...

ck,s,M

M+ Nm∗+1−1
N−1

≈ ck,s,(−M,0,0)T,(0,m∗,Nm∗−1)T

...

ck,s,M
JM,N,m∗ ≈ ck,s,(M−1,m∗,Nm∗−1)T,(M−1,m∗,Nm∗−1)T





, (3.28)

and a similar formula holds for dk,s,M when we replace ck,s,M
i with dk,s,M

i , i=1,2,··· , JM,N,m∗ ,

ck,s,µ,µ′ with dk,s,µ,µ′ , µ, µ′ ∈ IM,N,m, m = 0,1,··· ,m∗ and ≈ with =. The entries Ak,M
i,j of

the matrix Ak,M ∈ CJM,N,m∗×JM,N,m∗ are the coefficients ak,s,µ,µ′,µ̃,µ̃′ of formula (3.26) when

µ∈ IM,N,n, n=0,1,··· ,m∗, µ′∈ IM,N,n′ , n′=0,1,··· ,m∗, µ̃∈ IM,N,m, m=0,1,··· ,m∗, µ̃′∈ IM,N,m′,
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m′=0,1,··· ,m∗. The ordering of the entries of the matrix Ak,M is induced by (3.27) and by

the ordering of the elements of the vectors ck,s,M and dk,s,M defined in (3.28). Let τ >0 be
a threshold. We define the “sparse” version of Ak,M corresponding to the threshold τ as
the matrix Ak,M,τ ∈CJM,N,m∗×JM,N,m∗ whose entries are given by:

Ak,M,τ
i,j =

{
Ak,M

i,j , if|Ak,M
i,j |>τ ,

0, if |Ak,M
i,j |≤τ ,

i, j=1,2,··· , JM,N,m∗ . (3.29)

We want to approximate the linear system (3.27) by replacing the matrix Ak,M with its
truncated version Ak,M,τ.

Note that the matrix Ak,M is a generic matrix, possibly a dense matrix, however when
m∗ increases we expect the matrix Ak,M,τ to be a sparse matrix even for small values of
the threshold τ > 0. This expectation is based on Lemma A.2. The use of the approxi-
mating (sparse) matrix Ak,M,τ rather than Ak,M makes possible to work in high dimen-
sional spaces at an affordable computational cost. For y = (y1,y2,··· ,yJM,N,m∗ )

T ∈ CJM,N,m∗

we denote with ‖y‖∞ = max1≤i≤JM,N,m∗ |yi| the infinity norm of the vector y and for A∈
CJM,N,m∗×JM,N,m∗ we denote with ‖A‖∞ the induced matrix norm. We have:

Theorem 3.1. Let k 6= 0, ∂Ω1 = ∂Ω, ∂Ω2 = ∅, and Ωc, Ωr be as above. Let M≥ 1 be a given
integer. We assume that ∂Ωr and ∂Ωc are (M+2)-times continuously differentiable surfaces,
that problem (1.1), (1.2), (1.4) has a unique solution that can be extended to R

3\Ωc, and that this
solution can be represented by the single layer potential (1.5) with a density function vk defined on
∂Ωc. Moreover, we assume that −k2 is not an eigenvalue of the Laplace operator in Ωc equipped
with the homogeneous boundary condition (1.2) on ∂Ωc. Finally, let m∗ be a non-negative integer,
τ>0 be a threshold, let Ak,M∈CJM,N,m∗×JM,N,m∗ and Ak,M,τ∈CJM,N,m∗×JM,N,m∗ be the matrices given
in (3.27) and (3.29) respectively. Then for m∗ large enough Ak,M is a non-singular matrix, and
when τ is chosen such that

0<τ <
δ‖(Ak,M)−1‖−1

∞

JM,N,m∗
, (3.30)

for some 0<δ<1, then the matrix Ak,M,τ is also non singular. Moreover, we have:

‖Ak,M−Ak,M,τ‖∞ ≤δ‖(Ak,M)−1‖−1
∞ , (3.31)

‖(Ak,M,τ)−1‖∞ ≤ ‖(Ak,M)−1‖∞

(1−δ)
. (3.32)

Let ck,s,M be the solution of the linear systems (3.27) and ck,s,M,τ be the solution of the “sparse”
linear systems:

Ak,M,τck,s,M,τ =dk,s,M, s=0,1,··· . (3.33)

Then we have

‖ck,s,M−ck,s,M,τ‖∞ ≤ δ

1−δ
‖ck,s,M‖∞, s=0,1,··· . (3.34)
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Finally let ak,s,µ,µ′,µ̃,µ̃′ , be the entries of the matrix Ak,M defined in (3.26) where µ = (j,m̂,ν)T,

µ′ =(j′,m̂′,ν′)T, µ̃ =( j̃,m̃,ν̃)T, µ̃′ =( j̃′,m̃′,ν̃′)T, and let Kξr,ξc ∈CM( Î2× Î3× Ĩ2× Ĩ3). Then for

|k|>kmin >0, there exists a positive constant D′
M independent of k and N such that the entries of

the matrix Ak,M whose indices satisfy the inequality:
(

Nmax(m̂,m̂′,m̃,m̃′)
)M+1

≥|k|M+1 D′
M/τ , (3.35)

are smaller than τ in absolute value. That is we have:

|ak,s,µ,µ′,µ̃,µ̃′ |≤ |k|M+1 D′
M

1
(

Nmax(m̂,m̂′,m̃,m̃′)
)M+1

. (3.36)

Proof. It follows from Theorem A.1 that the proof that the matrix Ak,M is non singular
and the proofs for (3.31), (3.32), (3.34) are analogous to the proofs in Lemma 3.1 of [1].
The proof of (3.35) follows from Lemma A.2 since ∂Ωc and ∂Ωr are surfaces sufficiently

regular to guarantee that Kξr,ξc
∈CM( Î2× Î3× Ĩ2× Ĩ3) and |k|M+1D′

M is a positive constant
that is an upper bound of the sum of the absolute values of the M-th order derivatives

of the kernel Kξr,ξc
(υ,υ′) with respect to the components of υ∈ Î2× Î3 and υ′∈ Ĩ2× Ĩ3. This

concludes the proof.

Eqs. (3.35)-(3.36) show that when the constant |k|M+1D′
M remains bounded as a func-

tion of M (when M goes to infinity) we have that when the number of vanishing moments
M increases the number of the entries of the matrix Ak,M guaranteed to be less than the
threshold τ and the percentage of the entries of the matrix Ak,M guaranteed to be less than
the threshold τ increase. The same happens when we fix M and increase N (see (3.36)).
This last choice is very efficient when the constant |k|M+1D′

M is not bounded when M
goes to infinity.

We note that the results contained in formulae (3.31)-(3.34) hold under the weaker
assumptions that ∂Ωc is a twice continuously differentiable surface and ∂Ωr is a Lipschitz
surface.

We conclude this section by reconsidering formula (1.16) for the approximation of the
solution us(x,t) of the time dependent scattering problem (1.9)-(1.15). Formula (1.16) is
based on the assumption that the incoming wave ui(x,t) satisfies the wave equation with
wave propagation velocity c>0 in R

3×R. In fact this assumption implies the following
representation formula for ui:

ui(x,t)=
1

(2π)4

∫

R

dωw(ω)e−ıωt
∫

∂B
ds∂B(α)W(ω,α)eı ω

c (α,x), (x,t)∈R
3×R, (3.37)

where ds∂B(α) is the surface measure on ∂B, w(ω), ω∈R is a given positive function that
plays the role of a weight function and W(ω,α), (ω,α)∈R×∂B is a suitable distribution.
Formula (3.37) suggests the following representation formula for us:

us(x,t)=
1

(2π)4

∫

R

dωw(ω)e−ıωt
∫

∂B
ds∂B(α)W(ω,α)us

ω
c ,α(x), (x,t)∈ (R

3\Ω)×R, (3.38)
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where us
ω
c ,α(x), x∈R

3\Ω, (ω,α)∈R×∂B are functions to be determined. Note that for-

mulae (3.37), (3.38) depend only on the product w(ω)W(ω,α) and not on the individual
factors w(ω) and W(ω,α).

It is easy to see that formula (1.16) is obtained approximating (3.38) with a numerical
quadrature rule.

Finally we make a rough comparison between the computational cost of the algorithm
proposed in this section and the computational cost of the fast multipole algorithms [3–5].
Let NS be the number of elements used to decompose the obstacle surface (spatial sam-
ples) and Nt be the number of time steps in the time domain (see [3]). These two numbers
considered in the fast multipole algorithms can be associated with the numbers JM,N,m∗

and N1N2 respectively of the algorithm proposed in this section, where JM,N,m∗ is the
number of the elements of the wavelet series expansion used to represent the unknown
density and due to formula (1.16) N1N2 corresponds to Nt. This last correspondence is
very rough, in fact in the method proposed here once computed the N1N2 terms us

ωi/c,αj
,

i = 1,··· ,N1, j = 1,··· ,N2 on a spatial grid, the cost of evaluating us(x,t) for several val-
ues of t consists only in re-summing the terms e−ıωitus

ωi/c,αj
. Furthermore, thank to the

wavelet basis used (see Lemma A.1) the computational cost of the solution of the linear
systems (3.29) is O(J2

M,N,m∗) as JM,N,m∗→+∞. Hence we can conclude that using the anal-
ogy suggested above the computational cost of the algorithm proposed in this section is
linear in the number of the time steps and quadratic in the number of the spatial samples
compared to the fast multipole methods that require O(N3/2+1/4

s ) as Ns →+∞ to com-
pute the matrix elements and then O(N3/2

s ), as Ns →+∞, to complete the computation,
where Ns is the number of the spatial samples (see, e.g., [4]). Note that, in the algorithm
considered in this section due to the parallel implementation of the algorithm proposed,
the computational cost to solve the linear system (3.29) is O(J2

M,N,m∗/np) as JM,N,m∗→+∞

where np is the number of processors used.

4 Numerical results

We present four numerical experiments. The first two experiments show the convergence
of the series expansion (3.14) computed with the numerical method presented in Section 3
involving the truncation procedure associated with the threshold parameter τ>0 and the
validity of formula (1.5). Moreover, in the first experiment we study the parallel perfor-
mance of the numerical method proposed. The last two experiments are qualitative and
they show in colour figures (see Figs. 3 and 4) the scattering from two realistic obstacles,
that is the simplified versions of a submarine and of the NASA space shuttle shown in
Fig. 1(b) and Fig. 2(b) respectively, when hit by an incoming wave packet.

The curvilinear coordinate systems used in the experiments are the spherical coordi-
nate system and the cylindrical coordinate system. The algorithm described in Section 3
has been coded in Fortran 77 and tested on the computing grid of Enea (Roma, Italy).
The ENEA grid is made of computers located in 12 research centers around Italy.
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We use this computing infrastructure both as a grid and as a parallel machine (i.e.
MIMD machine). In fact the computation of the solution of the time harmonic problems
(1.1)-(1.4) needed to solve the time dependent scattering problem (1.9)-(1.15) has been
carried out in two steps. The first step, the computation of the matrix Ak,M,τ, has been
carried out using the infrastructure as a grid, that is Np asynchronous programs are ex-
ecuted. When the number of (real) unknowns involved in the problem is approximately
5·105 (i.e. JM,N,m∗ ≈2.5·105) we use Np =512 asynchronous programs, that is we run 512
executable programs and each one of these programs computes JM,N,m∗/Np rows of the

matrix Ak,M,τ. Note that in our experiments JM,N,m∗/Np is an integer. The second step,
the computation of the solution of the linear systems (3.33) for fixed k (one system for
each order of the perturbation series considered) and the remaining parts of the compu-
tation is done with a parallel code implemented using multiple instructions multiple data
programming mode (MIMD) and using MPI as message passing library and is executed
on one of the MIMD machines contained in the grid.

The wavelet basis used in the numerical experiments has been obtained using the
symbolic Matlab package to implement the procedure described in Section 2. The func-
tions Ψ̂M

j,N,ηN , j = 0,1,··· ,M−1, i.e., the solution of (2.6), (2.7), (2.10), when M = 2, N = 2

and η1 =1/2 are:

Ψ̂2
0,2,1/2 =

{
−1+6x, 0< x<

1
2 ,

−5+6x, 1
2 ≤ x<1,

Ψ̂2
1,2,1/2 =

{ √
3(1−4x), 0< x<

1
2 ,√

3(−3+4x), 1
2 ≤ x<1.

(4.1)

In the numerical experiments that follow we always use the bases generated through
the multiresolution procedure and the tensor product starting from the functions Ψ̂2

j,2,1/2,

j=0,1 given in (4.1). In this section, we denote with us
k,S,m∗,τ the solution of problem (1.1)-

(1.4) obtained with the expansion (3.14) truncated at order s = S when the coefficients of
the series expansion are approximated with the solution of the linear systems (3.33). We
have J2,2,m∗ =22(m∗+1) so that in these circumstances the coefficients matrices of the linear
systems (3.33) are matrices of (complex) dimension 22(m∗+2)×22(m∗+2). Remind that the
functions Ψ̂2

j,2,1/2, j = 0,1 given in (4.1) are not uniquely determined by (2.6)-(2.7). We

have made some experiments using “wavelet mother functions” solutions of (2.6)-(2.7)
with M=1, N=2, η1=1/2 (i.e., the Haar’s basis) and with M=2, N=2, η1=1/2 different
from the functions (4.1). The choice of (4.1) as “wavelet mother functions” is justified by
the facts that this choice gives satisfactory “compression factors” and that the coefficients
of the polynomials appearing in (4.1) are expressed by simple formulae.

Example 4.1. The first experiment consists in the time harmonic scattering phenomenon
generated by a plane wave impinging on an acoustically soft sphere (i.e.: χ(x) = 0, x ∈
∂Ω) of radius one and center the origin. The incoming wave has been chosen equal to
ui(x,t)=e−ıω∗teı(ω∗/c)(α∗,x), where α∗=(sinθcosφ,sinθ sinφ,cosθ)T, θ=π, φ=0 and ω∗=1
and we have chosen c=1. In this experiment we have RT =1/π.

The solution of this problem is given by a series of spherical harmonics (see, e.g., [29,
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p. 24]):

us(x)=−4π
+∞

∑
l=0

ıl jl(ω∗)h
(1)
l (ω∗‖x‖)

h
(1)
l (ω∗)

l

∑
m=−l

Ym
l (x̂)Ym

l (α∗), x=‖x‖x̂, x̂∈∂B, (4.2)

where ‖x‖>1, and h
(1)
l (z), jl(z) are the spherical Hankel and Bessel functions of index l

respectively, and Ym
l (x̂) are the spherical harmonics.

Note that in this experiment, we have used the spherical coordinate system to build
expansion (3.14) and that we have chosen Î2× Î3= Ĩ2× Ĩ3=[0,π]×(0,2π], ξr(υ)=1, υ∈ Î2× Î3

and ξc(υ)=0.9, υ∈ Ĩ2× Ĩ3.
We compare us

ω∗,S,m∗,τ obtained with the numerical method of Section 3 with us
L∗ ob-

tained by truncating the expansion (4.2) at l = L∗ and we choose L∗=10. Let

x∗i,j =
(

1.5sin

(
iπ

20

)
cos

(
jπ

10

)
,1.5sin

(
iπ

20

)
sin

(
jπ

10

)
,1.5cos

(
iπ

20

))T

, (4.3)

for 1≤ i≤19, 0≤ j≤20, (i, j)=(0,1), and (i, j)=(20,1). Let

εm∗ ,τ
S =

1

λ

√√√√
20

∑
i=0

∣∣us
ω∗,S,m∗,τ(x∗i,1)−us

L∗(x∗
i,1)

∣∣2
+

19

∑
i=1

20

∑
j=0

∣∣∣us
ω∗,S,m∗,τ(x∗i,j)−us

L∗(x∗i,j)
∣∣∣
2
, (4.4)

where λ=

√
∑

20
i=0

∣∣∣us
L∗(x∗i,1)

∣∣∣
2
+∑

19
i=1∑

20
j=0

∣∣∣us
L∗(x∗20,1)

∣∣∣
2
.

Let B1.5={x∈R
3 |‖x‖<1.5}. We note that x∗i,j∈∂B1.5 and that the approximate solution

us
L∗ when L∗=10 on ∂B1.5 has 4-6 significant digits correct. Table 1 shows that when S=0

the behavior of εm∗,τ
S as a function of the (complex) dimension J2,2,m∗ = 22(m∗+2) of the

linear system solved to approximate the integral equations and of the threshold τ used
in the truncation procedure. In the last two columns of Table 1 we show the compression
factor Ccomp, that is the fraction of the entries of the matrix Ak,M (see (3.27)) that have been
set to zero by the truncation procedure (see (3.33)) (i.e. Ccomp times the number of entries

of Ak,M is equal to the number of entries set to zero), and the parameter Eτ that is defined
as follows:

Eτ =τ
22(m∗+2)(1−Ccomp)

‖Ak,M‖F
, (4.5)

where ‖∗‖F is the Frobenius norm of the matrix ∗. For example,

‖Ak,M‖F =

√√√√
22(m∗+2)

∑
i=1

22(m∗+2)

∑
j=1

|Ak,M
i,j |2.

Note that we have:
‖Ak,M−Ak,M,τ‖F

‖Ak,M‖F
≤Eτ . (4.6)
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Table 1: Example 4.1: The behavior of εm∗,τ
S , Ccomp, Eτ when S=0.

m∗ 22(m∗+2) τ εm∗ ,τ
S Ccomp Eτ

2 256 0 7.40e-02 0 0

3 1024 0 1.67e-02 0 0

4 4096 0 5.77e-03 0 0

5 16384 1.0e-08 3.85e-04 0.82 9.20e-06

6 65536 2.1e-07 3.83e-04 0.95 5.77e-05

7 262144 4.2e-06 3.79e-04 0.99 6.99e-05

Table 2: Example 4.1: Execution time versus number of processors.

processors execution time processors execution time

2 309.16s 16 47.75s

4 155.83s 32 31.58s

8 83.85s

Table 1 shows that when the number 22(m∗+2) of the (complex) unknowns increases
the accuracy in the numerical approximation increases until the number of (complex)
unknowns reaches 16384, since then it remains substantially unchanged. This is due to

the fact that the error εm∗,τ
S observed comes from the quadrature rule used to compute

the coefficients of the wavelet expansion of the integral kernel and from the fact that the
truncation procedure, used when 22(m∗+2)

>4096, guarantees five digits of accuracy when
the solution of (3.27) is approximated with the solution of (3.33). Moreover, in Table 1 we
can see that also when the compression factors are large, the quantity Eτ is small. This
implies that the sparse version Ak,M,τ of Ak,M is a satisfactory approximation of the matrix
Ak,M.

Table 2 shows the performance of the second step of the algorithm proposed in Sec-
tion 3 when parallel computing on a MIMD machine (i.e.: SP4 machine) is employed.
We consider the previous numerical experiment when the number of the (complex) un-
knowns is 4096, that is when m∗=4. The execution time is measured using the (Fortran)
MPI routine MPI−WTIME() that gives a floating point number representing in seconds
the elapsed wall clock time. Note that the speed up factor going from 2 to 8 processors is
0.92. In fact passing from 2 to 8 processors, the execution time is divided by 3.68 so that
the speed up factor is the ratio 3.68/4≈0.92. Passing from 2 to 16 processors the speed
up factor is 0.81 and finally passing from 2 to 32 is 0.61. Note that the computational cost
of the algorithm proposed when the number of unknowns used is large is essentially due
to the cost of the first step, that is the cost of computing the entries of the matrix Ak,M.
The computational cost of the second step becomes negligible when the number of the
unknowns used increases.
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Example 4.2. The second experiment consists in the time harmonic scattering phenomenon
generated by an acoustically soft double cone (i.e.: χ(x)= 0, x∈ ∂Ω) when hit by a time
harmonic plane wave ui(x,t)= e−ıω∗tui

ω∗(x)= e−ıω∗teık∗x3 , where k∗ =(ω∗/c) is the wave
number. The double cone is an obstacle that can be easily represented in the cylindrical
coordinate system (r1,φ,x3) by the following formulae:

Ω={x=(r1cos(φ),r1sin(φ),x3)
T, 0≤ r1 < ξ(x3), (φ,x3)∈ [0,2π)×[−z∗ ,z∗]}, (4.7)

∂Ω={ x=(ξ(x3)cos(φ),ξ(x3)sin(φ),x3)
T, (φ,x3)∈ [0,2π)×[−z∗ ,z∗]}, (4.8)

where z∗ is a positive constant and

ξ(x3)=
1

2
(z∗−|x3|), −z∗≤ x3≤ z∗ . (4.9)

Remind that (r1,φ) are canonical polar coordinates in the (x1,x2) plane. Note that the
double cone given in (4.7) has center of mass in the origin and has the x3-axis as cylin-
drical symmetry axis. In the following experiment we choose z∗ =2 and we denote with
xξ(φ,x3) a point of the surface ∂Ω.

Let zr , zc, vr, vc be positive constants such that zc < zr ≤ z∗, vc ≤ vr , vc < zc, vr < zr the
surfaces ∂Ωc and ∂Ωr are chosen as done in (4.8) where we replace ξ respectively with ξc

and ξr given by the following formulae:

ξc(x3)=






1

2
(zc−|x3|) vc < |x3|≤ zc,

1

2

(
zc−

vc

2
− x2

3

2vc

)
|x3|≤vc,

(4.10)

ξr(x3)=






1

2
(zr−|x3|) vr < |x3|≤ zr ,

1

2

(
zr−

vr

2
− x2

3

2vr

)
|x3|≤vr .

(4.11)

We note that in this experiment we have chosen ui
ω∗(xξ(φ,x3))=exp(−ık∗x3), (φ,x3)∈

[0,2π)×[−z∗,z∗] so that we have explicit formulae for the coefficients of the field ui
ω∗(xξ)

in the basis Ŵ2
2,1/2((0,2π)×(−z∗,z∗)). Thank to these explicit formulae we can study how

we should increase the multi-resolution scale m∗, when the wave number k∗ increases,
that is when the ratio RT = 2z∗/(2π)/k∗ increases, to get a solution of the scattering
problem of quality approximately independent of k∗. Let us denote with gj,m,ν,j′,m′,ν′ , j =
−2,−1, m=0, ν=0, j=0,1, m=0,1,··· ,m∗, ν=0,1,··· ,2m−1, j′=−2,−1, m′=0, ν′=0, j′=0,1,
m′=0,1,··· ,m∗, ν′=0,1,··· ,2m′−1 the coefficients in the basis Ŵ2

2,1/2((0,2π)×(−z∗,z∗)) of

ui
ω∗(xξ), we have:

gj,m,ν,j′,m′,ν′ =
1√
2π

∫ 2π

0
dφψ̂2

j,m,ν,2,1/2

(
φ

2π

)

× 1√
2z∗

∫ z∗

−z∗
dx3 exp(−ık∗x3)ψ̂2

j′,m′,ν′,2,1/2

(
(x3+z∗)

2z∗

)
, (4.12)
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and let us denote with gQ
j,m,ν,j′,m′,ν′ the approximation of the coefficient gj,m,ν,j′,m′,ν′ ob-

tained computing numerically the integral (4.12) using in each variable the composite Q
points Gauss-Legendre quadrature rule (two subintervals in the support of the wavelet
functions are considered). Let I2,2,m∗ be the set defined in (3.23) and let ui

m∗(φ,x3), and
ui

Q,m∗(φ,x3) be the approximations of ui(xξ(φ,x3)) obtained summing the wavelet expan-

sion using the coefficients (4.12) and the coefficients gQ
j,m,ν,j′,m′,ν′ . Furthermore, let

xi,j =(ξ(x3,i)cos(φj),ξ(x3,i)cos(φj),x3,i)
T ∈R

3, i, j=1,2,··· ,15,

be a grid of points belonging to ∂Ω, with x3,i =−z∗+0.001+(2i−1)z∗/15, and φj =(2j−
1)π/15. We define the following two quantities:

ek,m∗ =
1

λ

√√√√
15

∑
i=1

15

∑
j=1

∣∣ui(xξ(φj,x3,i))−ui
m∗(φj,x3,i)

∣∣2
, (4.13)

wQ
k,m∗ =

1

λ

√√√√
15

∑
i=1

15

∑
j=1

∣∣ui(xξ(φj,x3,i))−ui
Q,m∗(φj,x3,i)

∣∣2
, (4.14)

where λ=
√

∑
15
i=1∑

15
j=1 |ui(xξ(φj,x3,i))|2.

We note that ek,m∗ measures how accurate is the wavelet expansion in the approxima-

tion of the incoming wave and wQ
k,m∗ measures the accuracy of the wavelet expansion as

a function of the quadrature rule used to compute the coefficients (4.12). The difference

|ek,m∗−wQ
k,m∗ | measures the error due to the use of the quadrature rule.

Table 3 shows from left to right the wave number k∗, the ratio RT, the number of
unknowns used J2,2,m∗ and the quantities ek,m∗ , w4

k,m∗ , w8
k,m∗ , w12

k,m∗ . Note that the choices

of J2,2,m∗ proposed in Table 3 guarantee that we have always ek,m∗ ≤5·10−2.
Table 3 makes possible to choose as a function of the ratio RT the quadrature formula

and the number of unknowns that must be used to compute a solution of the scattering
problem of quality approximately independent of RT. We consider adequate a quadra-
ture rule for the discretization of the boundary integral equation when ek,m∗ is of the same

order of magnitude of wQ
k,m∗ .

We note that when RT increases we must increase the number of the quadrature nodes
to get satisfactory approximations. In the experiments with large values of RT, in order to
avoid the use of quadrature rules with a large number of nodes, we could use asymptotic
expansions as RT goes to infinity of the integrals involved. The expansions when RT

goes to infinity correspond to the expansions when k∗ goes to infinity since the obstacle
considered is fixed.

To understand the behavior of the condition number of the matrix Ak,M, M=2, of the
linear system (3.27) when k increases we compute the Green’s function Φ̃(r)=eıkr/(4πr)
as a function of r, 0<r<rmax , where rmax is a sufficiently large positive constant (see (1.6))
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Table 3: Example 4.2: Analysis of the wavelet series expansion of the incoming field.

k∗ RT J2,2,m∗ ek,m∗ w4
k,m∗ w8

k,m∗ w12
k,m∗

π/2 0.5 256 2.31e-02 2.31e-02 2.31e-02 2.32e-02

π/2 0.5 1024 5.81e-03 5.82e-02 5.82e-02 5.82e-03

π 1 1024 2.31e-02 2.40e-02 2.31e-02 2.31e-02

π 1 4096 5.78e-03 8.45e-03 5.78e-03 5.78e-03

2π 2 4096 2.29e-02 2.28e-01 2.29e-02 2.29e-02

2π 2 16384 5.72e-03 2.36e-02 5.72e-03 5.72e-03

4π 4 16384 2.27e-02 8.18e-01 7.401e-02 2.27e-02

4π 4 65536 5.67e-03 8.15e-01 7.38e-02 5.67e-03

8π 8 65536 2.25e-02 1.13e+00 4.47e-01 5.38e-01

8π 8 262144 5.83e-03 1.13e+00 4.50e-01 5.36e-01

32π 32 262144 9.02e-02 1.23e+00 4.05e-01 3.14e-01

32π 32 1048576 2.31e-02 1.21e+00 4.01e-01 3.01e-01

via its expansion in the Haar’s wavelet basis. Note that the coefficients of this expansion
can be computed explicitly.

Table 4 shows the L1-condition numbers cG, cH computed with the IMSL DLFCCG
routine of the matrix Ak,2 obtained computing the matrix elements evaluating the appro-
priate integrals using the Green’s functions Φ(xξr

,xξc
) (see (4.10), (4.11) and recall that

Φ(xξr
,xξc

) = Φ̃(‖xξr
−xξc

‖)) or evaluating the same integrals using the expansion of the
Green’s function in the Haar basis respectively for two values of k, k=4π, 16π and three
value of J2,2,m∗ , J2,2,m∗ =256,1024,4096. Note that in this experiment we choose zr =2−ǫr ,
ǫr=0.01, zc=2−ǫc, ǫc=0.2, vr=vc=0.25. Indeed to keep the condition number small when
J2,2,m∗ increases we should decrease the parameters ǫc and vr , vc. Table 4 shows that the
condition numbers cH , that is the condition numbers relative to the matrix obtained inte-
grating the Haar expansion of the Green’s function, are smaller than the corresponding
condition numbers cH of the matrix obtained integrating directly the Green’s function.

Note that when J2,2,m∗ increases the corresponding condition number increases rapidly
since we take the value of vr , vc, ǫr, ǫc fixed. As said above in order to keep small the
condition number we should decrease these parameters. We do not do this to put in ev-
idence the fact that the evaluation of the matrix elements obtained integrating the Haar
expansion of the Green’s function generates matrices less sensible to the choices of the
remaining parameters.

After this first analysis we continue the study of the double cone example studying
how the method proposed approximates the solution of the time harmonic scattering
problem. We consider k∗=ω∗/c=2π, c=1 and we approximate the density vk appearing
in (1.5) relative to the solution of the scattering problem considered with the function
obtained truncating the series expansion (3.14) at s = S (S = 0 or S = 1) and solving the
linear systems (3.27), that is the linear systems (3.33) with the threshold τ=0. Remember
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Table 4: Example 4.2: Condition numbers.

k=4π, RT =8

J2,2,m∗ cG cH

256 1.955e+04 1.597e+04

1024 3.211e+09 2.715e+05

4096 1.21e+21 1.991e+06

k=16π, RT =32

J2,2,m∗ cG cH

256 1.571e+05 2.158e+04

1024 4.670e+10 4.013e+05

4096 1.236e+21 6.639e+06

that with these choices RT =4.
In this experiment and in the following ones we use as unknown the density vk mul-

tiplied by the function
√

gc(υ), υ∈ Ĩ2× Ĩ3 (see (3.12)). That is in (3.18) the function
√

gc(υ)
has been removed from the kernel (3.17) and has been considered included in the un-
known so that the linear systems (3.27) and (3.33) should be reinterpreted coherently
with this choice. This trick improves the accuracy of the approximate solution since it
acts as a kind of regularization of the integral equation.

We remind that the numerical approximation us
k,S,m∗,τ of us

k obtained with the numer-
ical method of Section 3 satisfies by construction the Helmholtz equation (1.1) and the
boundary condition at infinity (1.4). So that we must study only how us

k,S,m∗,τ satisfies the
boundary condition (1.2). Remind that in this experiment since ∂Ω2 = ∅ the boundary
condition (1.3) should not be considered. We define the following quantities:

V1 =

(∫

∂Ω1

ds(x)
∣∣g1,k(x)−us

k,S,m∗,τ(x)
∣∣2

)1/2

, (4.15)

V2 =

(∫

∂Ω1

ds|g1,k |2
)1/2

, ek,S,m∗,τ =
V1

V2
. (4.16)

Note that in the problem considered we have: g1,k(φ,x3)=−exp(−ık∗x3). The quantity
ek,S,m∗,τ defined in (4.16) is a measure of how well the numerical approximation us

k,S,m∗,τ of
us

k satisfies the boundary condition (1.2) on ∂Ω. In Table 5 from left to right we show the

value of m∗, the number of unknowns used J2,2,m∗ =22(m∗+2), the quantities ek,m∗ , ek,S,m∗,0

and the constants zc, zr , vc, vr . Table 5 shows the behavior of ek,S,m∗,0 as a function of the
number of unknowns used and of the order of the expansion S.

Table 5 shows that the correction due to the first order term of the perturbation expan-
sion makes the error ek,S,m∗,0 on the boundary condition of the same order of magnitude
of the error ek,m∗ , that is the error due to the representation formula of the datum via the
truncated wavelet expansion and this is very satisfactory since this is the best result that
can be obtained.

Example 4.3. The third experiment involves a simplified version of the “submarine” (see
Fig. 1(b)). The data of this obstacle are derived from the data shown in Fig. 1(a). The data
of Fig. 1(a) represent a United States Navy submarine of the Los Angeles class and are
available at the website: http://avalon.viewpoint.com/.
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Table 5: Example 4.2: Accuracy in satisfying the boundary condition on the double cone: perturbative approach.

m∗ 22(m∗+2) ek,m∗ ek,S,m∗,0 zc zr vc vr

S=0

0 16 9.662e-01 9.993e-01 1.5 2 0.5 0.5

1 64 8.406e-01 9.987e-01 1.7 2 0.5 0.5

2 256 3.241e-01 7.544e-01 1.9 2 0.5 0.5

3 1024 9.000e-02 7.102e-01 1.95 2 0.2 0.2

4 4096 2.593e-02 7.085e-01 1.975 2 0.1 0.1

S=1

0 16 9.662e-01 9.660e-01 1.5 2 0.5 0.5

1 64 8.406e-01 8.401e-01 1.7 2 0.5 0.5

2 256 3.241e-01 3.641e-01 1.9 2 0.5 0.5

3 1024 9.000e-02 1.201e-01 1.95 2 0.2 0.2

4 4096 2.593e-02 4.098e-02 1.975 2 0.1 0.1

The most natural coordinate system to represent this obstacle (see Fig. 1(a)) and to
build the associate operator expansion seems to be a cylindrical coordinate system with
cylindrical axis given by the symmetry axis of the main body of the submarine. However,
an analysis of the boundary of the submarine (see Fig. 1(a)) shows that the boundary of
the submarine is not representable with a single valued function in these cylindrical co-
ordinates. So that we have modified the original data shown in Fig. 1(a) to obtain the
data shown in Fig. 1(b), this last data set represents the so called simplified version of the
“submarine”. In the numerical experiments we have used as obstacle a scaled model of
the “submarine” of Fig. 1(b), that is the physical dimensions of the submarine are divided
by a factor 11.03 so that the maximum length of the real submarine that is 110.3meters in
the scaled model corresponds to 10 units (1 unit=11.03 meters). Coherently we have cho-
sen c=(1532.8/11.03)units/seconds, which corresponds to re-scaling the sound speed in
the sea water (i.e., sound speed in the sea water equal to 1532.8 meters/seconds) and we
have chosen the υ3 = x3 axis of the cylindrical coordinate system as the symmetry axis
of the main body of the submarine oriented with the positive direction going out of the
prow of the submarine. Due to the scale (1:11.03) and to the choice of the origin on the x3

axis, we have that the minimum and the maximum values reached by the boundary of
the simplified submarine on the υ3 = x3 axis are x3,min =−5units, x3,max = 5units respec-
tively. The remaining axes are chosen taking a dextrorse coordinate system in the plane
orthogonal to the υ3 = x3 axis. Moreover we have chosen ∂Ω1 =∂Ω, ∂Ω2 =∅, and

χ(x)=

{
0, x∈∂Ω and |x3−1.2|<1 or |x2

3−25|<0.5,
2, otherwise.

(4.17)

This choice of χ makes the obstacle “soft” in the “prow”, the “turret” and the “beams”,
that is we try to model the fact that the submarine is coated in the locations mainly re-
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sponsible for the scattering phenomenon. Let ξ be a function such that the boundary of
the simplified version of the submarine, that is the ∂Ω of this experiment, is given by

υ1 = ξ(υ), υ=(υ2,υ3)
T, υ2 =φ, υ3 = x3,

and
x=(ξ(υ)cos(υ2),ξ(υ)sin(υ2),υ3)

T, υ∈ [0,2π)×[−5,5].

Furthermore we choose Ĩ2× Ĩ3 =(0,2π]×[−5+ǫ1 ,5−ǫ1], Î2× Î3 =(0,2π]×[−5,5] with
0 < ǫ1 ≪ 1 and we choose ξc, ξr in such a way that ∂Ωc, ∂Ωr are “slimmer” versions in
the υ1 = r1 coordinate of ∂Ω. In other words, ξc(υ), υ ∈ Î2× Î3 and ξr(υ), υ ∈ Ĩ2× Ĩ3 are
suitable piecewise linear interpolations of ξ(υ)−ǫ1, υ ∈ Î2× Î3 and ξ(υ)−ǫ2, υ ∈ Ĩ2× Ĩ3,
with 0<ǫ2 <ǫ1≪1 respectively.

We consider the time dependent scattering problem (1.9)-(1.15), where the incident
wave ui is given by:

ui(x,t)=e
− 1

4ζ2 [(γ,x)−ct]2
=

ζ√
π

∫

R

e−ζ2ω2
e(

ıω
c [(γ,x)−ct])dω, (x,t)∈R

3×R, (4.18)

with ζ =0.25, γ=(0,0,−1)T and c=(1532.8/11.03)units/seconds.

Since ui is given by formula (4.18) similarly the scattered field us can be represented
by the following one-dimensional integral:

us(x,t)=
ζ√
π

∫

R

e−ζ2ω2
e−ıωtus

ω,γ(x)dω , (x,t)∈ (R
3\Ω)×R. (4.19)

Note that the integrals (3.37) and (3.38) reduce to the integrals (4.18) and (4.19) when we

choose w(ω) = ((2π)4ζ/
√

π)e−ζ2ω2
, ω ∈R, W(ω,α) = δ(α−γ) where δ(·) is the Dirac’s

delta on ∂B concentrated in α = γ. We approximate the integrals (4.18) and (4.19) with
the Gauss-Hermite quadrature rule. Note that even if the integral appearing in (4.18) can
be done explicitly it will be approximated using the Gauss-Hermite quadrature rule in
order to choose some parameters appearing in the rest of the computation. More pre-
cisely, in (1.16) we choose N2 = 1, α1 = γ and for i = 1,··· ,N1 we choose pi,1, ζωi, to be
the weights and the nodes of the Gauss-Hermite quadrature formula respectively. In the
experiment involving the incoming wave (4.18) we choose N1 =400 in (1.16). This choice
is based on a criterion similar to the one used in ( [6], p. 1835). The choice of ζ and of
the quadrature rule made implies that the ratios RT between the physical dimensions
of the obstacles (10units) and the wavelengths of the time harmonic waves used to ap-
proximate the wave packet (4.19) (contained in the interval 0.725units-6.346units) range
between 1.5 and 13. We start using 256 (complex) unknowns to solve the corresponding
time harmonic problem when RT = 10/6.34 ≈ 1.57 is at its minimum value and we use
4096 (complex) unknowns when RT reaches its maximum value RT = 10/0.725≈ 13.79.
Finally we choose S=1, τ =0.

Fig. 3 shows in the first column the incident wave and in the second column the wave
scattered by the simplified version of the submarine for three values of the time, that is:
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Figure 3: Time dependent scattering from the simplified version of the submarine.

t1 =−0.456, t2 =0.012, t3 =0.497. Fig. 3 shows that when the incident wave goes through
the obstacle the energy is irradiated essentially by the “turret” and by the “prow” and
then by the “beams” of the “stern”. Note that the energy irradiated by the “prow” when
hit by the incident wave corresponds initially to negative values of us (blue colour) (see
Fig. 3, t = t1). In fact the “prow” is coated and behaves as an acoustically soft obstacle.
The same happens with the “turret” (see Fig. 3, t = t2). On the contrary the part of the
simplified submarine placed between the “turret” and the “beams” has an impedance
χ equal to 2, that is almost acoustically hard, so that the energy irradiated when it is
hit by the incident wave corresponds initially to positive values of us (see Fig. 3, t = t2

red colour). Note that the energy irradiated by the “beams” of the “stern” is comparable
with the energy scattered by the “turret” or the “prow” of the submarine (see Fig. 3, t=t3).
This is due to the fact that the incident wave packet contains waves whose wavelengths
are comparable with the characteristic dimensions of the “beams”. In [1], Section IV is
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shown the scattering on the (simplified) submarine of an incident wave packet containing
harmonic waves whose wavelength is large compared with the characteristic dimension
of the “beams”. In this case the “beams” irradiate very little energy .

Example 4.4. The fourth experiment concerns the simplified version of the NASA space
shuttle (see Fig. 2(b)). The data of the NASA space shuttle are available in the website
http://avalon.viewpoint. com/.

As in the case of the submarine (see Fig. 1) the most natural coordinate system to
represent this obstacle and to build the operator expansion seems to be a cylindrical co-
ordinate system with cylindrical axis given by the symmetry axis of the main body of
the shuttle. However, the surface of the NASA space shuttle (see Fig. 2(a)) is not repre-
sentable with a single valued function in this coordinate system so that we have modified
the original data shown in Fig. 2(a) in order to fulfill the assumptions (3.1) and (3.2) and
we have obtained the data shown in Fig. 2(b), which is a simplified version of the NASA
space shuttle.

The reference surface ∂Ωr and the internal surface ∂Ωc have been obtained manipulat-
ing the original 3D model shown in Fig. 2(a) with a CAD program named Rhinoceros [30]
and exporting the data of the surfaces obtained as a file of type RAW, that is a file con-
taining the cartesian coordinates of the vertices of the triangles of a surface triangulation.
The points of the surfaces generated in this way have been interpolated using splines of
second or fourth order according with the number of vanishing moments M chosen in
the wavelet basis used.

In the numerical experiment we have considered a “scaled” model of the “shut-
tle”, that is the physical dimensions of the shuttle are expressed in units where 1unit =
(56.14/14) meters. The maximum length of the shuttle corresponds to 14units. The sound
speed in the air 331.45meters/seconds expressed in units/seconds is c=82.65units/seconds.
Finally, as done for the submarine we have chosen υ3 = x3, the axis of the cylindrical co-
ordinate system, to be the symmetry axis of the main body of the simplified shuttle. The
υ3 = x3 axis is oriented with the positive direction going out of the prow of the NASA
space shuttle. Due to the scale (1:(56.14/14)) and to the position of the origin on the x3

axis the minimum and the maximum values reached by the boundary of the simplified
shuttle on the x3 axis are x3,min =−7units, x3,max =7units respectively.

We choose ∂Ω1 = ∅, ∂Ω2 = ∂Ω and χ(x) = +∞, x ∈ ∂Ω2. We omit the expression of
the surfaces ξr and ξc since they are involved. These surfaces are “slimmer” versions
of the boundary of the obstacle in Fig. 2(b) obtained reducing the size of the obstacle
through a rescaling procedure but maintaining its proportions. In this experiment we
consider a time harmonic wave ui(x,t) = e−ıω∗teı(ω∗/c)(α∗,x), where α∗ = (0,0,−1)T and
ω∗/c =8π(unit)−1, that is the ratio RT is equal to 56. We have chosen m∗ =7, that is the
real dimension of the linear systems involved in the computation is 219×219(=524288×
524288), and truncation parameter τ =10−5.

Fig. 4 shows the results of the time harmonic scattering of the modified version of the
space shuttle when hit by the incoming wave. As in Fig. 3 the first column shows the
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Figure 4: Time harmonic scattering from the simplified version of the NASA space shuttle.

real part of the incident wave and the second column shows the real part of the scattered
wave. Note that since the simplified shuttle is an acoustically hard obstacle the field scat-
tered by the obstacle is of the same sign of the incoming field. Due to the large value of
RT the real part of the incoming wave presents narrow packets where the wave changes
from being positive to being negative compared to the dimension of the obstacle, so that
in each portion of space of the size of one packet around the simplified version of the
shuttle we can see a scattered field of positive and negative sign. In particular this phe-
nomenon is more evident in the “prow” and in the “tails” (see Fig. 4). Furthermore for
reason similar to those explained in the third experiment the choice of RT made in this
experiment is responsible for the fact that the “engine” and the “tail” scatter as much as
the prow of the shuttle.

In the website http://www.econ.univpm.it/recchioni/w12 we show some animations
and virtual reality applications relative to the numerical experience presented. More



1170 L. Fatone et al. / Commun. Comput. Phys., 2 (2007), pp. 1139-1173

general references to the work of the authors in scattering can be found in
http://www.econ.univpm.it/recchioni/scattering
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A Appendix

Lemma A.1. Let N =2 and Tm, m=0,1,··· be the following closed subspaces of L2((0,1)):

Tm =
{

f ∈L2((0,1)) | f (x)= pν , x∈ (νN−m,(ν+1)N−m),

pν ∈R,ν=0,1,··· ,Nm−1}, m=0,1,··· . (A.1)

Then we have:

T0⊂T1⊂T2⊂T3⊂ ··· , (A.2)

∩∞
m=0Tm = P1((0,1)) , (A.3)

∪∞
m=0Tm = L2((0,1)). (A.4)

Proof. Properties (A.2), (A.3) can be easily derived from (A.1). The proof of (A.4) follows
from the density of the piecewise constant functions in L2((0,1)) (see [25] Theorem 3.13
p. 84). This concludes the proof.

Note that for m=0,1,··· the fact that f (x)∈Tm implies that for ν=0,1,··· ,Nm−1 as a
function of x for x∈ (0,1) f̃ν,m(x)= f (Nm x−ν)∈T0.

Theorem A.1. Let N = 2, ψM
j,m,ν,N,ηN (x), x∈ (0,1), be the functions defined in (2.8). Then we

have ∫ 1

0
dxψM

j,m,ν,N,ηN(x)xp =0, p=0,1,··· ,M−1, (ν,m, j)∈Λ, (A.5)

where Λ is defined in (2.8b), and

∫ 1

0
dxψM

j,m,ν,N,ηN (x)ψM
j′,m′,ν′,N,ηN(x)=

{
0, m 6=m′ or ν 6=ν′ or j 6= j′,
1, m=m′ and ν=ν′ and j= j′,

(A.6a)

ν=0,1,··· ,Nm−1, ν′ =0,1,··· ,Nm′−1, m,m′=0,1,··· , j, j′ =0,1,··· ,M−1. (A.6b)

Proof. Property (A.5) follows from definition (2.8) and equation (2.6). The proof of (A.6)
follows from equation (2.7) when m=m′, ν=ν′ and j 6= j′ and from the fact that the sup-
ports of the functions ψM

j,m,ν,N,ηN and ψM
j′,m′,ν′,N,ηN are either disjoint sets or sets contained
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one into the other. In particular, when m = m′ and ν 6= ν′ the supports are disjoint and
when m 6= m′, let us suppose for example m > m′, the supports are either disjoint sets or
sets contained one into the other depending on the values of the indices ν and ν′. When
the supports are disjoint condition (A.6) is obvious, when the supports are contained
one into the other condition (A.6) follows from (A.5). Finally when m = m′, ν = ν′, j = j′

condition (A.6) follows from Eq. (2.7). This concludes the proof.

Theorem A.2. For N = 2, the set WM
N,ηN ((0,1)) defined in (2.9) is an orthonormal basis of

L2((0,1)).

Proof. The set WM
N,ηN ((0,1)) is an orthonormal set of functions such that for m = 0,1,···

the subspace Tm defined in (A.1) is contained in the subspace generated by WM
N,ηN ((0,1)).

Then from Lemma A.1 it follows that WM
N,ηN ((0,1)) is a basis of L2((0,1)). This concludes

the proof.

Let us denote with Cj((0,1)), j = 0,1,··· the space of the real continuous functions
defined on (0,1) with the first j-derivatives continuous. Let [0,1] be the closure of (0,1)
and let M1 be a non-negative integer we denote with CM1([0,1]×[0,1]) the space of the
real continuous functions defined on [0,1]×[0,1] M1-times continuously differentiable on
[0,1]×[0,1]. We have:

Lemma A.2. Let M≥1 be an integer, N =2 and WM
N,ηN((0,1)) be the set given in (2.9), and let

K(x,y), (x,y)∈ [0,1]×[0,1] be a real function such that:

K∈CM1([0,1]×[0,1]), M1≥M. (A.7)

Moreover, let αm,ν,j,m′,ν′,j′ be the following quantities:

αm,ν,j,m′,ν′,j′ =
∫ 1

0
dxψM

j,m,ν,N,ηN(x)
∫ 1

0
dyψM

j′ ,m′,ν′,N,ηN(y)K(x,y), (A.8)

where (m,m′,ν,ν′, j, j′) satisfy (A.6b). Then there exists a positive constant DM such that:

|αm,ν,j,m′,ν′,j′ |≤
DM

(
Nmax(m,m′)

)M+1
, (A.9)

where (m,m′,ν,ν′, j, j′) satisfy (A.6b).

Proof. The proof is analogous to the proof of Proposition 4.1 in [26], in fact condition (A.7)
implies that there exists a positive constant CM such that:

∣∣∣∣
∂M

∂xM
K(x,y)

∣∣∣∣+
∣∣∣∣

∂M

∂yM
K(x,y)

∣∣∣∣≤CM , (x,y)∈ [0,1]×[0,1]. (A.10)
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That is let N,j, j′, ν, ν′, m, m′ be as above and (x∗,y∗) be the center of mass of the set
(νN−m,(ν+1)N−m)×(ν′N−m′

,(ν′+1)N−m′
). We use the Taylor polynomial of f (y) =

K(x,y), y∈ [0,1] of degree M−1 and base point y = y∗ when m < m′ or the Taylor poly-
nomial of g(x) = K(x,y), x ∈ [0,1] with base point x = x∗, Eq. (A.5), assumption (A.10)
and take into account the fact that the functions ψM

j,m,ν,N,ηN and ψM
j′,m′,ν′,N,ηN have sup-

port in the sets (νN−m,(ν+1)N−m) and (ν′N−m′
,(ν′+1)N−m′

), respectively. Using the
remainder formula of the Taylor polynomial it is easy to see that the estimate (A.9) for
αm,ν,j,m′,ν′,j′ holds. Note that the constant DM depends on M, N, ηN , CM. This concludes
the proof.

Note that, as seen in Section 3, the estimate (A.9) is the basic property that together
with a simple truncation procedure makes the wavelet bases introduced useful to approx-
imate with sparse matrices the integral operators coming from the operator expansion
method.
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