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Abstract

The trace algebra Cnd over a field of characteristic 0 is generated by all traces
of products of d generic n× n matrices, n, d ≥ 2. Starting with the generating set of
C3d given by Abeasis and Pittaluga in 1989, we have shown that the minimal degree
of the set of defining relations of C3d is equal to 7 for any d ≥ 3. We have determined
all relations of minimal degree. For d = 3 we have also found the defining relations
of degree 8.
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Introduction. Let K be any field of characteristic 0 and let Xi =
(
x

(i)
pq

)
, p, q =

1, . . . , n, i = 1, . . . , d, be d generic n × n matrices. The pure (or commutative) trace
algebra Cnd is generated by all traces of products tr(Xi1 · · ·Xik) and coincides with the
algebra of invariants of the general linear group GLn = GLn(K) acting by simultaneous
conjugation on d matrices of size n×n. The algebra Cnd is finitely generated by traces
tr(Xi1 · · ·Xik) of degree k ≤ N . The exact value of N = N(n) is known for n ≤ 4 only.
Namely, N(2) = 3, N(3) = 6, and N(4) = 10. A description of the defining relations of
Cnd is given by the Razmyslov-Procesi theory [14,15] in the language of ideals of the
group algebras of symmetric groups. For a background on algebras of matrix invariants
see, e.g. [9,11] and for computation aspects of the theory see [8].

Explicit minimal sets of generators of Cnd and the defining relations between them
are found in few cases only. The picture is completely clear for n = 2 and any d, see
e.g. [9] for details. The only other case when the defining relations of Cnd are explicitly
given is n = 3, d = 2, see the comments below. For n = 3, d ≥ 3 and n ≥ 4 and d ≥ 2,
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nothing is known about the concrete form of the defining relations with respect to fixed
minimal systems of generators.

Teranishi [16] found a system of 11 generators of C32 and showed that C32 can
be defined by a single relation of degree 12. The explicit form of the relation was found
by Nakamoto [13], over Z, with respect to a slightly different system of generators.
Abeasis and Pittaluga [1] found a system of generators of C3d, for any d ≥ 2, in
terms of representation theory of the symmetric and general linear groups, in the spirit
of its usage in theory of PI-algebras. Aslaksen, Drensky and Sadikova [2] gave
the defining relation of C32 with respect to the set found in [1]. Their relation is much
simpler than that in [13]. For C42, a set of generators was found by Teranishi [16,17]
and a minimal set by Drensky and Sadikova [10], in terms of the approach in [1].
Djoković [6] gave another minimal set of 32 generators of C42 consisting of traces of
products only. He also found a minimal set of 173 generators of C52.

The determination of generators and defining relations is simpler, if one knows the
Hilbert (or Poincaré) series of the algebra. Again, the only completely understood case
is n = 2. The other cases, when the Hilbert series are explicitly given, are n = 3, d = 2
(Teranishi [16]) and d = 3 (Berele and Stembridge [5]), n = 4, d = 2 (Teranishi [17]
(with some typos) and corrected by Berele and Stembridge [5]). Recently Djoković [6]
has also calculated the Hilbert series of C52 and C62.

The minimal generating set of C3d given in [1] consists of

g = g(d) =
1

240
d(5d5 + 19d4 − 5d3 + 65d2 + 636)

homogeneous trace polynomials u1, . . . , ug of degree ≤ 6. Hence, C3d is isomorphic to
the factor algebra K[y1, . . . , yg]/I. Defining deg(yi) = deg(ui), the ideal I is homoge-
neous. For d = 3, the comparison of the Hilbert series of C33

∼= K[y1, . . . , yg]/I and
K[y1, . . . , yg] surprisingly gives that any homogeneous minimal system of generators
of the ideal I contains no elements of degree ≤ 6, three elements of degree 7 and 30
elements of degree 8. The purpose of the present paper is to find the defining relations
of minimal degree for C3d and any d ≥ 3 with respect to the generating set in [1]. It
has turned out that the minimal degree of the relations is equal to 7 for all d ≥ 3 and
there are a lot of relations of degree 7. (Compare with the single relation of degree 12
in the case d = 2.) The dimension of the vector space of relations of degree 7 is equal
to

r7 = r7(d) =
2
7!

(d + 1)d(d− 1)(d− 2)(41d3 − 86d2 + 114d− 360).

For d = 3 we have computed also the homogeneous relations of degree 8. The defining
relations are given in the language of representation theory of GLd. There is a simple
algorithm which gives the explicit form of all relations of degree 7, and of degree 8 for
d = 3. The proofs involve basic representation theory of GLd and develop further ideas
of [2,10] and our recent paper [3] combined with computer calculations with Maple. Our
methods are quite general and we believe that they can be successfully used for further
investigation of generic trace algebras and other algebras close to them.

The complete proofs of the paper will be published elsewhere. They are posted as
the preprint [4] at the preprint server of Cornell University.

1. Preliminaries. We fix n = 3 and d ≥ 3 and denote by X1, . . . , Xd the d generic
3×3 matrices. It is a standard trick to replace the generic matrices with generic traceless
matrices. We express Xi in the form

Xi =
1
3
tr(Xi)e + xi, i = 1, . . . , d,
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where e is the identity 3× 3 matrix and

(1) xi =

 x
(i)
11 x

(i)
12 x

(i)
13

x
(i)
21 x

(i)
22 x

(i)
23

x
(i)
31 x

(i)
32 −(x(i)

11 + x
(i)
22 )


is a generic traceless matrix. Then
(2) C = C3d

∼= K[tr(X1), . . . , tr(Xd)]⊗K C0,

where the algebra C0 is generated by the traces of products tr(xi1 · · ·xik), k ≤ 6. Hence,
the problem for defining relations of C can be replaced by a similar problem for C0.

Let C+
0 = ω(C0) be the augmentation ideal of C0. It consists of all trace polyno-

mials f(x1, . . . , xd) ∈ C0 without constant terms. Any minimal system of generators
of C0 lying in C+

0 forms a basis of the vector space C+
0 modulo (C+

0 )2. The algebra
C3d is Z-graded assuming that the trace tr(Xi1 · · ·Xik) is of degree k, and this grading
is inherited by C0. It has also a more precise Zd-multigrading counting the degree in
any Xi. The numbers g1, g2, . . . , g6 of elements of degree 1, 2, . . . , 6, respectively, in any
homogeneous minimal system of generators is an invariant of C3d. Any homogeneous
minimal system {f1, . . . , fh} of generators of C0 consists of g2, . . . , g6 elements of degree
2, . . . , 6. Hence,

C0
∼= K[z1, . . . , zh]/J,

with isomorphism defined by zj +J → fj , j = 1, . . . , h = g2 + · · ·+g6. If uj(z1, . . . , zh),
j = 1, . . . , r, is a system of generators of the ideal J , then

uj(f1, . . . , fh) = 0, j = 1, . . . , r,

is a system of defining relations of C0 with respect to the system of generators
{f1, . . . , fh}. We denote by rk the number of elements of degree k in such a system.
Clearly, rk is the dimension of the homogeneous component of degree k of the vector
space J/JK[z1, . . . , zh]+.

Now we summarize the necessary background on representation theory of GLd, see
[12] for general facts, and [7] for applications in the spirit of the problems considered
here. The irreducible polynomial representations of GLd are indexed by partitions
λ = (λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0. We denote by W (λ) = Wd(λ) the corresponding
irreducible GLd-module. The group GLd acts in the natural way on the d-dimensional
vector space K · x1 + · · · + K · xd and this action is extended diagonally on the free
associative algebra K〈x1, . . . , xd〉.

The module W (λ) ⊂ K〈x1, . . . , xd〉 is generated by a unique, up to a multiplicative
constant, homogeneous element wλ of degree λj with respect to xj , called the highest
weight vector of W (λ). If Wi, i = 1, . . . ,m, are m isomorphic copies of the GLd-module
W (λ) and wi ∈ Wi are highest weight vectors, then the highest weight vector of any
submodule W (λ) of the direct sum W1⊕ · · ·⊕Wm has the form ξ1w1 + · · ·+ ξmwm for
some ξi ∈ K. It is convenient to work with an explicit copy of W (λ) in K〈x1, . . . , xd〉
obtained in the following way. Let

sk(x1, . . . , xk) =
∑
σ∈Sk

sign(σ)xσ(1) · · ·xσ(k)

be the standard polynomial of degree k. (Clearly, s2(x1, x2) = x1x2−x2x1 = [x1, x2] is
the commutator of x1 and x2.) If the lengths of the columns of the diagram of λ are,
respectively, k1, . . . , kp, p = λ1, then
(3) wλ = wλ(x1, . . . , xk1) = sk1(x1, . . . , xk1) · · · skp(x1, . . . , xkp)
is the highest weight vector of a submodule W (λ) ⊂ K〈x1, . . . , xd〉.
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If W is a GLd-submodule or a factor module of K〈x1, . . . , xd〉, then W inherits
the Zd-grading of K〈x1, . . . , xd〉. Recall that the Hilbert series of W with respect to its
Zd-multigrading is defined as the formal power series

H(W, t1, . . . , td) =
∑
ki≥0

dim(W (k1,...,kd))tk1
1 · · · tkd

d

with coefficients equal to the dimensions of the homogeneous components W (k1,...,kd)

of degree (k1, . . . , kd). It plays the role of GLd-character of W : If
W ∼=

∑
λ

m(λ)W (λ),

then
H(W, t1, . . . , td) =

∑
λ

m(λ)Sλ(t1, . . . , td),

where Sλ = Sλ(t1, . . . , td) is the Schur function associated with λ, and the multiplicities
m(λ) are determined by H(W, t1, . . . , td).

The action of GLd on K〈x1, . . . , xd〉 is inherited by the algebras C3d and C0. Now
we discuss the approach of Abeasis and Pittaluga [1] for the special case n = 3. (Pay
attention that the partitions in [1] are given in “Francophone” way, i.e., transposed
to ours.) The algebra C3d has a system of generators of degree ≤ 6. Let Uk be the
subalgebra of C3d generated by all traces tr(Xi1 · · ·Xil) of degree l ≤ k. Clearly, Uk

is also a GLd-submodule of C3d. Let C
(k+1)
3d be the homogeneous component of degree

k+1 of C3d. Then the intersection Uk∩C
(k+1)
3d is a GLd-module and has a complement

Gk+1 in C
(k+1)
3d , which is the GLd-module of the “new” generators of degree k + 1.

We may assume that Gk+1 is a submodule of the GLd-module spanned by traces of
products tr(Xi1 · · ·Xik+1

) of degree k + 1. The GLd-module of the generators of C3d is
G = G1 ⊕G2 ⊕ · · · ⊕G6.

Proposition 1. (Abeasis and Pittaluga [1]) The GLd-module G of the generators
of C3d decomposes as

G = W (1)⊕W (2)⊕W (3)⊕W (13)⊕W (22)⊕W (2, 12)

⊕W (3, 12)⊕W (22, 1)⊕W (15)⊕W (32)⊕W (3, 13).
Each module W (λ) ⊂ G is generated by the “canonical” highest weight vector
tr(wλ(X1, . . . , Xd)), where wλ is given in (3).

2. The symmetric algebra of the generators. We consider the symmetric
algebra S = K[G2 ⊕ · · · ⊕ G6] of the GLd-module of the generators of the algebra
C0, with the grading and GLd-module structure induced by those of C0. The defining
relations of the algebra C0 are in the square of the augmentation ideal ω(S) of S.
Since we are interested in the defining relations of degree 7 for C0 for any d ≥ 3 and
of degree 8 for d = 3, we decompose the homogeneous components of degree 7 and 8
of the Hilbert series of the ideal ω2(S) into a sum of Schur functions. This gives the
decomposition of the homogeneous components of degree 7 and 8 of ω2(S) into a sum
of irreducible GLd-modules. Then we list those explicit generators of the irreducible
components which participate in the relations.

Proposition 2. The homogeneous components (ω2(S))(k) of degree k ≤ 7 of the
square ω2(S) of the augmentation ideal of the symmetric algebra of G2 ⊕ · · · ⊕ G6
decomposes as

(ω2(S))(4) = W (4)⊕W (22),
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(ω2(S))(5) = W (5)⊕W (4, 1)⊕W (3, 2)⊕W (3, 12)⊕W (2, 13),

(ω2(S))(6) = 2W (6)⊕ 3W (4, 2)⊕ 2W (4, 12)

⊕2W (3, 2, 1)⊕ 2W (3, 13)⊕ 3W (23)⊕W (22, 12)⊕W (2, 14),

(ω2(S))(7) = W (7)⊕W (6, 1)⊕ 3W (5, 2)⊕ 3W (5, 12)

⊕W (4, 3)⊕ 5W (4, 2, 1)⊕ 3W (4, 13)⊕ 3W (32, 1)⊕ 4W (3, 22)

⊕6W (3, 2, 12)⊕ 2W (3, 14)⊕ 2W (23, 1)⊕ 3W (22, 13)⊕ 2W (2, 15).
Proposition 3. The following elements of S = K[G2⊕· · ·⊕G6] are highest weight

vectors:
For λ = (4, 13):

w1 = (tr(s3(x1, x2, x3)(x1x4 + x4x1))− tr(s3(x1, x2, x4)(x1x3 + x3x1))

+tr(s3(x1, x3, x4)(x1x2 + x2x1)) + 3tr(s3(x2, x3, x4)x2
1))tr(x

2
1)

+5(−tr(s3(x1, x2, x3)x2
1)tr(x1x4)

+tr(s3(x1, x2, x4)x2
1)tr(x1x3)− tr(s3(x1, x3, x4)x2

1)tr(x1x2)),

w2 = (tr(s3(x1, x2, x3)x4)− tr(s3(x1, x2, x4)x3) + tr(s3(x1, x3, x4)x2)

+3tr(s3(x2, x3, x4)x1))tr(x3
1) + 4(−tr(s3(x1, x2, x3)x1)tr(x2

1x4)

+tr(s3(x1, x2, x4)x1)tr(x2
1x3)− tr(s3(x1, x3, x4)x1)tr(x2

1x2)),

w3 = (tr(s3(x2, x3, x4))tr(x2
1)− tr(s3(x1, x3, x4))tr(x1x2)

+tr(s3(x1, x2, x4))tr(x1x3)− tr(s3(x1, x2, x3))tr(x1x4))tr(x2
1).

For λ = (3, 22):

w1 =
∑
σ∈S3

sign(σ)tr(s3(x1, x2, x3)xσ(1)xσ(2))tr(x1xσ(3)),

w2 = tr(s3(x1, x2, x3)x1)tr(s3(x1, x2, x3)),

w3 = tr([x1, x2]2)tr(x1x
2
3) + tr([x1, x3]2)tr(x1x

2
2) + tr([x2, x3]2)tr(x3

1)

−tr([x1, x2][x1, x3])tr(x1(x2x3 + x3x2))

+2tr([x1, x2][x2, x3])tr(x2
1x3)− 2tr([x1, x3][x2, x3])tr(x2

1x2).

For λ = (3, 2, 12):
w1 = (tr(s3(x1, x2, x3)(x2x4 + x4x2))− tr(s3(x1, x2, x4)(x2x3 + x3x2))

+4tr(s3(x2, x3, x4)(x1x2 + x2x1)) + 2tr(s3(x1, x3, x4)x2
2))tr(x

2
1)

+(−tr(s3(x1, x2, x3)(x1x4 + x4x1)) + tr(s3(x1, x2, x4)(x1x3 + x3x1))

−6tr(s3(x1, x3, x4)(x1x2 + x2x1))− 8tr(s3(x2, x3, x4)x2
1))tr(x1x2)

+5(−tr(s3(x1, x2, x3)(x1x2 + x2x1))tr(x1x4)

+tr(s3(x1, x2, x4)(x1x2 + x2x1))tr(x1x3))
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+10(tr(s3(x1, x2, x3)x2
1)tr(x2x4)− tr(s3(x1, x2, x4)x2

1)tr(x2x3)

+tr(s3(x1, x3, x4)x2
1)tr(x

2
2)),

w3 = tr([x1, x2]2)tr(s3(x1, x3, x4))− tr([x1, x2][x1, x3])tr(s3(x1, x2, x4))

+tr([x1, x2][x1, x4])tr(s3(x1, x2, x3)),

w4 = −2tr(s3(x2, x3, x4)x2)tr(x3
1) + 2(tr(s3(x1, x3, x4)x2)

+tr(s3(x2, x3, x4)x1))tr(x2
1x2)− 2tr(s3(x1, x2, x4)x2)tr(x2

1x3)

+2tr(s3(x1, x2, x3)x2)tr(x2
1x4)− 2tr(s3(x1, x3, x4)x1)tr(x1x

2
2)

+tr(s3(x1, x2, x4)x1)tr(x1(x2x3 + x3x2))− tr(s3(x1, x2, x3)x1)tr(x1(x2x4 + x4x2)),

w6 = (tr(x2
1)tr(x

2
2)− tr(x1x2)2)tr(s3(x1, x3, x4))

+(−tr(x2
1)tr(x2x3) + tr(x1x2)tr(x1x3))tr(s3(x1, x2, x4))

+(tr(x2
1)tr(x2x4)− tr(x1x2)tr(x1x4))tr(s3(x1, x2, x3)).

For λ = (23, 1):
w1 = tr(s3(x2, x3, x4)[x2, x3])tr(x2

1)

−(tr(s3(x1, x3, x4)[x2, x3]) + tr(s3(x2, x3, x4)[x1, x3]))tr(x1x2)

+(tr(s3(x1, x2, x4)[x2, x3]) + tr(s3(x2, x3, x4)[x1, x2]))tr(x1x3)

−tr(s3(x1, x2, x3)[x2, x3])tr(x1x4) + tr(s3(x1, x3, x4)[x1, x3])tr(x2
2)

−(tr(s3(x1, x2, x4)[x1, x3]) + tr(s3(x1, x3, x4)[x1, x2]))tr(x2x3)

+tr(s3(x1, x2, x3)[x1, x3])tr(x2x4) + tr(s3(x1, x2, x4)[x1, x2])tr(x2
3)

−tr(s3(x1, x2, x3)[x1, x2])tr(x3x4),

w2 = (−3(tr(s3(x1, x2, x3)x4) + tr(s3(x2, x3, x4)x1)) + tr(s3(x1, x3, x4)x2)

+tr(s3(x2, x3, x4)x1))− tr(s3(x1, x2, x4)x3)

+tr(s3(x2, x3, x4)x1)))tr(s3(x1, x2, x3))

+4tr(s3(x1, x2, x3)x3)tr(s3(x1, x2, x4))

−4tr(s3(x1, x2, x3)x2)tr(s3(x1, x3, x4))

+4tr(s3(x1, x2, x3)x1)tr(s3(x2, x3, x4)).
For λ = (22, 13):

w2 =
∑
σ∈S5

∑
τ∈S2

sign(στ)tr(s3(xτ(1), xσ(1), xσ(2)))(tr(s3(xσ(3), xσ(4), xσ(5))xτ(2))

+
∑
σ∈S5

∑
τ∈S2

sign(στ)tr(s3(xτ(1), xσ(1), xσ(2)))(tr(s3(xτ(2), xσ(3), xσ(4))xσ(5)).

For λ = (2, 15):

w1 =
∑
σ∈S6

sign(σ)tr(s5(xσ(1), xσ(2), xσ(3), xσ(4), xσ(5)))tr(x1xσ(6)),
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w2 =
∑
σ∈S6

sign(σ)tr(s3(xσ(1), xσ(2), xσ(3))x1))tr(s3(xσ(4), xσ(5), xσ(6)))

+
∑
σ∈S6

sign(σ)tr(s3(x1, xσ(1), xσ(2))xσ(3)))tr(s3(xσ(4), xσ(5), xσ(6))).

The notation in the above proposition follows the complete version [4] of our paper.
Some of the partitions λ of 7 and some of the polynomials wi from [4] are not included
here because they do not appear in the statements of the main results.

For d = 3, the homogeneous component (ω2(S))(8) of degree 8 of the square ω2(S)
of the augmentation ideal of the symmetric algebra of G2 ⊕ · · · ⊕G6 decomposes as

(ω2(S))(8) = 2W3(8)⊕W3(7, 1)⊕ 4W3(6, 2)⊕ 3W3(6, 12)

⊕2W3(5, 3)⊕ 6W3(5, 2, 1)⊕ 4W3(42)⊕ 7W3(4, 3, 1)⊕ 9W3(4, 22)⊕ 4W3(32, 2).
We have found the corresponding highest weight vectors. For details we refer to the
complete version [4] of our paper. We finish the section with the following observa-
tion obtained comparing the Hilbert series of K[tr(X1), tr(X2), tr(X3)]⊗K C0 with the
Hilbert series of S.

Proposition 4. For d = 3, the algebra C0 has a minimal system of defining
relations with the property that the relations of degree 7 and 8 form GL3-modules
isomorphic, respectively, to W3(3, 22) and W3(4, 3, 1)⊕ 2W3(4, 22)⊕W3(32, 2).

3. Main results. Now we present the explicit defining relations of degree 7 of
the algebra C3d for any d ≥ 3 with respect to the generators of Abeasis and Pittaluga
[1]. As we already mentioned, by (2) it is sufficient to give the defining relations of the
algebra C0 generated by traces tr(xi1 · · ·xik) of products of the traceless matrices xi.
As in the previous section, we denote by S the symmetric algebra of the GLd-module
G2⊕· · ·⊕G6 of generators of C0 and call defining relations of C0 the expressions f = 0,
where f is an element of the kernel J of the natural homomorphisms S → C0.

Theorem 5. Let d ≥ 3. The algebra C0 does not have any defining relations of
degree ≤ 6. The GLd-module structure of the homogeneous defining relations of degree
7 of C0, i.e., of the component J (7) in S is

J (7) = Wd(4, 13)⊕Wd(3, 22)⊕Wd(3, 2, 12)⊕Wd(23, 1)⊕Wd(22, 13)⊕Wd(2, 15).
In the notation of Proposition 3, the defining relations of C0 which are highest weight
vectors are:
For λ = (4, 13):

12w1 − 15w2 − 20w3 = 0.

For λ = (3, 22):
2w1 − w2 + 2w3 = 0.

For λ = (3, 2, 12):
−6w1 + 10w3 − 15w4 + 40w6 = 0.

For λ = (23, 1):
12w1 + w2 = 0.

For λ = (22, 13):
w2 = 0.

For λ = (2, 15):
2w1 − 5w2 = 0.
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The idea of the proof is the same in all cases λ. Fixing a partition λ, we find a
basis {w1, . . . , wm} of the vector space of highest weight vectors in ω2(S). Then we
form the linear combination

w = ξ1w1 + · · ·+ ξmwm

and require that w(x1, . . . , xd) = 0 for the generic traceless matrices from (1). The
entries of w(x1, . . . , xd) are polynomials in the entries x

(i)
pq of xi with coefficients which

depend on the unknowns ξ1, . . . , ξm. In this way, we obtain a linear homogeneous system
with respect to ξ1, . . . , ξm. The solutions of the system give the defining relations.

For d = 3, Proposition 4 gives that the GLd-module structure of the homogeneous
component J (8) of degree 8 in S is

J (8) = W3(4, 3, 1)⊕ 2W3(4, 22)⊕W3(3, 22, 2)
and we have also found the explicit defining relations, see [4].
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Università di Palermo

Via Archirafi 34
90123 Palermo, Italia

e-mail: fbenanti@math.unipa.it

∗Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria
e-mail: drensky@math.bas.bg

110 F. Benanti, V. Drensky


