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Transient Behavior of a Population Dynamical Model
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The transient behavior of an ecosystem with N random interacting species in the presence
of a multiplicative noise is analyzed. The multiplicative noise mimics the interaction with
the environment. We investigate different asymptotic dynamical regimes and the role of the
external noise on the probability distribution of the local field.

§1. Introduction

Population dynamics attracted a lot of attention in recent years and became the
object of many studies as well by biologists as by physicists.1)–5) Tools developed
in the context of nonequilibrium statistical physics to analyze nonequilibrium non-
linear physical systems provide new insights and at the same time new approaches
to study biological systems. Biological population dynamics has many interesting,
and still not solved, problems such as pattern formation,6)–9) the role of the noise on
complex ecosystem behaviour, and the noise-induced effects, such as stochastic reso-
nance, noise delayed extinction, quasi periodic oscillations etc.10)–18) The dynamical
behavior of ecological systems of interacting species evolves towards the equilibrium
states through the long, slow and complex process of nonlinear relaxation, which is
strongly dependent on the random interaction between the species, the initial condi-
tions and the random interaction with environment. A good mathematical model to
analyze the dynamics of N biological species with spatially homogeneous densities
is the generalized Lotka-Volterra system with a Malthus-Verhulst modelization of
the self regulation mechanism, in the presence of a multiplicative noise.19)–21) By
neglecting the fluctuations of the local field we derive a quasi-stationary probability
of the populations. We obtain the asymptotic analytical expressions for different
nonlinear relaxation regimes, and we analyze the role of the multiplicative noise on
the probability distribution of the local field.

§2. The model and results

The dynamical evolution of our ecosystem composed of N interacting species in
a noisy environment and in the presence of an absorbing barrier is described by the
following Ito stochastic differential equation
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dxi(t) =




gi(xi(t)) +

∑
j �=i

Jijxj(t)


 dt +

√
εdwi


xi(t), i = 1, · · · , N, (2.1)

where xi(t) ≥ 0 is the population density of the ith species at time t and the function
gi(xi(t))

gi(xi(t)) =
(
α +

ε

2

)
− xi(t) (2.2)

describes the development of the ith species without interacting with other species.
In Eq. (2.1), α is the growth parameter, the interaction matrix Jij models the interac-
tion between different species (i �= j), and wi is the Wiener process whose increment
dwi satisfies the usual statistical properties 〈dwi(t)〉 = 0, and 〈dwi(t)dwj(t′)〉 =
δijδ(t − t′)dt. We consider a random asymmetric interaction matrix Jij , whose
elements are independently distributed according to a Gaussian distribution with
〈Jij〉 = 0, 〈JijJji〉 = 0 and σ2

j = J2/N . The term Jijxixj is the loss or the growth
rate of species i due to interaction with species j, when Jij < 0 or Jij > 0 respec-
tively. With this choice of interaction matrix our ecosystem contains 50% of prey-
predator interactions (Jij < 0 and Jij > 0), 25% competitive interactions (Jij < 0
and Jij < 0), and 25% symbiotic interactions (Jij < 0 and Jij > 0). We consider
all species equivalent so that the characteristic parameters of the ecosystem are in-
dependent of the species. The random interaction with the environment (climate,
disease, etc.) is taken into account by introducing a multiplicative noise in Eq. (2.1).
The solution of the dynamical equation (2.1) is given by

xi(t) =
xi(0)zi(t)

1 + xi(0)
∫ t
0 dt′zi(t′)

, (2.3)

where

zi(t) = eαt+
√

εwi(t)+
R t
0 dt′ηi(t

′) (2.4)

and

ηi(t) =
∑
j �=i

Jijxj(t) (2.5)

is the local field acting on the ith population and represents the influence of other
species on the differential growth rate. We note that the dynamical behavior of the
ith population depends on the time integral of the process zi(t) and the time integral
of the local field. For a large number of interacting species we can assume that the
local field ηi(t) is Gaussian with zero mean and variance σ2

ηi
= 〈η2

i 〉 = J2〈x2
i 〉.

As a consequence, in the absence of external multiplicative noise, from the fixed-
point equation xi(α − xi + ηi) = 0, the stationary probability distribution of the
populations is the sum of a truncated Gaussian distribution at xi = 0 (xi > 0
always) and a delta function for extinct species. The initial values of the populations
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xi(0) have also Gaussian distribution with mean value 〈xi(0)〉 = 1, and variance
σ2

x(0) = 0.01, 0.03, 0.05.
The interaction strength between the species J determines two different dy-

namical behaviors of the ecosystem. Above a critical value Jc = 1.1, the system
is unstable and at least one of the populations diverges. Below Jc the system is
stable and asymptotically reaches an equilibrium state. The equilibrium values of
the populations depend both on their initial values and on the interaction matrix.
If we consider a quenched random interaction matrix, the ecosystem has a great
number of equilibrium configurations, each one with its attraction basin. For an
interaction strength J = 1 and an intrinsic growth parameter α = 1 we obtain:
〈xi〉 = 1.4387, 〈x2

i 〉 = 4.514 and σ2
xi

= 2.44. These values agree with that obtained
from numerical simulation of Eq. (2.1). From the Fokker-Planck equation associated
to the Langevin equation (2.1)

∂

∂t
P (xi, t) = − ∂

∂xi

[
ε

2
∂

∂xi
x2

i −
(
α +

ε

2
− xi + ηi

)
xi

]
P (xi, t) (2.6)

we obtain a quasi stationary distribution by neglecting the fluctuations of the local
field in the asymptotic regime

dP (xi)
P (xi)

=
2
ε

[
α + ηi − xi − ε

2

] dxi

xi
(2.7)

that is

P (xi) = Nxi(0)exp
[
2
ε

((
α + ηi − ε

2

)
lnxi − xi

)]
Θ(xi), (2.8)

where the normalization factor is

Nxi(0) =
Pxi(0)e

2xi(0)

ε

xi(0)
2
ε
(α+ηi− ε

2
)
, (2.9)

and Θ is the Heaviside unit step function. Now we focus on the statistical properties
of the time integral of the ith population Xi(t)

Xi(t) =
∫ t

0
dt′xi(t′), (2.10)

in the asymptotic regime. From Eqs. (2.3) and (2.10) we have

Xi(t) = ln
[
1 + xi(0)

∫ t

0
dt′exp

[
αt′ +

√
εwi(t′) + ηi(t′)

]]
. (2.11)

We use the same approximation of the mean field interaction,19) and after differen-
tiating Eq. (2.11), we get the asymptotic solution of Xi(t) as

Xi(t) � ln
[
xi(o)e

√
εwmaxi (t)+ηmaxi(t)

∫ t

0
dt′eαt′

]
, (2.12)
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Fig. 1. The local and the cavity fields in the

absence of noise, ε = 0.

Fig. 2. The local and the cavity fields in the

presence of noise, ε = 0.1.

where wmaxi(t) = sup0<t′<tw(t′) and ηmaxi(t) = sup0<t′<tη(t′). Equation (2.12) is
valid for α ≥ 0, that is, when the system relaxes toward an equilibrium population
and at the critical point. After making the ensemble average, we obtain for the time
average of the ith population X̄i

〈
X̄i

〉 � 1
t

[
Nw

√
εt + ln t + 〈ln [ni(o)]〉

]
, α = 0, (2.13)

and 〈
X̄i

〉 � 1
t

[
Nw

√
εt + (α + Nη)t +

〈
ln

[
xi(o)

α

]〉]
, α > 0, (2.14)

where Nw and Nη are variables with a semi-Gaussian distribution19) and Nη must
be determined self-consistently from the variance of the local field (Eq. (2.5)). We
obtain, consistently with mean field approximation, the typical long time tail be-
havior (t−1/2) dependence, which characterizes nonlinear relaxation regimes when
α ≥ 0. When the system relaxes toward the absorbing barrier (α < 0), the time
average of the ith population

〈
X̄i

〉
is a functional of the local field and the Wiener

process. We have also analyzed the dynamics of the ecosystem when one species is
absent. Specifically, we considered the cavity field, which is the field acting on the
ith population when this population is absent. The probability distributions for both
local and cavity field have been obtained by simulations for a time t = 200 (a. u.)
in absence of external noise, and for different species. We found that the probability
distributions of the cavity fields differ substantially from those of local fields for the
same species, while in the presence of noise the two fields overlap (see Figs. 1 and
2).

This overlap is different for different species and depends on the variance of the
initial species distribution. This strange behavior, found for some populations, is
reminiscent of the phase-transition phenomenon, and it is related to the following
peculiarities of our dynamical system: (i) all the populations are positive; (ii) dif-
ferent initial conditions drive the ecosystem into different attraction basins; and (iii)
the complex structure of the attraction basins of our dynamical system. While, in
the presence of noise, all the populations seem to be equivalent from the dynamical
point of view, some populations, in the absence of external noise, have an asymptot-
ical dynamical behavior such that they significantly influence the dynamics of other
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species.

§3. Conclusions

We analyzed the nonlinear relaxation of an ecosystem composed of N interacting
species. We obtain the quasi-stationary probability distribution of the population
in the presence of multiplicative noise. By using an approximation of the integral
equation, which gives the stochastic evolution of the system, we obtained asymp-
totic behavior for different nonlinear relaxation regimes. We observe an interesting
phenomenon: the local and the cavity fields, whose probability distributions are
different in the absence of noise, coincide for some populations in the presence of
multiplicative noise. This phenomenon can be ascribed to the peculiarity of the
dynamical system (xi > 0, always), the influence of different initial conditions on
the asymptotic regime, and the complex structure of the attraction basins of our
ecosystem.
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