

Determination of absorption length of CO₂ and high power diode laser radiation for ordinary Portland cement

J. Lawrence¹, E.P. Johnston² and L. Li¹

¹Manufacturing Division, Department of Mechanical Engineering, University of Manchester Institute of Science and Technology (UMIST), Manchester, M60 1QD, UK.

²Laser Engineering Group, Department of Mechanical Engineering, University of Liverpool, Liverpool, L69 3GH, UK.

Correspondence

Dr. Jonathan Lawrence

Manufacturing Division,

Department of Mechanical Engineering,

University of Manchester Institute of Science and Technology (UMIST),

Manchester,

M60-1QD,

UK.

Tel: (+44) 161 236-3311

Fax: (+44) 161 200-3803

e-mail: j.lawrence@stud.umist.ac.uk

Abstract

The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for the

ordinary Portland cement (OPC) surface of concrete have been determined. By employing Beer-

Lambert's law the absorption lengths for concrete of CO₂ and a HPDL radiation were 470±22 μm and

177±15 μm respectively.

Keywords: laser; cement; absorption

PACS: 2.55.P; 42.70.H; 68.45.G

2

1. Introduction

The knowledge of how far a laser beam is absorbed by a material's surface is of fundamental interest, since the outcomes of many laser processing procedures are intrinsically influenced by this parameter. Indeed, such information is essential to scientists and engineers interested in the laser processing of concrete. To date, many studies have been carried out to investigate the laser processing of cement and concrete. Most of the research, however, has concentrated on the laser cutting of concrete and reinforced concrete using high power CO₂ lasers [1-3], the sealing/fixing radioactive contamination onto concrete surfaces [4-7] and the production of novel surfaces [8-10] by means of CO₂ laser glazing of the ordinary Portland cement (OPC) surface of the concrete. In all of these studies, however, spallation and excessive cracking and porosity formation were found to be major problems undermining the performance of the laser glazed region. In contrast, the treatment of the OPC surface of concrete using a high power diode laser (HPDL) has been shown to effect a glaze that does not suffer from spallation or display excessive cracking and porosity formation [11-13]. It is believed that the absorption length of the laser radiation for the OPC surface of the concrete has a significant influence on these observed differences in performance.

2. Experimental procedures

In this work a CO₂ laser (Rofin-Sinar) emitting at 10.6μm with a maximum output power of 1 kW and a HPDL (Diomed) emitting at 810±20nm with a maximum output power of 60 W were employed. The CO₂ laser beam was delivered to the work surface by focusing the beam through a 150 mm focal length KC1 lens to give a stable diverging beam. The HPDL beam was delivered to the work area by means of a 4 m long, 600 μm core diameter optical fibre, the end of which was connected to a 2:1 focusing lens assembly. In both instances the laser optics were protected by means of a coaxially blown Ar shield gas jet a rate of 5 l min⁻¹. Both lasers produced a multi-mode beam. The laser fluences were set such that no melting occurred. The absence of melting was verified by subjecting the irradiated areas to an X-ray diffraction (XRD) to ensure the OPC retained its crystallinity. In order to obtain results of a practical and useful nature the cement used in the experiments was the common 'as cast' OPC surface of concrete. In this case the OPC surface of the concrete had a thickness of 2.5 mm. For the purpose of experimental convenience the as-received concrete blocks

were sectioned into squares (120 x 120 x 20 mm) prior to laser treatment. The cement was treated with both lasers at room temperature and in normal atmospheric conditions.

3. Results and discussion

As one can see from figure 1 and figure 2, the ablation depth rate per shot, h, for the OPC surface of the concrete irradiated with both lasers was seen to exhibit a logarithmic dependence on the laser fluence, E. An optical profiling system (ProScan) was employed to determine the values of h for the various values of E. It is evident from both figure 1 and figure 2 that a threshold for discernible material removal exists, with the minimum required fluence being approximately 68 J cm⁻² for the CO_2 laser and approximately 135 J cm⁻² for the HPDL. Although this approach has been adopted previously to examine pulsed lasers (excimer) and shown to be sound [14], the technique has also been used to investigate continuous wave (CW) lasers [15]. Moreover, the distinct linearity of the data points further validates the use of this approach for the examination of CW lasers. It is important to note that this would assume a minimum conduction loss. However, concrete has relatively low thermal conductivity, thus it is reasonable to suppose the laser power densities used were high enough and the pulses short enough to minimise the thermal conduction loss.

Since the energy deposition profile will be governed by the optical absorption coefficient, α , then the depth of material removed per shot, h, is given by Beer-Lambert's law:

$$h = \frac{1}{\alpha} \ln \left(\frac{E}{E_{\star}} \right) \tag{1}$$

where, E_t , is the threshold value of the fluence at which significant material removal occurs and is defined as [14]

$$E_{t} = \frac{H + \rho C_{p} T_{d}}{\alpha (1 - R)} \tag{2}$$

Here, H is the latent heat of fusion, ρ the density, C_p the specific heat and R the reflectivity. T_d is some critical temperature at which rapid thermal degradation of the material occurs leading to the production of volatile fragments within the thermal time scale of the experiments. It is important to note that (1) takes no account of absorption of incident radiation by the plume of removed material and likely changes in the material's level of absorption as removal progresses. Nonetheless, as the

work of Andrew *et al.* [14] and Schmidt *et al.* [15] demonstrated, this simple form of the expression is quite adequate as a first approximation. By rearranging (1) in terms of the absorption length, $1/\alpha$, thus:

$$\frac{1}{\alpha} = \frac{h}{\ln\left(\frac{E}{E_{\star}}\right)} \tag{3}$$

then it is possible to determine the absorption length of both CO_2 and HPDL radiation into the OPC surface of the concrete. By introducing the ablation depth rate per shot, h, and the corresponding value of laser fluence, E, for each data point into (3) it was possible to calculate the average absorption length for each laser under the actual experimental conditions. These were found to be $1/\alpha=470\pm22~\mu m$ for the CO_2 laser and $1/\alpha=177\pm15~\mu m$ for the HPDL.

4. Conclusions

By employing Beer-Lambert's law, the laser beam absorption lengths of CO_2 and a high power diode laser (HPDL) radiation for concrete were determined. The absorption lengths for concrete of CO_2 and a HPDL radiation were $470\pm22~\mu m$ and $177\pm15~\mu m$ respectively. The principal factors that may influence the melt depth differences are arguably the absorption length and the actual absorptivity of the OPC surface of the concrete. But, absorptivity measurements made at room temperature using spectrometers suitable for each laser wavelength revealed that the OPC surface of the concrete absorbed around 75% of CO_2 laser radiation and around 69% of HPDL radiation. Thus, since these figures are similar, it is reasonable to assume that absorption length is the principal influence on the melt depth.

References

- 1. Sugita K, Mori M and Fujioka T 1986 Concrete Eng. 24 13
- 2. Hamasaki M 1987 *Proc. of The International Symposium on Laser Processing*, vol 68, (Bellingham: SPIE) pp 158-67
- 3. Yoshizawa H, Wignarajah S and Saito H 1989 Trans. Japan Welding Soc. 20 31-6
- 4. Li L, Modern P J and Steen W M 1992 *Proc. of LAMP '92: Science and Applications* (Osaka: High Temperature Society of Japan) 843-8
- Li L, Steen W M and Modern P J 1994 Proc. of ISLOE '93 (Singapore: National University of Singapore) 25-30
- 6. Li L, Steen W M, Modern P J and Spencer J T 1994 *Proc. of RECOD '94*, (Bellingham: SPIE) 24-8
- 7. Li L, Steen W M, Modern P J and Spencer J T 1994 *Proc. of EUROPTO '94: Laser Materials Processing and Machining* (Bellingham: SPIE) 84-95
- 8. Sugimoto K, Wignarajah S, Nagasi K and Yasu S 1991 *Proc. of ICALEO '90: Laser Materials Processing* (Orlando: Laser Institute of America) 302-12
- 9. Wignarajah S, Sugimoto K and Nagai K 1993 *Proc. of ICALEO '92: Laser Materials Processing* (Laser Institute of America, Orlando,) 383-93
- 10. Borodina T I, Valyano G E, Ibragimov N I, Pakhomov E P, Romanov A I, Smirnova L G and Khabibulaev P K 1995 *J. Phys. and Chem. of Mater. Treatment* **25** 541-6
- 11. Lawrence J and Li L 1999 High power diode laser surface glazing of concrete. Part I: Glaze formation mechanisms and characteristics, submitted to *J. Laser Applications*
- 12. Lawrence J and Li L 1999 High power diode laser surface glazing of concrete. Part II: Mechanical, chemical and physical properties, submitted to *J. Laser Applications*
- 13. Lawrence J and Li L 1999 *Proc. of ICALEO '99: Laser Materials Processing* (Orlando: Laser Institute of America)
- 14. Andrew J E, Dyer P E, Forster D and Key P H 1983 App. Phys. Lett. 43 717
- 15. Schmidt M J J, Li L and Spencer J T 1998 App. Surf. Sci. 138/139 378-84.

List of Figures

Figure 1. Removal rate per shot, h, as a function of CO_2 laser fluence, E.

Figure 2. Removal rate per shot, h, as a function of HPDL fluence, E.

Figure 1

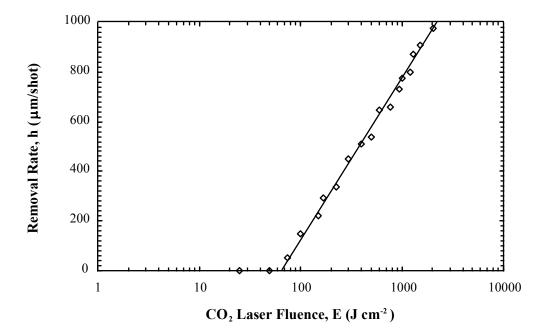
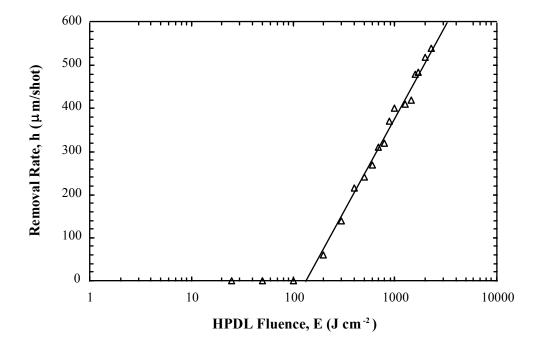



Figure 2

