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Abstract 

Nutritional research has recently shifted from alleviating nutrient deficiencies 
to chronic disease prevention. In this study activity of cactus pear fruit extract 
(CPFE) from Opuntia ficus-indica (L.) Mill. has been investigated in carrageenin-
induced pleurisy, a rat model of acute inflammation. In our experimental design rat 
pleurisy was achieved by the injection of 0.2 ml of λ-carrageenin in the pleural 
cavity. At selected time points, rats were sacrificed; cells recruited in pleura were 
counted and exudates collected to analyse inflammatory parameters such as NO, 
PGE2, IL-1β, TNF-α. CPFE (in the range between 5 and 20 g fresh fruit 
equivalent/kg), orally given 30 min before the injection, time- and dose-dependently 
reduced the exudate volume (up to 72%) and the number of leukocytes recruited in 
the pleural cavity (up to 96%), at 24 h. These anti-inflammatory effects were 
accompanied by an inhibited release of inflammatory mediators (PGE2, NO, IL-1β, 
TNF-α). Our in vivo findings unveil for the first time an anti-inflammatory potential 
for cactus pear fruit and suggest further investigations to propose cactus pear fruit 
as a functional food able to improve health, possibly by preventing inflammation-
based disorders. 
 
INTRODUCTION 

Age-related inflammation-based disorders such as cancer and cardiovascular 
disease are widely acknowledged to have a lower incidence among populations whose 
dietary habits include a large proportion of vegetal food, this providing various non-
nutrient secondary metabolites (phytochemicals) with purported beneficial activities 
(Halliwell et al., 2005; Virgili and Marino, 2008). Then, in spite of the wealth of 
published papers, the interest in investigating how these food components may contribute 
to prevent and/or delay the development of such chronic processes is far from fading.  

Inflammation is an adaptative response triggered by noxious stimuli and 
conditions, such as infection and tissue injury. At a very basic level, it involves 
recruitment of blood components, plasma and leukocytes, mainly neutrophils (PMN) to 
the site of infection or injury. This process is coordinated by a large range of biochemical 
mediators and results in the inflammatory exudate (Medzhitov, 2008). The acute phase of 
an inflammatory response successfully ends up in the elimination of the insult, followed 
by a resolution phase, mainly mediated by tissue-resident and recruited macrophages 
(MP). 

Reactive oxygen and nitrogen species (RONS) are now acknowledged to exert a 
key role in maintaining normal cellular and tissue physiology, however may start 
signalling pathways involved in the development of a wide range of inflammation-based 
degenerative pathologies including cardiovascular and neuro-degenerative diseases, 
cancer, and aging itself (Wickens, 2001; Koutsilieri et al., 2002; Closa and Folch-Puy, 
2004; Valko et al., 2006, 2007). RONS play a crucial role during the acute phase of the 
inflammatory response as they are i) released from PMN and MP in order to eliminate the 
pathogen at the site of inflammation, ii) involved in the synthesis of pro-inflammatory 
mediators such as prostaglandins (PG), nitric oxide, peroxynitrite, through both enzymatic 
and non-enzymatic free radical-catalysed reactions and iii) essential in the redox-
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dependent cell signalling of inflammatory cells (Basu, 2001). In this context, numerous 
phytochemicals with peculiar reducing properties that may effectively down-regulate the 
inflammatory response have recently been the object of research. First considered “health 
promoting” by virtue of their radical-scavenging activity and/or direct, antioxidant effects 
on cellular biomolecules, such compounds are now believed capable of interfering with 
the cell signal transduction by intercepting reactive species at the level of critical 
signalling pathways. In addition, interaction of these molecules with signalling enzymes, 
receptors and transcription factors has recently emerged (Leonarduzzi et al., 2001). Over 
the last ten years, nutritional studies on cactus pear fruit showed that its consumption 
positively affects the body’s redox balance, decreases oxidative damage to lipids, and 
improves antioxidant status in healthy humans. Along these lines, chemical investigations 
demonstrated that the fruit is a interesting holder of antioxidative compounds: ascorbic 
acid and betalains among the most significant. The antioxidative effects in humans, 
however, appear to be linked to antioxdant components other than vitamin C and possibly 
to indicaxanthin: a phytochemical with the chemical structure of betalamic acid, the 
yellow cultivar of the fruit is particular enriched of.  

A number of recent in vitro studies showed that indicaxanthin is a reducing and 
amphipathic molecule, able to penetrate cells and membranes and counteract oxidative 
damage (Butera et al., 2002; Tesoriere et al., 2003, 2005, 2006, 2007; Allegra et al., 2005; 
Liveri et al., 2007; Turco Liveri et al., 2009). In addition, it has been shown to act as a 
signalling molecule, being able to modulate specific redox-dependent pathways in 
cultured endothelial cells thus protecting them from dysfunction (Gentile et al., 2004). 
Remarkably, indicaxanthin is highly bioavailable in humans (Tesoriere et al., 2004) and 
does not appear to be metabolized neither during digestion, nor in liver (Khoo et al., 
2001). 

In this study we investigated the effects of the yellow cultivar of cactus pear fruit, 
orally given as an extract at nutritional relevant doses, in an in vivo model of acute 
inflammation: the carrageenin-induced rat pleurisy. This is widely accepted as a robust 
pharmacological model of inflammatory disease, used to test anti-inflammatory drugs (Di 
Rosa and Willoughby, 1971). A number of molecular markers of inflammation have been 
measured in order to ascertain the anti-inflammatoy potential of cactus pear fruit. 
 
MATERIALS AND METHODS 
 
Reagents 

λ-Carragenan (1% w/v) was dissolved in sterile phosphate buffer saline (PBS). 
Unless otherwise specified, all the other reagents were from Sigma-Aldrich Co.  
 
Purification of Cactus Pear Fruit Extract 

CPFE was obtained from cactus pear (Opuntia ficus-indica) fruits (yellow 
cultivar) as previously reported (Butera et al., 2002; Stintzing et al., 2002). Fractions 
containing the extract were submitted to cryo-dessiccation and suspended in PBS for the 
animal experiments.  
 
Animals 

Male Wistar rats (Harlan) weighing 175-200 g were used in all experiments. Rats 
were provided with food and water ad libitum. The light cycle was automatically 
controlled (on 7 am, off 7 pm) and the room temperature thermostatically regulated to 
22±1°C. Prior to the experiments rats were housed in these conditions for 3-4 days to 
become acclimatised. Animal care was in accordance with Italian and European 
regulations on the protection of rats used for experimental and other scientific purposes. 
 
Induction of Pleurisy and CPFE Treatment 

Induction of pleurisy was as previously described (Gilroy et al., 1999). Briefly, 
rats were slightly anaesthetised and 0.2 ml of 1% λ -carrageenin suspended in sterile 
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saline solution were injected into the right pleural cavity (control). Rats were killed 4, 24 
and 48 h later in an atmosphere of CO2. The exudate was harvested by washing each 
pleural cavity with 2 ml of sterile saline containing 5 U/ml heparin. Any exudate with 
blood contamination was discarded. Each sample was centrifuged at 800 g for 10 min and 
cell pellet re-suspended in saline. Total cell count was estimated after trypan blue staining 
using a Burker counting chamber, whereas differential cell count was determined in 
smears by May-Grunwald staining. In parallel, groups of rats received CPFE (5, 10, 20 
mg fresh fruit equivalent/kg) by oral gavage 30 min before carrageenin injection and 
every 8 h thereafter, up to 40 h, with control rats receiving saline alone. Rats were killed 
at 4, 24 and 48 h after carrageenin injection, and pleural exudates collected and processed 
as described above. Each experiment was carried out three times with groups of 10 rats. 
 
PGE2, TNF-α, IL-1β Determination 

Levels of PGE2, in the pleural exudates were measured using a 96-well based EIA 
kit from Cayman Chemicals (Inalco). Pro-inflammatory cytokines TNF-α, IL-1β were 
evaluated using an ELISA kit from eBioscience. 
 
NOx Determination 

The amount of oxidation products from nitrite (NOx) in the inflammatory exudate 
was measured as previously described (Thomsen et al., 1991). Briefly, after reducing 
NO3

- to NO2
- using acid-washed cadmiun powder, NO2

- was evaluated using a 
spectrophotometric assay based on the Griess reaction (Kim et al., 1995).  
 
Data Handling and Statistical Analysis 

Data are expressed as mean ± SEM of n rats. Comparisons were made using one-
way analysis of variance (ANOVA) followed by Bonferroni’s test. Time-course 
comparisons including time, dose and dose x time in the model, were tested by two-way 
ANOVA. Differences between doses at each time level were assessed by Bonferroni’s 
test (Instat-3 statistical software, GraphPad Software). 
 
RESULTS AND DISCUSSION 
 
CPFE Counteracts the Acute Phase of Carrageenin-Induced Rat Pleurisy 

The pleural cavity of untreated rats comparable with those used in this work 
contains no exudate and physiological amounts of leukocytes, predominantly 
mononuclear (>97%, Gilroy et al., 1999). Injection of 0.2 ml of λ-carrageenin into the 
pleural cavity of rats (control) produced a clear time-dependent inflammatory response, 
evident as increase of both the exudate volume and the number of leukocyte migrated into 
the pleural cavity. In line with previously reported data (Gilroy et al., 1999), an increase 
of these parameters was observed at 4 h, whereas the acute phase of inflammation peaked 
at 24 h. The inflammatory response was shutdown at 48 h (Fig. 1). Differential cell count 
of leukocytes migrated into the pleural cavity showed that PMN dominated the early 
phase (4 h) of the reaction (93% of PMN and 7% of monocytes, MC) and were replaced 
by MC (30% of PMN and 70% of MC) at 48 h (data not shown).  

With respect to control rats, oral administration of CPFE (20 g fresh fruit 
equivalent/kg) 30 min before carrageenin injection, and then for 48 h, at 8 h time 
intervals, significantly decreased the inflammatory response at all the time points 
considered (4-24-48 h), with inhibition of both the exudate volume and the total leukocyte 
number. The inhibitory effect at the peak of the inflammatory response accounted for 
more than 70 and 92%, for the exudate volume and leukocyte number, respectively, and 
appeared greater than the inhibitory effects observed at 4 and 48 h (Fig. 1). 

Carrageenin-treated rats were administered CPFE (5 to 20 g fresh fruit 
equivalent/kg) (Fig. 2). With respect to control, both the exudate volume (Fig. 2A) and 
the pleural leukocyte number (Fig. 2B) decreased significantly at 5 g fresh fruit 
equivalent/kg, with the maximum effect at 20 mol/kg (70 and 95% inhibition of the 
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exudate volume and pleural cell number, respectively). In parallel experiments 
carrageenin-treated rats were given indometacin as a reference anti-inflammatory drug 
(Gilroy et al., 1999), and the effect compared with rats administered CPFE at 20 g fresh 
fruit equivalent/kg. The extract exhibited the same effectiveness as indometacin at 
reducing the exudate volume (n=30; p=0.25, Student’s t test), and was even more 
effective at inhibiting the cell recruitment into the pleural cavity (n=30; p<0.0001, 
Student’s t test). 
 
CPFE Inhibits the Release of Pro-Inflammatory Mediators during Carrageenin-
Induced Rat Pleurisy 

The release into the pleural cavity of a panel of pro-inflammatory soluble 
mediators supporting the acute phase of the inflammatory response (i.e., PGE2, NOx, IL1-
β and TNF-α) was then evaluated either in the absence or in the presence of CPFE 
supplementation. The injection of 0.2 ml of λ-carrageenin into the pleural cavity of rats 
caused a release of PGE2, NOx, IL1-β and TNF-α at 24 h. Inflammatory mediators are not 
detectable in rats before injection (32). Oral administration of CPFE (5 to 20 g fresh fruit 
equivalent/kg) dose-dependently decreased the release of all mediators (Fig. 3).  
 
CONCLUSIONS 

This study demonstrates remarkable pharmacological effects exerted by CPFE in 
an in vivo model of inflammatory condition and establishes for the first time a health-
promoting potential for cactus pear fruit, orally administered at nutritionally relevant 
doses.  
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Fig. 1. Effect of CPFE on the time-course of exudate formation (A) and leukocyte 

infiltration (B) in carrageenin-induced rat pleurisy. Each point is the mean ± SEM, 
n=30 (10 rats in three separate experiments). Dose differences at each time level 
were assessed by Bonferroni’s (test; ns = non-significant; *P=0.0169; 
***P<0.0001. Carr: carrageenin). 

 
 
 
 

  
 
 
Fig. 2. Exudate volume (A) and leukocyte infiltration (B) at 24 h in carrageenin-treated 

rats administered CPFE, 5-20 g fresh fruit equivalent/kg. Each point is the mean ± 
SEM, n=30 (10 rats in three separate experiments). Labeled means without a 
common letter differ, P<0.05. 
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Fig. 3. Release of pro-inflammatory mediators NOx (A), PGE2 (B), TNF-α (C), IL-1β (D) 

at 24 h in carrageenin-treated rats administered CPFE, 5-20 g fresh fruit 
equivalent/kg. Each point is the mean ± SEM, n=30 (10 rats in three separate 
experiments). Labeled means without a common letter differ, P<0.05. 
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