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Multi-phase epidemic model by a Markov chain
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Abstract

In this paper we propose a continuous-time Markov chain to describe the spread of an infective and non-mortal disease into a
community numerically limited and subjected to an external infection. We make a numerical simulation that shows tendencies for
recurring epidemic outbreaks and for fade-out or extinction of the infection.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the last years, a remarkable role in the study of infectious diseases has been played by the use of mathematical
models to understand the interplay among various factors that determine the epidemiological process, the disease
evolution and the transmission dynamics into a population. The construction of more realistic models has proceeded
along two paths, one deterministic and the other stochastic. The deterministic models give information about
thresholds, bifurcations and equilibrium phenomenon; the stochastic models play an important role in questions of
recurrence and extinction of infections and consider all factors that can profoundly influence the epidemiological state
into a population. These models, moreover, provide a method for the characterization of mean probabilistic aspects of
diseases such as, for example, the mean value of the infected number.

Recent continuous-time and discrete-time deterministic and stochastic models can be found in Refs. [1,2,8,11–14].
In particular in Ref. [8] the authors consider a deterministic staged-progression model in which infected individuals
sequentially pass through a series of stages and derive explicit formulas for reproductive numbers and the endemic
steady states.

Statistical data on influenza [3,6], show tendencies for recurring epidemic outbreaks and for fade-out or extinction
of the infection (see Figs. 1 and 2). The mechanisms that cause this behaviour, that is one of most important
epidemiological aspect, cannot be satisfactorily described by probabilistic indicator as the mean value, the variance or
the invariant measure for a stochastic equation. There is a need therefore to search for an appropriate model.

The aim of this paper is to suggest a suitable probabilistic model to show this behaviour and to present a numerical
result. The model proposed is a continuous-time Markov chain to describe the spread of an infective and non-mortal
disease into a community numerically limited and subjected to an external infection.
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Fig. 1. From European Influenza Surveillance Scheme (EISS): Case reports of influenza in Italy during the season 1996–2006.

Fig. 2. From European Influenza Surveillance Scheme (EISS): Case reports of influenza in Italy during the season 2006–2007.

We consider a staged-progression model (like in Ref. [8]) in which the characteristic course of the illness is
described by a division of its evolution into several phases that we indicate with E1, . . . , Em : the first phase
can correspond to the incubation period and the last one to the immune period. With E0 we indicate the
“healthy–susceptible” phase. To simplify we suppose that the path of the illness is uniquely

E0 → E1 → E2 → · · · → Em → E0 (1)

and we calculate the transition rate among the various phases considering the external contact rate ε, the contact rate
β j at the phase E j and the average duration µ j of permanence of an individual at the phase E j ( j = 0, . . . , m).

The external contact rate, ε, takes into account that, the transmission of the disease, besides occurring primarily
from person to person, both belonging to the target population, can be also be caused by contacts with external
reservoirs of infections, with which the susceptible subjects interact when traveling, leading to the phenomenon of
“travel-induced” diseases. In this work we suppose that ε is a positive constant.

The average duration of disease, µ j , and the contact rates, β j , vary in relation to the disease considered. For
example, in the influenza case, adults can spread it from the day before getting symptoms to approximately 5 days
after symptoms start; while children can spread influenza for 10 or more days.

The model so obtained reproduces the effect of the individual course of the illness on the collective course. For
its generality, moreover, it can be applied in order to analyze several diseases by considering the number of phases
and the values of parameters suitable to the illness considered. We present numerical simulations that describe the
spread of a disease in a population of size N corresponding to m infection phases. The results confirm the epidemic
behaviour characterized by recurring epidemic outbreaks and a long period of fade-out or extinction of the infection.
This proves the possibility for developing the program and applying it to interesting epidemiological cases.

2. Model formulation

In this section we define the epidemic states of a population and the Markov chain that serves as a model in this
paper, by stating the transition rates that the model is based on. Through this paper, Ω denotes a probability space, A
a σ -algebra on Ω and P a probability measure.
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We consider the diffusion, during a short time period, of an infective disease into a closed population of size N and
it is assumed that there are no deaths caused by the disease. We suppose that the path of disease is as in (1).

We denote with I j (t), j = 0, 1, . . . , m, the number of individuals that are in the phase E j at time t . So we have

m∑
j=0

I j (t) = N .

The epidemic state (I0(t), I1(t), . . . , Im(t)) of population at time t can be described by

J (t) = (I1(t), . . . , Im(t)), (2)

so, we have

I0(t) = N −

m∑
j=1

I j (t). (3)

We define the set

Qm,N =

{
κ = (k1, . . . , km) ∈ {0, 1, . . . , N }

m
∣∣ m∑

j=1

k j ≤ N

}
. (4)

J (t) takes values in Qm,N and the evolution of epidemic state of population is given by the paths of J (t) into the set
Qm,N .

The cardinality νm(N ) of Qm,N is equal to the number of partitions of N indistinguishable individuals into m + 1
classes and it is equal to

νm(N ) =
1

m!

m∏
p=1

(N + p). (5)

Now, we define the transition rates and for easiness we suppose that the transition among the various phases of
disease is regulated by exponential law so that it does not depend on the past.

Moreover we assume that the transition of an individual from a phase E j ( j = 1, . . . , m) to the next phase and the
transmission of the disease from an infected individual or external sources are independent events.

We let µ j denote the average duration of an individual at the phase E j ( j = 1, . . . , m), so 1
µ j

is the parameter of
exponential distribution of the duration of an individual at the phase E j . More precisely if we denote with s(t) the
phase of the disease of an individual at the time t , we have

P({s(t ′) = E j , ∀t ′ ∈ [t0, t[| s(t0) = E j }) = e
−

t−t0
µ j , t ≥ t0. (6)

By using (6) the probability that there is a variation of δ individuals at the phase E j , ( j = 2, . . . , m), during [t, t +∆t]
is ∑

u−v=δ

(
I j−1(t)

u

)(
1 − e

−∆t
µ j−1

)u (
e

−∆t
µ j−1

)I j−1(t)−u (I j (t)
v

)(
1 − e

−∆t
µ j

)v (
e

−∆t
µ j

)I j (t)−v

. (7)

Furthermore, we suppose that at time t0 the individual σ1 be let into the phase E j and the individual σ2 be let into the
phase E0, then at time τ(1→2) in which σ1 infects σ2 we have

P({τ(1→2) ≥ t |s1(t
′) = E j , s2(t

′) = E0, ∀t ′ ∈ [t0, τ(1→2)[}) = e−β j (t−t0), (8)

where si (t) is the phase of disease of the individual σi (i = 1, 2) at time t and β j is the contact rate at the phase E j .
We suppose that an individual at the phase E0 is infected by external sources at time τ with probability

1 − e−ετ , (9)

where ε is the external contact rate.
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By using (8) and (9), the probability that there are “u” new individuals at the phase E1, during [t, t + ∆t] is(
I0(t)

u

)(
1 − e−ε∆t

m∏
j=1

e−β j I j (t)∆t

)u (
e−ε∆t

m∏
j=1

e−β j I j (t)∆t

)I0(t)−u

. (10)

We denote with κ = (k1, . . . , km), κ ′
= (k′

1, . . . , k′
m) two elements of Qm,N , and we set

ϕ(∆t; κ, κ ′) = P{J (t + ∆t) = κ ′
|J (t) = κ} − δκ ′κ , κ, κ ′

∈ Qm,N , (11)

where

δκ ′κ = 1 if κ ′
= κ, δκ ′κ = 0 if κ ′

6= κ.

To calculate transition rates we have to compute

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′)

and we have to examine two cases: κ 6= κ ′ and κ = κ ′.
If we take into account the number of individuals changing phase during [t, t +∆t], we can introduce the following

events:

B0,∆t = {no individual changes phase during [t, t + ∆t]};

B1,∆t = {only one individual changes phase during [t, t + ∆t]};

B2,∆t = {two or more individuals change phase during [t, t + ∆t]}.

Note that B0,∆t , B1,∆t , B2,∆t are two by two disjoint sets and they cover all events

B0,∆t ∩ B1,∆t = B0,∆t ∩ B2,∆t = B1,∆t ∩ B2,∆t = ∅ B0,∆t ∪ B1,∆t ∪ B2,∆t = Ω

and, by virtue of (6)–(10), we have

lim
∆t→0

1
∆t

P{B2,∆t } = 0. (12)

Now, if κ 6= κ ′ we have:

(a1) k′

j = k j − 1, k′

j+1 = k j+1 + 1, k′

l = kl where l 6= j and where l 6= j + 1;

(a2) k′

j = k j where j = 1, 2, . . . , m − 1, k′
m = km − 1;

(a3) k′

1 = k1 + 1, k′

j = k j where j = 2, . . . , m;

(a4) κ ′
6= κ and any previous condition holds.

We observe that

{J (t + ∆t) = κ ′
|J (t) = κ} ∩ B0,∆t = ∅, δκ ′κ = 0

and by (11) we obtain

ϕ(∆t; κ, κ ′) = P({J (t + ∆t) = κ ′
|J (t) = κ} ∩ B1,∆t ) + P({J (t + ∆t) = κ ′

|J (t) = κ} ∩ B2,∆t ).

In the (a1) case, by using (12)

ϕ(∆t; κ, κ ′) = P({J (t + ∆t) = κ ′
|J (t) = κ} ∩ B1,∆t ) = k j (1 − e

−
∆t
µ j )

and

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′) =
k j

µ j
. (13)
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In the (a2) and (a3) cases we obtain

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′) =
km

µm
, (14)

and

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′) =

(
ε +

m∑
j=1

β j k j

)(
N −

m∑
j=1

k j

)
(15)

respectively.
Finally in the (a4) case we observe that if J (t) = κ and if there is only one individual changing phase during

[t, t + ∆t], the state κ ′
= J (t + ∆t) must satisfy only one of the (a1), (a2), (a3) cases. While, if κ ′

6= κ and the (a1),
(a2), (a3) cases do not hold we have

{J (t + ∆t) = κ ′
|J (t) = κ} ∩ B0,∆t = {J (t + ∆t) = κ ′

|J (t) = κ} ∩ B1,∆t = ∅

and, by using (11) and (12) we have

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′) = 0. (16)

Now, if κ = κ ′, using total probability theorem we deduce that

lim
∆t→0

1
∆t

ϕ(∆t; κ, κ ′) = −

(
ε +

m∑
j=1

β j k j

)(
N −

m∑
j=1

k j

)
−

m∑
j=1

k j

µ j
. (17)

3. Markov chain

By virtue of (13)–(17) we can affirm that the random variable J (t) is a continuous-time Markov chain (about
continuous-time Markov chain see Ref. [7]) which takes values in Qm,N . The family of transition matrix is given by

e(t−s)B, 0 ≤ s ≤ t,

where B is a square matrix νm(N ) × νm(N ),

B = (bκ ′κ)κ ′κ∈Qm,N .

Elements bκ ′ κ are so defined that the considerations on transition rates which are calculated in previous section are
confirmed. An element

κ = (k1, k2, . . . , km) ∈ Qm,N

is fixed and if κ ′
∈ Qm,N , we set

bκ ′κ =

(
ε +

m∑
j=1

β j k j

)(
N −

m∑
j=1

k j

)
if κ ′

= (k1 + 1, k2, . . . , km), (18)

bκ ′κ =
k j

µ j
if κ ′

= (k1, . . . , k j−1, k j − 1, k j+1 + 1, k j+2, . . . , km), (19)

bκ ′κ =
km

µm
if κ ′

= (k1, . . . , km−1, km − 1), (20)

bκ ′κ = −

(
ε +

m∑
j=1

β j k j

)(
N −

m∑
j=1

k j

)
−

m∑
j=1

k j

µ j
if κ ′

= κ, (21)

bκ ′κ = 0 otherwise. (22)
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Let J (0) = J0 be the random variable in Qm,N which represents the epidemic state of population at time t = 0. To
represent the laws of J (0) and of J (t) by vectors we set

Sνm (N ) =

{
v = (v1, . . . , vνm (N )) ∈ Rνm (N )

|vq ≥ 0, q = 1, . . . , νm(N ),

νm (N )∑
i=1

vq = 1

}
.

Let v(0) ∈ Sνm (N ) be the vector that represents the law of J (0). The vector v(t) that represents the law of J (t) is
defined as

v(t) = et Bv(0) (23)

and, by using (18)–(22), we obtain that v(t) ∈ Sνm (N ). We have

v(t) = e(t−s)Bv(s), 0 ≤ s ≤ t

and moreover

lim
∆t→0

1
∆t

(v(t + ∆t) − v(t)) =
d
dt

v(t) = Bv(t). (24)

For all v(0), when t goes to +∞, the vector v(t) converges to invariant law v̄ = (v̄1, . . . , v̄νm (N )) ∈ Sνm (N ); the
uniqueness of the invariant law v̄ follows by positivity of coefficients ε and 1

µ j
. Moreover we have v̄q > 0 for

q = 1, . . . , νm(N ), so, if J̄ is a random variable having the law v̄, then for all κ ∈ Qm,N we have P{ J̄ = κ} > 0.

4. Numerical simulation

By the numerical point of view, the vector v(t) defined in (23) supply all information about the epidemiological
state of the population. To describe the most important aspect, namely the possibility to reproduce the epidemic
behaviour characterized by recurring epidemic outbreaks and for long period of fade-out or extinction of the infection,
it needs to use numerical programs able to reproduce stochastic situations.

Our numerical simulation has been made using Matlab and shows the possibility to develop this program and to
apply it to interesting cases from an epidemiological point of view. By using a time-discretization, the continuous-time
Markov chain J (t) must be replaced from discrete-time Markov chain J1(t)

t = 0, α, 2α, . . . , nα, . . . .

If we consider α sufficiently small so that

P(B2,α) � P(B1,α),

the transition matrix of the Markov chain can be approximated by R = αB + I where B = (bκ ′κ) is the matrix defined
in (18)–(22). In the numerical simulation we redefine the unit time to be α = 1.

We assume that there are m epidemic phases. To label the states κ = (k1, . . . , km) ∈ Qm,N with 1, 2, . . . νm(N )

we use the function

Λ((k1, . . . , km)) = 1 +

m∑
p=1

1
p!

(
p∏

q=1

(
N + q −

m−p∑
j=1

k j

)
−

p∏
q=1

(
N + q −

m−p+1∑
j=1

k j

))
.

It is easy to verify that Λ(·) is a one-to-one correspondence between the state space Qm,N and the set {1, . . . , νm(N )}.
The numerical simulation reproduces the epidemic behaviour and can be applied in order to analyze several

diseases within a numerically limited community, naturally by considering the number of phases and the values of the
parameters suitable to the illness considered.

Model parameters can be estimated from available demographic and epidemiological data. For example, in the
influenza case, the average duration of infection and distribution of infectious period can be estimated from the
European Influenza Surveillance Scheme (EISS) [6] or from the Centers for Disease Control (CDC) [3].

We assume that the contact rates βi (i = i, . . . , m) and the external contact rate ε depend on the structure and
size of the population being considered, in particular they are inversely proportional to the population size (see, for
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Fig. 3. Evolution in the time of infective individuals within a population of size N = 60 when m = 3 and β1 = β2 = 5.6 × 10−3, β3 = 0,
ε = 3.47 × 10−4, µ1 = µ2 = 2.26 days, µ3 = 11.31 days.

Fig. 4. Evolution in the time of infective individuals within a population of size N = 40 when m = 4 and β1 = β2 = β3 = 8.7 × 10−3, β4 = 0,
ε = 5.2 × 10−4, µ1 = µ2 = µ3 = 1.49 days, µ4 = 7.49 days.

instance, Ref. [5]). This is natural because they depend on the probability that an encounter between susceptible and
infective individual or source results in the transmission of the disease and on the rate at which such encounters occur.

The numerical simulation has been made considering the cases of m = 3, m = 4 phases of infection within a
population of size N = 60, N = 40, respectively and choosing our parameters so that the total time is T = 2.5 years
and the mean duration of the infection is 14 days. The results in Figs. 3 and 4 show the number of infective individuals
in the time. We observe that the qualitative behaviour reproduces what was obtained with experimental data (see
Figs. 1 and 2) and reflects, in a way, the expected behaviour.

5. Conclusions

Dynamic models of infectious diseases for studying disease transmission and persistence are important to work out
the control, prevention or intervention strategies. Many epidemic diseases, like influenza, when introduced into the
host population, break out and burn out locally. In this study we present a model to cover these epidemic dynamics.
We consider the spread of an infective and non-mortal disease within a closed community numerically limited and
subjected to an external infection and we subdivide a single infectious class of a SIS model into m phases such that
a newly infected individual enters the first phase, passes through each successive phase and then goes back to the
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susceptible class. The qualitative behaviour obtained from numerical simulations agrees with that from experimental
data and shows extinction and recurrence of epidemic.

In our paper we assumed that the external contact rate ε is constant; in literature, it is related to “travel-induced”
diseases, in fact travel facilitates the physical transport of pathogens and vectors and increases the exposure of
individuals to disease. It would be interesting to examine the parameter ε, modeled as an increasing function of
the infectious number, influence the behaviour of the model in a population.

The recurrence of fluctuations and the non-extinction of the disease are related to the noise present in biological
systems, in Ref. [4] the authors introduce a pulse source with memory to describe the number of contacts between ill
and healthy people, where the delay describes the incubation period of the illness. So they compare development of
illness with different incubation periods.

The results obtained in this work are strongly dependent on the choice of the exponential law; this mathematical
assumption is used by numerous authors. Interesting works exist about the distribution of infectious periods in disease
models, such as measles, which pay particular attention to the difference between exponentially distributed and
constant periods [9,10].
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